Chapter 7: Odour Treatment
Credit to : Raúl Muñoz
Pedro García Encina
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Sludge, Odors & Biogas
Only logged in customers who have purchased this product may leave a review.
Related products
Wastewater Biogas to Energy
Overview
The organic matter in raw wastewater contains almost 10 times the energy needed to treat it. Some wastewater treatment works (WWTW) can produce up to 100% of the energy they need to operate, though more typically 60% of operational energy can be produced. Biogas is typically used to meet on site power and thermal energy needs. Export of gas to local industrial users, power producers or for use as a municipal vehicle fleet fuel is also possible. In a wastewater treatment works (WWTW) biogas is produced when sludge decomposes in the absence of oxygen, in digesters. This process is referred to as Anaerobic Digestion. South Africa was one of the first countries in the world to utilise digesters as part of sludge management at WWTW. Digesters at WWTW were, however, not built to capture and use the biogas produced, but rather to assist in sludge management. In most cases, digesters can actually be refurbished to allow for biogas collection.
Biogas (a methane-rich natural gas) derived from anaerobic digestion and captured at WWTW plants provides a renewable energy source which can be used for electricity, heat and biofuel production. At the same time the sludge is stabilized and its dry matter content is reduced. This sludge, or digestate (remaining solid matter after the gas has been removed), contains valuable chemical nutrients such as nitrogen and potassium, and can be used as an organic fertilizer.
Wastewater Biogas to Energy
Overview
The organic matter in raw wastewater contains almost 10 times the energy needed to treat it. Some wastewater treatment works (WWTW) can produce up to 100% of the energy they need to operate, though more typically 60% of operational energy can be produced. Biogas is typically used to meet on site power and thermal energy needs. Export of gas to local industrial users, power producers or for use as a municipal vehicle fleet fuel is also possible. In a wastewater treatment works (WWTW) biogas is produced when sludge decomposes in the absence of oxygen, in digesters. This process is referred to as Anaerobic Digestion. South Africa was one of the first countries in the world to utilise digesters as part of sludge management at WWTW. Digesters at WWTW were, however, not built to capture and use the biogas produced, but rather to assist in sludge management. In most cases, digesters can actually be refurbished to allow for biogas collection.
Biogas (a methane-rich natural gas) derived from anaerobic digestion and captured at WWTW plants provides a renewable energy source which can be used for electricity, heat and biofuel production. At the same time the sludge is stabilized and its dry matter content is reduced. This sludge, or digestate (remaining solid matter after the gas has been removed), contains valuable chemical nutrients such as nitrogen and potassium, and can be used as an organic fertilizer.
Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management
It is crystal clear that, in addition to clean air, the well-being of our planet also requires that water, wastewater and the resulting biosolids (sludge) need to be managed more seriously, and in a focused, coordinated and cooperative manner. The idea for the creation of this Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management originated at the IWA Biosolids Conference, “Moving Forward Wastewater Biosolids Sustainability: Technical, Managerial, and Public Synergy” held in Moncton, New Brunswick, Canada in June 2007. At this conference representatives of the International Water Association (IWA), Water Environmental Federation (WEF) and European Water Association (EWA) agreed that it would be very useful to produce a current edition of the “Global Atlas of Wastewater Sludge and Biosolids Use and Disposal” which had been published in 1996, with Peter Matthews being
the original editor.
Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management
It is crystal clear that, in addition to clean air, the well-being of our planet also requires that water, wastewater and the resulting biosolids (sludge) need to be managed more seriously, and in a focused, coordinated and cooperative manner. The idea for the creation of this Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management originated at the IWA Biosolids Conference, “Moving Forward Wastewater Biosolids Sustainability: Technical, Managerial, and Public Synergy” held in Moncton, New Brunswick, Canada in June 2007. At this conference representatives of the International Water Association (IWA), Water Environmental Federation (WEF) and European Water Association (EWA) agreed that it would be very useful to produce a current edition of the “Global Atlas of Wastewater Sludge and Biosolids Use and Disposal” which had been published in 1996, with Peter Matthews being
the original editor.
Activated Sludge Aeration Waste Heat for Membrane Evaporation of Desalination Brine Concentrate: A Bench Scale Collaborative Study
This study examines a potential membrane evaporation process to reduce brine concentrate volume at the San Antonio Water System’s (SAWS) 45.4 million liters per day (MLD) brackish water desalination facility in San Antonio, Texas, which is currently being constructed. This facility is a reverse osmosis (RO) process operating with 90% recovery by blending 37.9 MLD of permeate with 7.6 MLD of bypass water, producing 4.2 MLD of brine concentrate. The brine concentrate residuals are to be disposed of through deep-well injection. The deep-well injection process is anticipated to be expensive due to well-drilling costs and maintenance costs of operating at high injection pressures. Membrane evaporation systems are promising because they are compact systems and they can be used with low grade waste heat energy sources. This study investigates the potential of coupling membrane evaporation with waste heat generated from activated sludge aeration blowers.
Activated Sludge Aeration Waste Heat for Membrane Evaporation of Desalination Brine Concentrate: A Bench Scale Collaborative Study
This study examines a potential membrane evaporation process to reduce brine concentrate volume at the San Antonio Water System’s (SAWS) 45.4 million liters per day (MLD) brackish water desalination facility in San Antonio, Texas, which is currently being constructed. This facility is a reverse osmosis (RO) process operating with 90% recovery by blending 37.9 MLD of permeate with 7.6 MLD of bypass water, producing 4.2 MLD of brine concentrate. The brine concentrate residuals are to be disposed of through deep-well injection. The deep-well injection process is anticipated to be expensive due to well-drilling costs and maintenance costs of operating at high injection pressures. Membrane evaporation systems are promising because they are compact systems and they can be used with low grade waste heat energy sources. This study investigates the potential of coupling membrane evaporation with waste heat generated from activated sludge aeration blowers.
Odor Control
20 years ago there was little talk of odor control. WWTP’s and PS were located out of town, and odor was not a problem.
Today odor control is generally considered an essential process in sewage treatment plant design, and in many other industries.
Odor Control
20 years ago there was little talk of odor control. WWTP’s and PS were located out of town, and odor was not a problem.
Today odor control is generally considered an essential process in sewage treatment plant design, and in many other industries.
Sewage Sludge Management In Germany
Introduction
What is sewage sludge?
In Germany, daily water use now reaches 120 litres per person. All of this water ultimately ends up in the sewage system, and from there is channelled to sewage treatment plants. At such plants, the sewage passes through screens and sieves and undergoes mechanical and biological purification,
the goal being to remove impurities from the sewage and to then channel the resulting purified water into waterbodies. The residue of this process is known as
sewage sludge, which can occur in anhydrous, dried or other processed forms.
Sewage Sludge Management In Germany
Introduction
What is sewage sludge?
In Germany, daily water use now reaches 120 litres per person. All of this water ultimately ends up in the sewage system, and from there is channelled to sewage treatment plants. At such plants, the sewage passes through screens and sieves and undergoes mechanical and biological purification,
the goal being to remove impurities from the sewage and to then channel the resulting purified water into waterbodies. The residue of this process is known as
sewage sludge, which can occur in anhydrous, dried or other processed forms.
Reviews
There are no reviews yet.