Design And Construction Specification For Southern Water Services Limited
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Design Guidelines
Only logged in customers who have purchased this product may leave a review.
Related products
Design And Analysis of Pressure Disc Type Filter
Abstract:
Presently used Filters for Beverages making industries are very bulky in shape and gives low outlet discharge. Hence they are less efficient .Therefore there is a need to design compact, automated unit that produces completely clear liquor and which have large outlet discharge. This concept highlights the design of new filter which fulfill the requirements of beverages making industries for filtration. For making filtration more feasible, unit is to be design in which multiple disc comprising of blades is to be mounted on a shaft for filtration. Multiple discs will get patterned throughout the shaft and number of disc decides the capacity of filter. The special arrangement of Two cake discharge blades (scrapper remover) suspended from a frame mounted on the tank and serve to deflect and guide the cake to the discharge tube. On large diameter filters, the blades are of the swing type that float to maintain the cake to disc clearance and so allow for the wobble of the turning discs.
Design And Analysis of Pressure Disc Type Filter
Abstract:
Presently used Filters for Beverages making industries are very bulky in shape and gives low outlet discharge. Hence they are less efficient .Therefore there is a need to design compact, automated unit that produces completely clear liquor and which have large outlet discharge. This concept highlights the design of new filter which fulfill the requirements of beverages making industries for filtration. For making filtration more feasible, unit is to be design in which multiple disc comprising of blades is to be mounted on a shaft for filtration. Multiple discs will get patterned throughout the shaft and number of disc decides the capacity of filter. The special arrangement of Two cake discharge blades (scrapper remover) suspended from a frame mounted on the tank and serve to deflect and guide the cake to the discharge tube. On large diameter filters, the blades are of the swing type that float to maintain the cake to disc clearance and so allow for the wobble of the turning discs.
IMS Design Quick Start Guide
The IMSDesign Quick Start Guide contains information about how you can install the Integrated Membrane System Design (IMSDesign) application. Additionally, this guide contains detailed information about setting the options related to different modules of the application.
IMS Design Quick Start Guide
The IMSDesign Quick Start Guide contains information about how you can install the Integrated Membrane System Design (IMSDesign) application. Additionally, this guide contains detailed information about setting the options related to different modules of the application.
Design of Sanitary Sewers
Introduction:
Sewer systems are essential for the public health and welfare in all areas of concentrated population and development. Every community produces water‐borne wastes of domestic, commercial, and industrial origin. Sewers perform the virtually needed functions of collecting these wastes and conveying them to points of discharge or disposal.
Design of Sanitary Sewers
Introduction:
Sewer systems are essential for the public health and welfare in all areas of concentrated population and development. Every community produces water‐borne wastes of domestic, commercial, and industrial origin. Sewers perform the virtually needed functions of collecting these wastes and conveying them to points of discharge or disposal.
Chilled Water Plant Design Guide
Introduction:
Many large buildings, campuses, and other facilities have plants that make chilled water and distribute it to air handling units and other cooling equipment. The design operation and maintenance of these chilled water plants has a very large impact on building energy use and energy operating cost. Not only do chilled water plants use very significant amounts of electricity (as well as gas in some cases), they also significantly contribute to the peak load of buildings. The utility grid in California, and in many other areas of the country, experiences its maximum peak on hot summer days. During this peak event, chilled water plants are often running at maximum capacity. When temperatures are moderate, chilled water plants are shut down or operated in stand-by mode. This variation in the rate of energy use is a major contributor to the peaks and valleys in energy demand, which is one of the problems that must be addressed by utility grid managers. Most buildings and facilities that have chilled water plants have special utility rates where the cost of electricity depends on when it is used and the maximum rate of use. For instance, PG&E has five time charge periods: summer on-peak, summer mid-peak, summer off-peak, winter mid-peak and winter off-peak. The price of electricity is several times higher during the summer on-peak than it is during the off-peak periods. Not only does the cost of electricity vary, but most utility rates also have a monthly demand charge based on the maximum rate of electricity use for the billing period. Since chilled water plants operate more intensely during the summer peak period, efficiency gains and peak reductions can result in very large utility bill savings. In addition to new construction, the chilled water plants of many existing buildings are being replaced or overhauled. Older chilled water plants have equipment that uses ozone-damaging refrigerants. International treaties, in particular the Montreal Protocol, call for ozone damaging chemicals (in particular CFCs) to be phased out of production. As the availability of CFCs is reduced, the price will skyrocket, creating pressure for chilled water plants to be overhauled or replaced.
Chilled Water Plant Design Guide
Introduction:
Many large buildings, campuses, and other facilities have plants that make chilled water and distribute it to air handling units and other cooling equipment. The design operation and maintenance of these chilled water plants has a very large impact on building energy use and energy operating cost. Not only do chilled water plants use very significant amounts of electricity (as well as gas in some cases), they also significantly contribute to the peak load of buildings. The utility grid in California, and in many other areas of the country, experiences its maximum peak on hot summer days. During this peak event, chilled water plants are often running at maximum capacity. When temperatures are moderate, chilled water plants are shut down or operated in stand-by mode. This variation in the rate of energy use is a major contributor to the peaks and valleys in energy demand, which is one of the problems that must be addressed by utility grid managers. Most buildings and facilities that have chilled water plants have special utility rates where the cost of electricity depends on when it is used and the maximum rate of use. For instance, PG&E has five time charge periods: summer on-peak, summer mid-peak, summer off-peak, winter mid-peak and winter off-peak. The price of electricity is several times higher during the summer on-peak than it is during the off-peak periods. Not only does the cost of electricity vary, but most utility rates also have a monthly demand charge based on the maximum rate of electricity use for the billing period. Since chilled water plants operate more intensely during the summer peak period, efficiency gains and peak reductions can result in very large utility bill savings. In addition to new construction, the chilled water plants of many existing buildings are being replaced or overhauled. Older chilled water plants have equipment that uses ozone-damaging refrigerants. International treaties, in particular the Montreal Protocol, call for ozone damaging chemicals (in particular CFCs) to be phased out of production. As the availability of CFCs is reduced, the price will skyrocket, creating pressure for chilled water plants to be overhauled or replaced.
Chapter 3. Activated Carbon Columns Plant Design
Maybe, the first question that we have to ask ourselves is related to the decision of an adsorprtion process using activated carbon for the removal of micro pollutants is efficient. The theory says that the adsorbability of an organic molecule increases with increasing molecular weight and decreasing solubility and polarity. This means that high molecular weight compounds with low solubility, such as most pesticides, are well adsorbed, so the first idea is plenty justified.
Chapter 3. Activated Carbon Columns Plant Design
Maybe, the first question that we have to ask ourselves is related to the decision of an adsorprtion process using activated carbon for the removal of micro pollutants is efficient. The theory says that the adsorbability of an organic molecule increases with increasing molecular weight and decreasing solubility and polarity. This means that high molecular weight compounds with low solubility, such as most pesticides, are well adsorbed, so the first idea is plenty justified.
Design and Optimization of Ultrafiltration Membrane Setup for Wastewater Treatment and Reuse
With the advances in the membrane technology, there is an ongoing quest to determine the best optimal configuration for an adopted treatment as well as it’s polishing to achieve cumulative sustainability for the treatment process. Henceforth, this thesis report is an evaluation to devise a membrane filtration process for investigating the possibility of treating pre-sedimented municipal wastewater with ceramic ultrafiltration, optimizing the membrane as a pre-treatment for reverse osmosis as an overall strategy for recovering wastewater.
Design and Optimization of Ultrafiltration Membrane Setup for Wastewater Treatment and Reuse
With the advances in the membrane technology, there is an ongoing quest to determine the best optimal configuration for an adopted treatment as well as it’s polishing to achieve cumulative sustainability for the treatment process. Henceforth, this thesis report is an evaluation to devise a membrane filtration process for investigating the possibility of treating pre-sedimented municipal wastewater with ceramic ultrafiltration, optimizing the membrane as a pre-treatment for reverse osmosis as an overall strategy for recovering wastewater.
Small Wastewater Treatment Works DPW Design Guidelines
This document’s purpose is to direct the design process for designing the best and most Appropriate wastewater process for effluent which is generated by small scale on site operations, Up to 100 m3/day such as police stations, border posts, DOJ etc. Larger plants are also addressed To some extent. In this manual, the best appropriate process for such small waste water treatment Plants has already been identified as the Rotating Biological Contactors (biodiscs) systems and Biological trickling filters (biofiters) for larger quantities. Consultants designing such plants for The DPW need to take cognizance of all the criteria set out herein and must ensure that apart from That the best available practices as regards such processes are incorporated into the design. The Designers of such plants are however still to consider other alternatives if the circumstances so Dictate.
Small Wastewater Treatment Works DPW Design Guidelines
This document’s purpose is to direct the design process for designing the best and most Appropriate wastewater process for effluent which is generated by small scale on site operations, Up to 100 m3/day such as police stations, border posts, DOJ etc. Larger plants are also addressed To some extent. In this manual, the best appropriate process for such small waste water treatment Plants has already been identified as the Rotating Biological Contactors (biodiscs) systems and Biological trickling filters (biofiters) for larger quantities. Consultants designing such plants for The DPW need to take cognizance of all the criteria set out herein and must ensure that apart from That the best available practices as regards such processes are incorporated into the design. The Designers of such plants are however still to consider other alternatives if the circumstances so Dictate.
CoolToolsTM Chilled Water Plant Design and Specification Guide
Abstract:
The CoolToolsTM Chilled Water Plant Design and Specification Guide is targeted to a technical design audience. It includes design issues such as selection of coils, application of different piping distribution systems, design and applications of controls, mitigation of low delta-t syndrome, and a myriad of other performance critical issues. It also includes a section on Performance Specifications, which is targeted to equipment specifiers, including engineers and facility purchasing agents. It details methods to request and analyze the performance data of submitted equipment. Topics include zero tolerance performance specifications, applications of witness tests, and performance tables for bid alternates.
CoolToolsTM Chilled Water Plant Design and Specification Guide
Abstract:
The CoolToolsTM Chilled Water Plant Design and Specification Guide is targeted to a technical design audience. It includes design issues such as selection of coils, application of different piping distribution systems, design and applications of controls, mitigation of low delta-t syndrome, and a myriad of other performance critical issues. It also includes a section on Performance Specifications, which is targeted to equipment specifiers, including engineers and facility purchasing agents. It details methods to request and analyze the performance data of submitted equipment. Topics include zero tolerance performance specifications, applications of witness tests, and performance tables for bid alternates.
Guidelines for Drinking-Water Quality
The primary purpose of the Guidelines for drinking-water quality is the protection of public health. The Guidelines provide the recommendations of the World Health Organization (WHO) for managing the risk from hazards that may compromise the safety of drinking-water. The recommendations should be
considered in the context of managing the risk from other sources of exposureto these hazards, such as waste, air, food and consumer products.
Guidelines for Drinking-Water Quality
The primary purpose of the Guidelines for drinking-water quality is the protection of public health. The Guidelines provide the recommendations of the World Health Organization (WHO) for managing the risk from hazards that may compromise the safety of drinking-water. The recommendations should be
considered in the context of managing the risk from other sources of exposureto these hazards, such as waste, air, food and consumer products.
Reviews
There are no reviews yet.