Design & Construction Specification
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Design Guidelines
Only logged in customers who have purchased this product may leave a review.
Related products
Community Public Water Systems Design Criteria
Introduction:
This publication is a revised edition of our Design Criteria for Community Public Water Systems. They have been prepared as a guide to water systems, design engineers, and our own staff. There has been no attempt to address every situation. We also know that there will be occasions when these criteria will not apply. Exceptions will be handled on an individual basis. The Tennessee Safe Drinking Water Act of 1983 requires The Department of Environment & Conservation to: "Exercise general supervision over the construction of public water systems throughout the state. Such general supervision shall include all the features of construction of public water systems which do or may affect the sanitary quality or the quantity of the water supply. No new construction shall be done nor shall any change be made in any public water system until the plans for such new construction or change have been submitted and approved by the department." (Extract of part of Section 68-221-706, Tennessee Code) Where the terms shall and must are used, it is intended to be a mandatory requirement. Other terms such as should, recommend, preferred, and the like, are intended to show desirable equipment, procedures, or methods. We encourage development of new methods and equipment. However, any new developments must be demonstrated to be satisfactory before we can approve their use. Operating data from other installations, or demonstration of the equipment by a manufacturer's representative, or both, may be needed for our review. These criteria are a compilation of information from a number of sources. The principle source, however, is Recommended Standards for Water Works, 1982 Edition. This publication is a report of "The Committee of the Great Lakes Upper Mississippi River Board of State Sanitary Engineers" and is commonly known as Ten-State Standards.
Community Public Water Systems Design Criteria
Introduction:
This publication is a revised edition of our Design Criteria for Community Public Water Systems. They have been prepared as a guide to water systems, design engineers, and our own staff. There has been no attempt to address every situation. We also know that there will be occasions when these criteria will not apply. Exceptions will be handled on an individual basis. The Tennessee Safe Drinking Water Act of 1983 requires The Department of Environment & Conservation to: "Exercise general supervision over the construction of public water systems throughout the state. Such general supervision shall include all the features of construction of public water systems which do or may affect the sanitary quality or the quantity of the water supply. No new construction shall be done nor shall any change be made in any public water system until the plans for such new construction or change have been submitted and approved by the department." (Extract of part of Section 68-221-706, Tennessee Code) Where the terms shall and must are used, it is intended to be a mandatory requirement. Other terms such as should, recommend, preferred, and the like, are intended to show desirable equipment, procedures, or methods. We encourage development of new methods and equipment. However, any new developments must be demonstrated to be satisfactory before we can approve their use. Operating data from other installations, or demonstration of the equipment by a manufacturer's representative, or both, may be needed for our review. These criteria are a compilation of information from a number of sources. The principle source, however, is Recommended Standards for Water Works, 1982 Edition. This publication is a report of "The Committee of the Great Lakes Upper Mississippi River Board of State Sanitary Engineers" and is commonly known as Ten-State Standards.
Design of Sanitary Sewers
Introduction:
Sewer systems are essential for the public health and welfare in all areas of concentrated population and development. Every community produces water‐borne wastes of domestic, commercial, and industrial origin. Sewers perform the virtually needed functions of collecting these wastes and conveying them to points of discharge or disposal.
Design of Sanitary Sewers
Introduction:
Sewer systems are essential for the public health and welfare in all areas of concentrated population and development. Every community produces water‐borne wastes of domestic, commercial, and industrial origin. Sewers perform the virtually needed functions of collecting these wastes and conveying them to points of discharge or disposal.
Guidelines for Drinking-Water Quality
The primary purpose of the Guidelines for drinking-water quality is the protection of public health. The Guidelines provide the recommendations of the World Health Organization (WHO) for managing the risk from hazards that may compromise the safety of drinking-water. The recommendations should be
considered in the context of managing the risk from other sources of exposureto these hazards, such as waste, air, food and consumer products.
Guidelines for Drinking-Water Quality
The primary purpose of the Guidelines for drinking-water quality is the protection of public health. The Guidelines provide the recommendations of the World Health Organization (WHO) for managing the risk from hazards that may compromise the safety of drinking-water. The recommendations should be
considered in the context of managing the risk from other sources of exposureto these hazards, such as waste, air, food and consumer products.
Design of Water Filter for Third World Countries
Abstract
The residents in third world countries battle against waterborne diseases every day. It is a luxury to have access to safe drinking water. However, it is extremely difficult to invest on a water filter with minimal annual income. A low cost water filter can serve as a subsidy such that every family can take advantage of this luxury. In this thesis, literature reviews on existing water filters have been completed and design of a dual level water filter with ceramic and activated carbon is developed. Water flow rate tests are carried out to optimize water filter design.
Further, the filter effectiveness in diminishing various contaminates is analyzed by a licensed sampling laboratory. A manufacturing line to produce the dual water filters is proposed and the cost of manufacturing a unit is calculated to be $1.53 USD, which is an affordable price for people in third world countries. With a low cost water filter available, residents in the third world countries could enjoy having safe drinking water and improve quality of life.
Design of Water Filter for Third World Countries
Abstract
The residents in third world countries battle against waterborne diseases every day. It is a luxury to have access to safe drinking water. However, it is extremely difficult to invest on a water filter with minimal annual income. A low cost water filter can serve as a subsidy such that every family can take advantage of this luxury. In this thesis, literature reviews on existing water filters have been completed and design of a dual level water filter with ceramic and activated carbon is developed. Water flow rate tests are carried out to optimize water filter design.
Further, the filter effectiveness in diminishing various contaminates is analyzed by a licensed sampling laboratory. A manufacturing line to produce the dual water filters is proposed and the cost of manufacturing a unit is calculated to be $1.53 USD, which is an affordable price for people in third world countries. With a low cost water filter available, residents in the third world countries could enjoy having safe drinking water and improve quality of life.
Design Characteristics For Evaporation Ponds In Wyoming
ABSTRACT:
Information for the design of evaporation ponds in Wyoming has been developed. The suitability of various models for estimating evaporation and its variability was investigated while the spatial and temporal variabilities of net evaporation at seven locations were described. A routing procedure was developed to analyze the effects of uncertainty in net evaporation estimates on the probability of pond failure. Comparison of equations which estimate evaporation using climatological data showed that the equations vary greatly in their ability to define the variability of evaporation. The Kohler-Nordenson-Fox equation provided monthly and annual evaporation estimates having statistics resembling those of
measured pan data closer than any of seven other equations tested. The equation requires temperature, radiation, wind, and humidity data as inputs. The Kohler-Nordenson-Fox equation using climatic data extrapolated from nearby stations provided better definition of the variability of evaporation than did equations requiring only on-site temperature data. However, results indicate that extreme care must be taken in selecting the stations from which data will be extrapolated. Monthly and annual means, standard deviations, and highest and lowest evaporation and net evaporation values have been calculated for seven Wyoming stations. The year-to-year and spatial variation of evaporation and/or net evaporation in Wyoming was shown to be great enough to cause serious problems in defining rates for evaporation pond designs. Several factors were shown to exist which might produce uncertainties in any estimate of evaporation. The routing procedure was applied to analyze the effects of these uncertainties and variations. Results indicate that the liquid depth of an evaporation pond depends greatly on evaporation rates and maintenance of minimum liquid depths without pond overflow is very difficult.
Design Characteristics For Evaporation Ponds In Wyoming
ABSTRACT:
Information for the design of evaporation ponds in Wyoming has been developed. The suitability of various models for estimating evaporation and its variability was investigated while the spatial and temporal variabilities of net evaporation at seven locations were described. A routing procedure was developed to analyze the effects of uncertainty in net evaporation estimates on the probability of pond failure. Comparison of equations which estimate evaporation using climatological data showed that the equations vary greatly in their ability to define the variability of evaporation. The Kohler-Nordenson-Fox equation provided monthly and annual evaporation estimates having statistics resembling those of
measured pan data closer than any of seven other equations tested. The equation requires temperature, radiation, wind, and humidity data as inputs. The Kohler-Nordenson-Fox equation using climatic data extrapolated from nearby stations provided better definition of the variability of evaporation than did equations requiring only on-site temperature data. However, results indicate that extreme care must be taken in selecting the stations from which data will be extrapolated. Monthly and annual means, standard deviations, and highest and lowest evaporation and net evaporation values have been calculated for seven Wyoming stations. The year-to-year and spatial variation of evaporation and/or net evaporation in Wyoming was shown to be great enough to cause serious problems in defining rates for evaporation pond designs. Several factors were shown to exist which might produce uncertainties in any estimate of evaporation. The routing procedure was applied to analyze the effects of these uncertainties and variations. Results indicate that the liquid depth of an evaporation pond depends greatly on evaporation rates and maintenance of minimum liquid depths without pond overflow is very difficult.
CoolToolsTM Chilled Water Plant Design and Specification Guide
Abstract:
The CoolToolsTM Chilled Water Plant Design and Specification Guide is targeted to a technical design audience. It includes design issues such as selection of coils, application of different piping distribution systems, design and applications of controls, mitigation of low delta-t syndrome, and a myriad of other performance critical issues. It also includes a section on Performance Specifications, which is targeted to equipment specifiers, including engineers and facility purchasing agents. It details methods to request and analyze the performance data of submitted equipment. Topics include zero tolerance performance specifications, applications of witness tests, and performance tables for bid alternates.
CoolToolsTM Chilled Water Plant Design and Specification Guide
Abstract:
The CoolToolsTM Chilled Water Plant Design and Specification Guide is targeted to a technical design audience. It includes design issues such as selection of coils, application of different piping distribution systems, design and applications of controls, mitigation of low delta-t syndrome, and a myriad of other performance critical issues. It also includes a section on Performance Specifications, which is targeted to equipment specifiers, including engineers and facility purchasing agents. It details methods to request and analyze the performance data of submitted equipment. Topics include zero tolerance performance specifications, applications of witness tests, and performance tables for bid alternates.
Reviews
There are no reviews yet.