Electrical Maintenance Measurements And Measuring Devices
Electrical Maintenance Measurements And Measuring Devices-1
Credit to: https://www.coursehero.com/
Field Operations Training
Electrical Maintenance
Measurements and Measuring Devices
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Electrical & Automation
Only logged in customers who have purchased this product may leave a review.
Related products
VFD Smart Drive Technology Saving Electric Motor Energy
Electric Motors Use 70% of the World’s Power
■ We impact that load 30 – 50%
■ Savings can be as much as 20% to 30% on the overall bill
■ Look for 1hp and above operating at least 2,000 hrs/yr
VFD Smart Drive Technology Saving Electric Motor Energy
Electric Motors Use 70% of the World’s Power
■ We impact that load 30 – 50%
■ Savings can be as much as 20% to 30% on the overall bill
■ Look for 1hp and above operating at least 2,000 hrs/yr
Design Calculations for Electrical Design
Introduction:
Design calculations establish minimum guidelines and requirements for generating electrical calculations on projects. Electrical calculations should be made for all SPU projects that include electrical components and should be filed in the project notebook. Design calculations may be made either manually or by SPU-approved computer programs
Design Calculations for Electrical Design
Introduction:
Design calculations establish minimum guidelines and requirements for generating electrical calculations on projects. Electrical calculations should be made for all SPU projects that include electrical components and should be filed in the project notebook. Design calculations may be made either manually or by SPU-approved computer programs
Testing and Commissioning of Electrical Equipment
INTRODUCTION
The purpose of these specifications is to assure that all tested electrical equipment and systems supplied by either contractor or owner are operational and within applicable standards and manufacturer’s tolerances and that equipment and systems are installed in accordance with design specifications. The need for acceptance testing of electrical power systems is very clear to those with extensive start-up and/or operating experience.
Shipping and installation damage, field and factory wiring errors, manufacturing defects, and systems and components not in accordance with drawings and specifications are some of the many problems that can be detected by appropriate testing. When these defects are found before start-up they can be corrected under warranty and without the safety hazards and possible equipment and consequential damages or loss of use/production that can occur if discovered after startup or energizing. In addition, test results obtained during acceptance testing are invaluable as base reference data for periodic testing which is an essential element of an effective maintenance program.
This document lists a majority of the field test available for assessing the suitability for service and reliability of the power distribution system. Certain tests have been assigned an “optional” classification. The following considerations were used in determining the use of the “optional” classification: 1. Did another test listed provide similar information? 2. How did the cost of the test compare to the cost of other tests providing similar information? 3. How commonplace was the test procedure? Is it new technology? While acknowledging the above, it is still necessary to make an informed judgment for each particular system regarding how extensive the testing should be. The approach taken in these specifications is to present a comprehensive series of tests that is applicable to most industrial and larger commercial systems.
The guidance of an experienced testing professional should be sought when making decisions such as how extensive testing should be. In smaller systems, some of the tests can be deleted. In other cases, a number of the tests indicated as optional should be performed. As a further note, it is important to follow the recommendations contained in the manufacturer’s instruction manuals. Many of the details of a complete and effective acceptance testing procedure can only be obtained from that source.
Testing and Commissioning of Electrical Equipment
INTRODUCTION
The purpose of these specifications is to assure that all tested electrical equipment and systems supplied by either contractor or owner are operational and within applicable standards and manufacturer’s tolerances and that equipment and systems are installed in accordance with design specifications. The need for acceptance testing of electrical power systems is very clear to those with extensive start-up and/or operating experience.
Shipping and installation damage, field and factory wiring errors, manufacturing defects, and systems and components not in accordance with drawings and specifications are some of the many problems that can be detected by appropriate testing. When these defects are found before start-up they can be corrected under warranty and without the safety hazards and possible equipment and consequential damages or loss of use/production that can occur if discovered after startup or energizing. In addition, test results obtained during acceptance testing are invaluable as base reference data for periodic testing which is an essential element of an effective maintenance program.
This document lists a majority of the field test available for assessing the suitability for service and reliability of the power distribution system. Certain tests have been assigned an “optional” classification. The following considerations were used in determining the use of the “optional” classification: 1. Did another test listed provide similar information? 2. How did the cost of the test compare to the cost of other tests providing similar information? 3. How commonplace was the test procedure? Is it new technology? While acknowledging the above, it is still necessary to make an informed judgment for each particular system regarding how extensive the testing should be. The approach taken in these specifications is to present a comprehensive series of tests that is applicable to most industrial and larger commercial systems.
The guidance of an experienced testing professional should be sought when making decisions such as how extensive testing should be. In smaller systems, some of the tests can be deleted. In other cases, a number of the tests indicated as optional should be performed. As a further note, it is important to follow the recommendations contained in the manufacturer’s instruction manuals. Many of the details of a complete and effective acceptance testing procedure can only be obtained from that source.
SCADA Systems Hardware(And FirmWare)
. Introduction
This chapter introduces the fundamental concepts of DCS systems. The terms Supervisory Control and Data Acquisition (SCADA), Distributed Control System (DCS), Programmable Logic Controller (PLC), and Smart Instrument are defined and placed in the context used in this manual. The chapter is split into the following sections:
Definitions of the terms SCADA, DCS, PLC and smart instrument
Remote terminal unit (RTU) structure
PLCs used as RTUs
System reliability and availability
Communication architectures and philosophies
Typical considerations in configuration of a master station
SCADA Systems Hardware(And FirmWare)
. Introduction
This chapter introduces the fundamental concepts of DCS systems. The terms Supervisory Control and Data Acquisition (SCADA), Distributed Control System (DCS), Programmable Logic Controller (PLC), and Smart Instrument are defined and placed in the context used in this manual. The chapter is split into the following sections:
Definitions of the terms SCADA, DCS, PLC and smart instrument
Remote terminal unit (RTU) structure
PLCs used as RTUs
System reliability and availability
Communication architectures and philosophies
Typical considerations in configuration of a master station
Process Automation In Wastewater Treatment Plants: the Finnish Experience
Abstract:
The degree and importance of automation at municipal wastewater treatment plants (WWTPs) have increased with the development of technology and tightening of treatment requirements. The objective of this paper is to assess and document the current status of process automation at WWTPs in Finland to determine successful practices and the needs of plant operators. Renewing ammonia or organic content
removal processes to total nitrogen removal processes has also increased the need of Instrumentation, Control and Automation (ICA). The survey has quantified that the reliability and accuracy of the on-line sensor measurement has improved recently, which makes the use of on-line measurements in control more applicable. The use of nutrient sensors in control is apparently still rare at Finnish WWTPs even though their use for monitoring purposes is common.
Process Automation In Wastewater Treatment Plants: the Finnish Experience
Abstract:
The degree and importance of automation at municipal wastewater treatment plants (WWTPs) have increased with the development of technology and tightening of treatment requirements. The objective of this paper is to assess and document the current status of process automation at WWTPs in Finland to determine successful practices and the needs of plant operators. Renewing ammonia or organic content
removal processes to total nitrogen removal processes has also increased the need of Instrumentation, Control and Automation (ICA). The survey has quantified that the reliability and accuracy of the on-line sensor measurement has improved recently, which makes the use of on-line measurements in control more applicable. The use of nutrient sensors in control is apparently still rare at Finnish WWTPs even though their use for monitoring purposes is common.
Reviews
There are no reviews yet.