Environmental Microbiology
Source: https://www.elsevier.com/
Author By: I.L. Pepper , C.P. Gerba
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Environmental Engineering
Only logged in customers who have purchased this product may leave a review.
Related products
Water In The Green Economy
Abstract
Water and its management is becoming not just a local but a global priority. The UN Rio+20 Declaration emphasises the need to establish a green economy as the means to achieving sustainable development while protecting and improving the world’s natural resources. Water is increasingly seen as a central plank of the green economy. It is embedded in all aspects of development – food security, health, and poverty reduction – and in sustaining economic growth in agriculture, industry, and energy generation.
Water In The Green Economy
Abstract
Water and its management is becoming not just a local but a global priority. The UN Rio+20 Declaration emphasises the need to establish a green economy as the means to achieving sustainable development while protecting and improving the world’s natural resources. Water is increasingly seen as a central plank of the green economy. It is embedded in all aspects of development – food security, health, and poverty reduction – and in sustaining economic growth in agriculture, industry, and energy generation.
Managing Forests and Water for People under a Changing Environment
Forests cover 30% of the Earth’s land area, or nearly four billion hectares. Enhancing the benefits and ecosystem services of forests has been increasingly recognized as an essential part of nature-based solutions for solving many emerging global environmental problems today. A core science supporting forest management is understanding the interactions of forests, water, and people. These interactions have become increasingly complex under climate change and its associated impacts, such as the increases in the intensity and frequency of drought and floods, increasing population and deforestation, and a rise in global demands for multiple ecosystem services including clean water supply and carbon sequestration. Forest watershed managers have recognized that water management is an essential component of forest management. Global environmental change is posing more challenges for managing forests and water toward sustainable development. New science on forest and water is critically needed across the globe.
Managing Forests and Water for People under a Changing Environment
Forests cover 30% of the Earth’s land area, or nearly four billion hectares. Enhancing the benefits and ecosystem services of forests has been increasingly recognized as an essential part of nature-based solutions for solving many emerging global environmental problems today. A core science supporting forest management is understanding the interactions of forests, water, and people. These interactions have become increasingly complex under climate change and its associated impacts, such as the increases in the intensity and frequency of drought and floods, increasing population and deforestation, and a rise in global demands for multiple ecosystem services including clean water supply and carbon sequestration. Forest watershed managers have recognized that water management is an essential component of forest management. Global environmental change is posing more challenges for managing forests and water toward sustainable development. New science on forest and water is critically needed across the globe.
Impacts of Anthropogenic Activities on Watersheds in a Changing Climate
The immediate goal of this Special Issue was the characterization of land uses and occupations (LULC) in watersheds and the assessment of impacts caused by anthropogenic activities. The goal was immediate because the ultimate purpose was to help bring disturbed watersheds to a better condition or a utopian sustainable status. The steps followed to attain this objective included publishing studies on the understanding of factors and variables that control hydrology and water quality changes in response to human activities. Following this first step, the Special Issue selected work that described adaption measures capable of improving the watershed condition (water availability and quality), namely LULC conversions (e.g., monocultures into agro-forestry systems). Concerning the LULC measures, however, efficacy was questioned unless supported by public programs that force consumers to participate in concomitant costs, because conversions may be viewed as an environmental service.
Impacts of Anthropogenic Activities on Watersheds in a Changing Climate
The immediate goal of this Special Issue was the characterization of land uses and occupations (LULC) in watersheds and the assessment of impacts caused by anthropogenic activities. The goal was immediate because the ultimate purpose was to help bring disturbed watersheds to a better condition or a utopian sustainable status. The steps followed to attain this objective included publishing studies on the understanding of factors and variables that control hydrology and water quality changes in response to human activities. Following this first step, the Special Issue selected work that described adaption measures capable of improving the watershed condition (water availability and quality), namely LULC conversions (e.g., monocultures into agro-forestry systems). Concerning the LULC measures, however, efficacy was questioned unless supported by public programs that force consumers to participate in concomitant costs, because conversions may be viewed as an environmental service.
Critical Zone (CZ) Export to Streams as Indicator for CZ Structure and Function
The goal of this Research Topic on streams as indicators for CZ structure and function is to explore linkages between biotic and abiotic weathering, soil biogeochemical processes, chemical and physical denudation and hydrology within the CZ. The CZ spans from the top of the vegetative canopy to the actively cycled groundwater providing life sustaining ecosystem services. However, rapid population growth and global climate change during the Anthropocene poses challenges to the Earth’s CZ which is pushed to balance increased demand (e.g. crop yield) while maintaining the CZ’s natural structure and other important ecosystem functions. Streams represent an integrator of many processes within the CZ and can thus carry the first signals of changing CZ health. As an important component of the CZ system, streams provide important information on hydrological, biogeochemical, and denudation fluxes, allowing a glimpse into the past, present and potential future of CZ function. The foci of recent stream water investigations include the role of catchment processes, riparian zone dynamics, hyporheic zone contributions and instream cycling to investigate nutrient dynamics, weathering and denudation, and hydrological partitioning. We now would like to expand this view conceptually to include the CZ.
Critical Zone (CZ) Export to Streams as Indicator for CZ Structure and Function
The goal of this Research Topic on streams as indicators for CZ structure and function is to explore linkages between biotic and abiotic weathering, soil biogeochemical processes, chemical and physical denudation and hydrology within the CZ. The CZ spans from the top of the vegetative canopy to the actively cycled groundwater providing life sustaining ecosystem services. However, rapid population growth and global climate change during the Anthropocene poses challenges to the Earth’s CZ which is pushed to balance increased demand (e.g. crop yield) while maintaining the CZ’s natural structure and other important ecosystem functions. Streams represent an integrator of many processes within the CZ and can thus carry the first signals of changing CZ health. As an important component of the CZ system, streams provide important information on hydrological, biogeochemical, and denudation fluxes, allowing a glimpse into the past, present and potential future of CZ function. The foci of recent stream water investigations include the role of catchment processes, riparian zone dynamics, hyporheic zone contributions and instream cycling to investigate nutrient dynamics, weathering and denudation, and hydrological partitioning. We now would like to expand this view conceptually to include the CZ.
Environmental Impact and Remediation of Heavy Metals
Heavy metals are a group of metals and metalloids that includes transition metals, lanthanides, and actinides. When released into water, these elements have toxic effects on water quality and surface sediments, affecting environmental parameters such as pH and temperature. Therefore, metals that are harmful to aquatic and terrestrial ecosystems pose a significant threat to plants, animals, and human health. As such, there is increased interest in mitigating the harmful environmental impacts of heavy metals. This book provides a comprehensive overview of heavy metals, their impacts on water, soil, food crops, and cosmetics, and techniques for their remediation. It is organized into three sections: “Heavy Metals and Their Effects on the Environment,” “Evaluation of Heavy Metals and Their Risks to Irrigation Water,” and “Remediation of Heavy Metals.
Environmental Impact and Remediation of Heavy Metals
Heavy metals are a group of metals and metalloids that includes transition metals, lanthanides, and actinides. When released into water, these elements have toxic effects on water quality and surface sediments, affecting environmental parameters such as pH and temperature. Therefore, metals that are harmful to aquatic and terrestrial ecosystems pose a significant threat to plants, animals, and human health. As such, there is increased interest in mitigating the harmful environmental impacts of heavy metals. This book provides a comprehensive overview of heavy metals, their impacts on water, soil, food crops, and cosmetics, and techniques for their remediation. It is organized into three sections: “Heavy Metals and Their Effects on the Environment,” “Evaluation of Heavy Metals and Their Risks to Irrigation Water,” and “Remediation of Heavy Metals.
Climate Variability and Change in the 21st Century.
Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales.
Climate Variability and Change in the 21st Century.
Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales.
Reviews
There are no reviews yet.