Flexible Electronics
Source: https://www.mdpi.com
Edited by: Ramses V. Martinez
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Electrical & Automation
Based on the premise “anything thin is flexible”, the field of flexible electronics has been fueled from the ever-evolving advances in thin-film materials and devices.
Only logged in customers who have purchased this product may leave a review.
Related products
Process Automation In Wastewater Treatment Plants: the Finnish Experience
Abstract:
The degree and importance of automation at municipal wastewater treatment plants (WWTPs) have increased with the development of technology and tightening of treatment requirements. The objective of this paper is to assess and document the current status of process automation at WWTPs in Finland to determine successful practices and the needs of plant operators. Renewing ammonia or organic content
removal processes to total nitrogen removal processes has also increased the need of Instrumentation, Control and Automation (ICA). The survey has quantified that the reliability and accuracy of the on-line sensor measurement has improved recently, which makes the use of on-line measurements in control more applicable. The use of nutrient sensors in control is apparently still rare at Finnish WWTPs even though their use for monitoring purposes is common.
Process Automation In Wastewater Treatment Plants: the Finnish Experience
Abstract:
The degree and importance of automation at municipal wastewater treatment plants (WWTPs) have increased with the development of technology and tightening of treatment requirements. The objective of this paper is to assess and document the current status of process automation at WWTPs in Finland to determine successful practices and the needs of plant operators. Renewing ammonia or organic content
removal processes to total nitrogen removal processes has also increased the need of Instrumentation, Control and Automation (ICA). The survey has quantified that the reliability and accuracy of the on-line sensor measurement has improved recently, which makes the use of on-line measurements in control more applicable. The use of nutrient sensors in control is apparently still rare at Finnish WWTPs even though their use for monitoring purposes is common.
Field Instrumentation
Basic terms related to temperature
Different scales conversion
Basic temperature measuring techniques
RTD’s and its application
Thermocouples and their applications
Comparison between RTDs and Thermocouples
State the effect on the indicated temperature for failures, open circuits, and short
circuit
Field Instrumentation
Basic terms related to temperature
Different scales conversion
Basic temperature measuring techniques
RTD’s and its application
Thermocouples and their applications
Comparison between RTDs and Thermocouples
State the effect on the indicated temperature for failures, open circuits, and short
circuit
Energy Efficient Electric Motors Systems
Introduction:
This manual gives a brief description of state-of-the-art technologies used to develop high efficiency motors, including premium efficiency induction motors, permanent magnet motors, and switched reluctance motors.
It also analyses issues that affect motor system efficiency and provides guidelines on how to deal with those issues namely by:
Selection of energy‐efficient motors
Properly sizing of motors;
Using Variable Speed Drives (VSDs), where appropriate. The use of VSDs can
lead to better process control, less wear in the mechanical equipment, less
acoustical noise, and significant energy savings;
Optimisation of the complete system, including, the distribution network,
power quality and efficient transmissions;
Motor Systems Energy Assessments
Taking Measurements
Applying best maintenance practices.
Motor Repair
How to win approval for energy efficiency projects
Energy Management Systems
Energy Efficient Electric Motors Systems
Introduction:
This manual gives a brief description of state-of-the-art technologies used to develop high efficiency motors, including premium efficiency induction motors, permanent magnet motors, and switched reluctance motors.
It also analyses issues that affect motor system efficiency and provides guidelines on how to deal with those issues namely by:
Selection of energy‐efficient motors
Properly sizing of motors;
Using Variable Speed Drives (VSDs), where appropriate. The use of VSDs can
lead to better process control, less wear in the mechanical equipment, less
acoustical noise, and significant energy savings;
Optimisation of the complete system, including, the distribution network,
power quality and efficient transmissions;
Motor Systems Energy Assessments
Taking Measurements
Applying best maintenance practices.
Motor Repair
How to win approval for energy efficiency projects
Energy Management Systems
Wastewater Treatment Plants Automation Master Plan
Introduction:
The City of Winnipeg has initiated a program to perform upgrades to the wastewater treatment systems at the NEWPCC, SEWPCC, and WEWPCC facilities. As part of these upgrades, automation systems are required for process control and monitoring. These automation systems must be installed to provide effective monitoring and control of the wastewater treatment processes. There are many methods of implementing an automation system, and the purpose of this document is to provide an overall strategy for automation installations that are consistent with the City’s needs. It is expected that this document will form the basis for future design work.
Wastewater Treatment Plants Automation Master Plan
Introduction:
The City of Winnipeg has initiated a program to perform upgrades to the wastewater treatment systems at the NEWPCC, SEWPCC, and WEWPCC facilities. As part of these upgrades, automation systems are required for process control and monitoring. These automation systems must be installed to provide effective monitoring and control of the wastewater treatment processes. There are many methods of implementing an automation system, and the purpose of this document is to provide an overall strategy for automation installations that are consistent with the City’s needs. It is expected that this document will form the basis for future design work.
Electrical Temperature Measurement
Electrical temperature measurement
The measurement of temperature is of special importance in numerous processes, with around 45% of all required measurement points associated with temperature. Applications include smelting, chemical reactions, food processing, energy measurement, and air conditioning. The applications mentioned are so very different, as are the service requirements imposed on the temperature sensors, their principle of operation, and their technical construction. In industrial processes, the measurement point is often a long way from the indication point; this may be demanded by the process conditions, with smelting and annealing furnaces, for example, or because central data acquisition is required. Often there is a requirement for further processing of the measurements in controllers or recorders.
The direct-reading thermometers familiar to us all in our everyday life are unsuitable for these applications; devices are needed that convert temperature into another form, an electrical signal. Incidentally, these electrical transducers are still referred to as thermometers, although, strictly speaking, what is meant is the transducer, comprising the sensor element and its surrounding protection fitting. In industrial electrical temperature measurement, pyrometers, resistance thermometers, and thermocouples are in common use. There are other measurement systems, such as oscillating quartz sensors and fiber-optic systems that have not yet found a wide application in the industry
Electrical Temperature Measurement
Electrical temperature measurement
The measurement of temperature is of special importance in numerous processes, with around 45% of all required measurement points associated with temperature. Applications include smelting, chemical reactions, food processing, energy measurement, and air conditioning. The applications mentioned are so very different, as are the service requirements imposed on the temperature sensors, their principle of operation, and their technical construction. In industrial processes, the measurement point is often a long way from the indication point; this may be demanded by the process conditions, with smelting and annealing furnaces, for example, or because central data acquisition is required. Often there is a requirement for further processing of the measurements in controllers or recorders.
The direct-reading thermometers familiar to us all in our everyday life are unsuitable for these applications; devices are needed that convert temperature into another form, an electrical signal. Incidentally, these electrical transducers are still referred to as thermometers, although, strictly speaking, what is meant is the transducer, comprising the sensor element and its surrounding protection fitting. In industrial electrical temperature measurement, pyrometers, resistance thermometers, and thermocouples are in common use. There are other measurement systems, such as oscillating quartz sensors and fiber-optic systems that have not yet found a wide application in the industry
Reviews
There are no reviews yet.