Freshwater Microplastics
Source: http://www.springerlink.com/
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Laboratory & Water Quality
Only logged in customers who have purchased this product may leave a review.
Related products
Rapid Assessment of Drinking Water Quality
Introduction
The provision of water was one of the eight components of primary health care identified by the World Health Assembly in Alma Ata in 1978. The Alma Ata Declaration on Primary Health Care expanded the concept of health care to include broader concepts of affordability, accessibility, self-reliance, inter-sectoral collaboration, community participation, sustainability and social justice. The importance of water supply continues to be emphasised as critical to reducing poverty and improving the health and well-being of the World's children and adults. The global community has committed itself to halving the proportion of the world's population who are unable to reach or to afford safe drinking water by 2015. Although great strides have been made in meeting this challenge in terms of provision of services, the safety of many water supplies remains unknown and uncertain. The recent Global Water Supply and Sanitation Assessment 2000 Report provided statistics regarding access to technologies that were either 'improved' or 'unimproved'. This was done on the assumption that some technologies were likely to be better for health, although it was recognised that would not always be the case. However, there was no information provided on water quality within the assessment. The inclusion of information regarding water quality in future assessments of the degree of access to water supplies is desirable. This handbook is designed to help in the implementation of rapid assessments of water quality to improve the knowledge and understanding of the level of safety of water supplies. There is significant value in reporting of independently verifiable water quality data to support national Governments and the international community in measuring progress in achieving the international development targets. Such data provides useful information regarding current conditions, deriving the likely public health burden relate to inadequate water supply and to gain an understanding of the extent of major water quality problems in developing countries. These data would, therefore, provide an indication of future investment priorities and needs on a country, regional and global basis.
Rapid Assessment of Drinking Water Quality
Introduction
The provision of water was one of the eight components of primary health care identified by the World Health Assembly in Alma Ata in 1978. The Alma Ata Declaration on Primary Health Care expanded the concept of health care to include broader concepts of affordability, accessibility, self-reliance, inter-sectoral collaboration, community participation, sustainability and social justice. The importance of water supply continues to be emphasised as critical to reducing poverty and improving the health and well-being of the World's children and adults. The global community has committed itself to halving the proportion of the world's population who are unable to reach or to afford safe drinking water by 2015. Although great strides have been made in meeting this challenge in terms of provision of services, the safety of many water supplies remains unknown and uncertain. The recent Global Water Supply and Sanitation Assessment 2000 Report provided statistics regarding access to technologies that were either 'improved' or 'unimproved'. This was done on the assumption that some technologies were likely to be better for health, although it was recognised that would not always be the case. However, there was no information provided on water quality within the assessment. The inclusion of information regarding water quality in future assessments of the degree of access to water supplies is desirable. This handbook is designed to help in the implementation of rapid assessments of water quality to improve the knowledge and understanding of the level of safety of water supplies. There is significant value in reporting of independently verifiable water quality data to support national Governments and the international community in measuring progress in achieving the international development targets. Such data provides useful information regarding current conditions, deriving the likely public health burden relate to inadequate water supply and to gain an understanding of the extent of major water quality problems in developing countries. These data would, therefore, provide an indication of future investment priorities and needs on a country, regional and global basis.
Effects of Heavy Metals on Cell Density, Size, Specific Growth Rate and Chlorophyll a of Tetraselmis Tetrathele Under Controlled Laboratory Conditions
Abstract
The effects of the varying levels of mercury (Hg) and cadmium (Cd) (0, 0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mg L⁻¹) to the cellular density of the green microalgae Tetraselmis tetrathele were evaluated every 24 h for 120 h. Specific growth rate, cell sizes and chlorophyll a were also monitored in the 5.0 mg L⁻¹ Hg and Cd and were compared to the unexposed at 0, 12, 24, 36, 48 and 120h. Results showed that the algal density of T. tetrathele exposed to various levels of Hg were similar with the control up to 48 h. Variations on different concentrations at different times were observed but the results suggest that T. tetrathele was not affected by Hg even at concentrations up to 5.0 mg L⁻¹ for 48 h but started to show toxicity from 3.0 to 5.0 mg L⁻¹ after 72 h and longer. Cd on the other hand also showed toxicity at 3.0, 4.0 and 5.0 mg L⁻¹ beyond 24 h exposure. The specific growth rate of T. tetrathele exposed to both 5.0 mg L⁻¹ Hg and Cd was statistically similar with those of the unexposed from 0 to 12 h and negative growth rates then followed up to 36 h. The chlorophyll a was significantly lower in the metal -exposed algae than did those unexposed. Chlorophyll a also decreased in T. tetrathele exposed to both heavy metals but algal cell sizes were not affected with the presence of Hg or Cd in the culture system.
Effects of Heavy Metals on Cell Density, Size, Specific Growth Rate and Chlorophyll a of Tetraselmis Tetrathele Under Controlled Laboratory Conditions
Abstract
The effects of the varying levels of mercury (Hg) and cadmium (Cd) (0, 0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mg L⁻¹) to the cellular density of the green microalgae Tetraselmis tetrathele were evaluated every 24 h for 120 h. Specific growth rate, cell sizes and chlorophyll a were also monitored in the 5.0 mg L⁻¹ Hg and Cd and were compared to the unexposed at 0, 12, 24, 36, 48 and 120h. Results showed that the algal density of T. tetrathele exposed to various levels of Hg were similar with the control up to 48 h. Variations on different concentrations at different times were observed but the results suggest that T. tetrathele was not affected by Hg even at concentrations up to 5.0 mg L⁻¹ for 48 h but started to show toxicity from 3.0 to 5.0 mg L⁻¹ after 72 h and longer. Cd on the other hand also showed toxicity at 3.0, 4.0 and 5.0 mg L⁻¹ beyond 24 h exposure. The specific growth rate of T. tetrathele exposed to both 5.0 mg L⁻¹ Hg and Cd was statistically similar with those of the unexposed from 0 to 12 h and negative growth rates then followed up to 36 h. The chlorophyll a was significantly lower in the metal -exposed algae than did those unexposed. Chlorophyll a also decreased in T. tetrathele exposed to both heavy metals but algal cell sizes were not affected with the presence of Hg or Cd in the culture system.
Developing Quality Control Handbooks for Water and Wastewater Treatment
Introduction
This section provides a step by step discussion regarding the development of a Quality Control Handbook for a water or wastewater treatment plant. A workshop format has been chosen for the development of the handbook in order to channel the multiple knowledge inputs needed for it. For a proper. The workshop format targets participants coming from water or wastewater treatment facilities. These participants are expected to be knowledgeable of the operational activities of the plant and able to share their actual experiences. The successful implementation of this handbook depends on the creation of a setting in which the employees themselves act as both teachers and students. Active participation is a key success factor, and practical demonstrations are necessary to supplement the theoretical aspects. The workshop format can be easily replicated and as such, helps facilitate the development of operating manuals in other water treatment facilities or water companies. Once completed, these manuals may be used to define the required skills of the operating personnel and may also be used for actual on-the-job training. The handbook is to be finalized after successful completion of four group sessions.
Developing Quality Control Handbooks for Water and Wastewater Treatment
Introduction
This section provides a step by step discussion regarding the development of a Quality Control Handbook for a water or wastewater treatment plant. A workshop format has been chosen for the development of the handbook in order to channel the multiple knowledge inputs needed for it. For a proper. The workshop format targets participants coming from water or wastewater treatment facilities. These participants are expected to be knowledgeable of the operational activities of the plant and able to share their actual experiences. The successful implementation of this handbook depends on the creation of a setting in which the employees themselves act as both teachers and students. Active participation is a key success factor, and practical demonstrations are necessary to supplement the theoretical aspects. The workshop format can be easily replicated and as such, helps facilitate the development of operating manuals in other water treatment facilities or water companies. Once completed, these manuals may be used to define the required skills of the operating personnel and may also be used for actual on-the-job training. The handbook is to be finalized after successful completion of four group sessions.
Water Treatment and Pathogen Control
This document is part of a series of expert reviews on different aspects of microbial water quality and health, developed by the World Health Organization (WHO) to inform development of guidelines for drinking-water quality, and to help countries and suppliers to develop and implement effective water safety plans. Contamination of drinking-water by microbial pathogens can cause disease outbreaks and contribute to background rates of disease. There are many treatment options for eliminating pathogens from drinking-water. Finding the right solution for a particular supply involves choosing from a range of processes. This document is a critical review of some of the literature on removal and inactivation of pathogenic microbes in water. The aim is to provide water quality specialists and design engineers with guidance on selecting appropriate treatment processes, to ensure the production of high quality drinking-water. Specifically, the document provides information on choosing appropriate treatment in relation to raw water quality, estimating pathogen concentrations in drinking-water, assessing the ability of treatment processes to achieve health-based water safety targets and identifying control measures in process operation.
Water Treatment and Pathogen Control
This document is part of a series of expert reviews on different aspects of microbial water quality and health, developed by the World Health Organization (WHO) to inform development of guidelines for drinking-water quality, and to help countries and suppliers to develop and implement effective water safety plans. Contamination of drinking-water by microbial pathogens can cause disease outbreaks and contribute to background rates of disease. There are many treatment options for eliminating pathogens from drinking-water. Finding the right solution for a particular supply involves choosing from a range of processes. This document is a critical review of some of the literature on removal and inactivation of pathogenic microbes in water. The aim is to provide water quality specialists and design engineers with guidance on selecting appropriate treatment processes, to ensure the production of high quality drinking-water. Specifically, the document provides information on choosing appropriate treatment in relation to raw water quality, estimating pathogen concentrations in drinking-water, assessing the ability of treatment processes to achieve health-based water safety targets and identifying control measures in process operation.
Clearing the Waters A focus on water quality solutions
Reproduction
This publication may be reproduced in whole or in part and in any form for educational or nonprofit purposes without special permission from the copyright holders, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme.
Clearing the Waters A focus on water quality solutions
Reproduction
This publication may be reproduced in whole or in part and in any form for educational or nonprofit purposes without special permission from the copyright holders, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme.
Basic Laboratory Study Guide
Preface:
The Laboratory Study Guide is an important resource for preparing for the certification exam and is arranged by chapters and sections. Each section consists of key knowledges with important informational concepts you need to know for the certification exam. This study guide also serves as a wastewater treatment plant operations primer that can be used as a reference on the subject. In preparing for the exams:
- Study the material! Read every key knowledge until the concept is fully understood and knownto memory.
- Learn with others! Take classes in this type of wastewater operations to improve your understanding and knowledge of the subject.
- Learn even more! For an even greater understanding and knowledge of the subjects, read and review the references listed at the end of the study guide.
Basic Laboratory Study Guide
Preface:
The Laboratory Study Guide is an important resource for preparing for the certification exam and is arranged by chapters and sections. Each section consists of key knowledges with important informational concepts you need to know for the certification exam. This study guide also serves as a wastewater treatment plant operations primer that can be used as a reference on the subject. In preparing for the exams:
- Study the material! Read every key knowledge until the concept is fully understood and knownto memory.
- Learn with others! Take classes in this type of wastewater operations to improve your understanding and knowledge of the subject.
- Learn even more! For an even greater understanding and knowledge of the subjects, read and review the references listed at the end of the study guide.
Reviews
There are no reviews yet.