Guide for Electrical Design Engineers: Designing an Uninterruptible Power Supply
Guide for Electrical Design Engineers- Designing an Uninterruptible Power Supply
Source: https://www.leonardo-energy.org/
Author: Julian Wiatr
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Design Guidelines
Only logged in customers who have purchased this product may leave a review.
Related products
Small Wastewater Treatment Works DPW Design Guidelines
This document’s purpose is to direct the design process for designing the best and most Appropriate wastewater process for effluent which is generated by small scale on site operations, Up to 100 m3/day such as police stations, border posts, DOJ etc. Larger plants are also addressed To some extent. In this manual, the best appropriate process for such small waste water treatment Plants has already been identified as the Rotating Biological Contactors (biodiscs) systems and Biological trickling filters (biofiters) for larger quantities. Consultants designing such plants for The DPW need to take cognizance of all the criteria set out herein and must ensure that apart from That the best available practices as regards such processes are incorporated into the design. The Designers of such plants are however still to consider other alternatives if the circumstances so Dictate.
Small Wastewater Treatment Works DPW Design Guidelines
This document’s purpose is to direct the design process for designing the best and most Appropriate wastewater process for effluent which is generated by small scale on site operations, Up to 100 m3/day such as police stations, border posts, DOJ etc. Larger plants are also addressed To some extent. In this manual, the best appropriate process for such small waste water treatment Plants has already been identified as the Rotating Biological Contactors (biodiscs) systems and Biological trickling filters (biofiters) for larger quantities. Consultants designing such plants for The DPW need to take cognizance of all the criteria set out herein and must ensure that apart from That the best available practices as regards such processes are incorporated into the design. The Designers of such plants are however still to consider other alternatives if the circumstances so Dictate.
Community Public Water Systems Design Criteria
Introduction:
This publication is a revised edition of our Design Criteria for Community Public Water Systems. They have been prepared as a guide to water systems, design engineers, and our own staff. There has been no attempt to address every situation. We also know that there will be occasions when these criteria will not apply. Exceptions will be handled on an individual basis. The Tennessee Safe Drinking Water Act of 1983 requires The Department of Environment & Conservation to: "Exercise general supervision over the construction of public water systems throughout the state. Such general supervision shall include all the features of construction of public water systems which do or may affect the sanitary quality or the quantity of the water supply. No new construction shall be done nor shall any change be made in any public water system until the plans for such new construction or change have been submitted and approved by the department." (Extract of part of Section 68-221-706, Tennessee Code) Where the terms shall and must are used, it is intended to be a mandatory requirement. Other terms such as should, recommend, preferred, and the like, are intended to show desirable equipment, procedures, or methods. We encourage development of new methods and equipment. However, any new developments must be demonstrated to be satisfactory before we can approve their use. Operating data from other installations, or demonstration of the equipment by a manufacturer's representative, or both, may be needed for our review. These criteria are a compilation of information from a number of sources. The principle source, however, is Recommended Standards for Water Works, 1982 Edition. This publication is a report of "The Committee of the Great Lakes Upper Mississippi River Board of State Sanitary Engineers" and is commonly known as Ten-State Standards.
Community Public Water Systems Design Criteria
Introduction:
This publication is a revised edition of our Design Criteria for Community Public Water Systems. They have been prepared as a guide to water systems, design engineers, and our own staff. There has been no attempt to address every situation. We also know that there will be occasions when these criteria will not apply. Exceptions will be handled on an individual basis. The Tennessee Safe Drinking Water Act of 1983 requires The Department of Environment & Conservation to: "Exercise general supervision over the construction of public water systems throughout the state. Such general supervision shall include all the features of construction of public water systems which do or may affect the sanitary quality or the quantity of the water supply. No new construction shall be done nor shall any change be made in any public water system until the plans for such new construction or change have been submitted and approved by the department." (Extract of part of Section 68-221-706, Tennessee Code) Where the terms shall and must are used, it is intended to be a mandatory requirement. Other terms such as should, recommend, preferred, and the like, are intended to show desirable equipment, procedures, or methods. We encourage development of new methods and equipment. However, any new developments must be demonstrated to be satisfactory before we can approve their use. Operating data from other installations, or demonstration of the equipment by a manufacturer's representative, or both, may be needed for our review. These criteria are a compilation of information from a number of sources. The principle source, however, is Recommended Standards for Water Works, 1982 Edition. This publication is a report of "The Committee of the Great Lakes Upper Mississippi River Board of State Sanitary Engineers" and is commonly known as Ten-State Standards.
CoolToolsTM Chilled Water Plant Design and Specification Guide
Abstract:
The CoolToolsTM Chilled Water Plant Design and Specification Guide is targeted to a technical design audience. It includes design issues such as selection of coils, application of different piping distribution systems, design and applications of controls, mitigation of low delta-t syndrome, and a myriad of other performance critical issues. It also includes a section on Performance Specifications, which is targeted to equipment specifiers, including engineers and facility purchasing agents. It details methods to request and analyze the performance data of submitted equipment. Topics include zero tolerance performance specifications, applications of witness tests, and performance tables for bid alternates.
CoolToolsTM Chilled Water Plant Design and Specification Guide
Abstract:
The CoolToolsTM Chilled Water Plant Design and Specification Guide is targeted to a technical design audience. It includes design issues such as selection of coils, application of different piping distribution systems, design and applications of controls, mitigation of low delta-t syndrome, and a myriad of other performance critical issues. It also includes a section on Performance Specifications, which is targeted to equipment specifiers, including engineers and facility purchasing agents. It details methods to request and analyze the performance data of submitted equipment. Topics include zero tolerance performance specifications, applications of witness tests, and performance tables for bid alternates.
Design And Analysis of Pressure Disc Type Filter
Abstract:
Presently used Filters for Beverages making industries are very bulky in shape and gives low outlet discharge. Hence they are less efficient .Therefore there is a need to design compact, automated unit that produces completely clear liquor and which have large outlet discharge. This concept highlights the design of new filter which fulfill the requirements of beverages making industries for filtration. For making filtration more feasible, unit is to be design in which multiple disc comprising of blades is to be mounted on a shaft for filtration. Multiple discs will get patterned throughout the shaft and number of disc decides the capacity of filter. The special arrangement of Two cake discharge blades (scrapper remover) suspended from a frame mounted on the tank and serve to deflect and guide the cake to the discharge tube. On large diameter filters, the blades are of the swing type that float to maintain the cake to disc clearance and so allow for the wobble of the turning discs.
Design And Analysis of Pressure Disc Type Filter
Abstract:
Presently used Filters for Beverages making industries are very bulky in shape and gives low outlet discharge. Hence they are less efficient .Therefore there is a need to design compact, automated unit that produces completely clear liquor and which have large outlet discharge. This concept highlights the design of new filter which fulfill the requirements of beverages making industries for filtration. For making filtration more feasible, unit is to be design in which multiple disc comprising of blades is to be mounted on a shaft for filtration. Multiple discs will get patterned throughout the shaft and number of disc decides the capacity of filter. The special arrangement of Two cake discharge blades (scrapper remover) suspended from a frame mounted on the tank and serve to deflect and guide the cake to the discharge tube. On large diameter filters, the blades are of the swing type that float to maintain the cake to disc clearance and so allow for the wobble of the turning discs.
Design Characteristics For Evaporation Ponds In Wyoming
ABSTRACT:
Information for the design of evaporation ponds in Wyoming has been developed. The suitability of various models for estimating evaporation and its variability was investigated while the spatial and temporal variabilities of net evaporation at seven locations were described. A routing procedure was developed to analyze the effects of uncertainty in net evaporation estimates on the probability of pond failure. Comparison of equations which estimate evaporation using climatological data showed that the equations vary greatly in their ability to define the variability of evaporation. The Kohler-Nordenson-Fox equation provided monthly and annual evaporation estimates having statistics resembling those of
measured pan data closer than any of seven other equations tested. The equation requires temperature, radiation, wind, and humidity data as inputs. The Kohler-Nordenson-Fox equation using climatic data extrapolated from nearby stations provided better definition of the variability of evaporation than did equations requiring only on-site temperature data. However, results indicate that extreme care must be taken in selecting the stations from which data will be extrapolated. Monthly and annual means, standard deviations, and highest and lowest evaporation and net evaporation values have been calculated for seven Wyoming stations. The year-to-year and spatial variation of evaporation and/or net evaporation in Wyoming was shown to be great enough to cause serious problems in defining rates for evaporation pond designs. Several factors were shown to exist which might produce uncertainties in any estimate of evaporation. The routing procedure was applied to analyze the effects of these uncertainties and variations. Results indicate that the liquid depth of an evaporation pond depends greatly on evaporation rates and maintenance of minimum liquid depths without pond overflow is very difficult.
Design Characteristics For Evaporation Ponds In Wyoming
ABSTRACT:
Information for the design of evaporation ponds in Wyoming has been developed. The suitability of various models for estimating evaporation and its variability was investigated while the spatial and temporal variabilities of net evaporation at seven locations were described. A routing procedure was developed to analyze the effects of uncertainty in net evaporation estimates on the probability of pond failure. Comparison of equations which estimate evaporation using climatological data showed that the equations vary greatly in their ability to define the variability of evaporation. The Kohler-Nordenson-Fox equation provided monthly and annual evaporation estimates having statistics resembling those of
measured pan data closer than any of seven other equations tested. The equation requires temperature, radiation, wind, and humidity data as inputs. The Kohler-Nordenson-Fox equation using climatic data extrapolated from nearby stations provided better definition of the variability of evaporation than did equations requiring only on-site temperature data. However, results indicate that extreme care must be taken in selecting the stations from which data will be extrapolated. Monthly and annual means, standard deviations, and highest and lowest evaporation and net evaporation values have been calculated for seven Wyoming stations. The year-to-year and spatial variation of evaporation and/or net evaporation in Wyoming was shown to be great enough to cause serious problems in defining rates for evaporation pond designs. Several factors were shown to exist which might produce uncertainties in any estimate of evaporation. The routing procedure was applied to analyze the effects of these uncertainties and variations. Results indicate that the liquid depth of an evaporation pond depends greatly on evaporation rates and maintenance of minimum liquid depths without pond overflow is very difficult.
Guidelines For Wastewater Reuse In Agriculture And Aquaculture
There has been an increasing interest in reuse of wastewater in agriculture over the last few decades due to increased demand for freshwater. Population growth, increased per capita use of water, the demands of industry and of the agricultural sector all put pressure on water resources. Treatment of wastewater provides an effluent of sufficient quality that it should be put to beneficial use and not wasted (Asano, 1998). The reuse of wastewater has been
successful for irrigation of a wide array of crops, and increases in crop yields from 10-30% have been reported (cited in Asano, 1998). In addition, the reuse of treated wastewater for irrigation and industrial purposes can be used as strategy to release freshwater for domestic use, and to improve the quality of river waters used for abstraction of drinking water (by reducing disposal of effluent into rivers).
Guidelines For Wastewater Reuse In Agriculture And Aquaculture
There has been an increasing interest in reuse of wastewater in agriculture over the last few decades due to increased demand for freshwater. Population growth, increased per capita use of water, the demands of industry and of the agricultural sector all put pressure on water resources. Treatment of wastewater provides an effluent of sufficient quality that it should be put to beneficial use and not wasted (Asano, 1998). The reuse of wastewater has been
successful for irrigation of a wide array of crops, and increases in crop yields from 10-30% have been reported (cited in Asano, 1998). In addition, the reuse of treated wastewater for irrigation and industrial purposes can be used as strategy to release freshwater for domestic use, and to improve the quality of river waters used for abstraction of drinking water (by reducing disposal of effluent into rivers).
Design of Water Hammer Shock Absorber
Abstract:
In the piping system, water hammer or hydraulic shock is a major issue that engineers need to consider. Water hammer is a phenomenon that leads to shock waves in the fluid due to rapid closing and opening of the valve, which can affect pipes, valves and gauges in any water, gas, or oil applications due to the sudden transient event. It is there for every system that has a flow of fluid through pumping such as houses, hospitals, and influences major effectiveness in the power plant. It occurs when there is a pressure difference in the pipeline leading to a loud noise. Specifically, this project is aimed to design a pipeline system and develop solutions to reduce the water hammer using a shock absorber. The main idea of the design project is to design a water hammer system using a shock absorber in order to reduce the shock waves of the pipes.
Design of Water Hammer Shock Absorber
Abstract:
In the piping system, water hammer or hydraulic shock is a major issue that engineers need to consider. Water hammer is a phenomenon that leads to shock waves in the fluid due to rapid closing and opening of the valve, which can affect pipes, valves and gauges in any water, gas, or oil applications due to the sudden transient event. It is there for every system that has a flow of fluid through pumping such as houses, hospitals, and influences major effectiveness in the power plant. It occurs when there is a pressure difference in the pipeline leading to a loud noise. Specifically, this project is aimed to design a pipeline system and develop solutions to reduce the water hammer using a shock absorber. The main idea of the design project is to design a water hammer system using a shock absorber in order to reduce the shock waves of the pipes.
Reviews
There are no reviews yet.