Hydrometer
Source: https://www.royaleijkelkamp.com
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Laboratory & Water Quality
To obtain an accurate determination of the particle size distribution of the smallest fractions it is possible to apply the hydrometer method.
Only logged in customers who have purchased this product may leave a review.
Related products
Effects of Heavy Metals on Cell Density, Size, Specific Growth Rate and Chlorophyll a of Tetraselmis Tetrathele Under Controlled Laboratory Conditions
Abstract
The effects of the varying levels of mercury (Hg) and cadmium (Cd) (0, 0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mg L⁻¹) to the cellular density of the green microalgae Tetraselmis tetrathele were evaluated every 24 h for 120 h. Specific growth rate, cell sizes and chlorophyll a were also monitored in the 5.0 mg L⁻¹ Hg and Cd and were compared to the unexposed at 0, 12, 24, 36, 48 and 120h. Results showed that the algal density of T. tetrathele exposed to various levels of Hg were similar with the control up to 48 h. Variations on different concentrations at different times were observed but the results suggest that T. tetrathele was not affected by Hg even at concentrations up to 5.0 mg L⁻¹ for 48 h but started to show toxicity from 3.0 to 5.0 mg L⁻¹ after 72 h and longer. Cd on the other hand also showed toxicity at 3.0, 4.0 and 5.0 mg L⁻¹ beyond 24 h exposure. The specific growth rate of T. tetrathele exposed to both 5.0 mg L⁻¹ Hg and Cd was statistically similar with those of the unexposed from 0 to 12 h and negative growth rates then followed up to 36 h. The chlorophyll a was significantly lower in the metal -exposed algae than did those unexposed. Chlorophyll a also decreased in T. tetrathele exposed to both heavy metals but algal cell sizes were not affected with the presence of Hg or Cd in the culture system.
Effects of Heavy Metals on Cell Density, Size, Specific Growth Rate and Chlorophyll a of Tetraselmis Tetrathele Under Controlled Laboratory Conditions
Abstract
The effects of the varying levels of mercury (Hg) and cadmium (Cd) (0, 0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mg L⁻¹) to the cellular density of the green microalgae Tetraselmis tetrathele were evaluated every 24 h for 120 h. Specific growth rate, cell sizes and chlorophyll a were also monitored in the 5.0 mg L⁻¹ Hg and Cd and were compared to the unexposed at 0, 12, 24, 36, 48 and 120h. Results showed that the algal density of T. tetrathele exposed to various levels of Hg were similar with the control up to 48 h. Variations on different concentrations at different times were observed but the results suggest that T. tetrathele was not affected by Hg even at concentrations up to 5.0 mg L⁻¹ for 48 h but started to show toxicity from 3.0 to 5.0 mg L⁻¹ after 72 h and longer. Cd on the other hand also showed toxicity at 3.0, 4.0 and 5.0 mg L⁻¹ beyond 24 h exposure. The specific growth rate of T. tetrathele exposed to both 5.0 mg L⁻¹ Hg and Cd was statistically similar with those of the unexposed from 0 to 12 h and negative growth rates then followed up to 36 h. The chlorophyll a was significantly lower in the metal -exposed algae than did those unexposed. Chlorophyll a also decreased in T. tetrathele exposed to both heavy metals but algal cell sizes were not affected with the presence of Hg or Cd in the culture system.
Analysis of Wastewater for Use in Agriculture – A Laboratory Manual of Parasitological and Bacteriological Techniques
Introduction:
The use of wastewater for crop irrigation is becoming increasingly common, especially in arid and semi-arid areas. Crop yields are higher as the wastewater contains not only water for crop growth, but also plant nutrients (mainly nitrogen and phosphorus). However, there is the risk that wastewater irrigation may facilitate the transmission of excreta-related diseases. In the late 1980s, the World Health Organization, the World Bank and the International Reference Centre for Waste Disposal sponsored a series of studies and meetings of experts to examine these health risks (International Reference Centre for Waste Disposal, 1985; Shuval et al., 1986; Prost, 1988; World Health Organization, 1989). From an appraisal of the available epidemiological evidence, it was established that the major risks were: the transmission of intestinal nematode infections both to those working in the waste-water irrigated fields and to those consuming vegetables grown in the fields; these infections are due to Ascaris lumbricoides (the human roundworm), Trichuris trichiura (the human whipworm), and Ancylostoma duodenale and Necator americanus (the human hookworms); and- the transmission of faecal bacterial diseases - bacterial diarrhoea and dysentery, typhoid and cholera - to the crop consumers.
Analysis of Wastewater for Use in Agriculture – A Laboratory Manual of Parasitological and Bacteriological Techniques
Introduction:
The use of wastewater for crop irrigation is becoming increasingly common, especially in arid and semi-arid areas. Crop yields are higher as the wastewater contains not only water for crop growth, but also plant nutrients (mainly nitrogen and phosphorus). However, there is the risk that wastewater irrigation may facilitate the transmission of excreta-related diseases. In the late 1980s, the World Health Organization, the World Bank and the International Reference Centre for Waste Disposal sponsored a series of studies and meetings of experts to examine these health risks (International Reference Centre for Waste Disposal, 1985; Shuval et al., 1986; Prost, 1988; World Health Organization, 1989). From an appraisal of the available epidemiological evidence, it was established that the major risks were: the transmission of intestinal nematode infections both to those working in the waste-water irrigated fields and to those consuming vegetables grown in the fields; these infections are due to Ascaris lumbricoides (the human roundworm), Trichuris trichiura (the human whipworm), and Ancylostoma duodenale and Necator americanus (the human hookworms); and- the transmission of faecal bacterial diseases - bacterial diarrhoea and dysentery, typhoid and cholera - to the crop consumers.
Rapid Assessment of Drinking Water Quality
Introduction
The provision of water was one of the eight components of primary health care identified by the World Health Assembly in Alma Ata in 1978. The Alma Ata Declaration on Primary Health Care expanded the concept of health care to include broader concepts of affordability, accessibility, self-reliance, inter-sectoral collaboration, community participation, sustainability and social justice. The importance of water supply continues to be emphasised as critical to reducing poverty and improving the health and well-being of the World's children and adults. The global community has committed itself to halving the proportion of the world's population who are unable to reach or to afford safe drinking water by 2015. Although great strides have been made in meeting this challenge in terms of provision of services, the safety of many water supplies remains unknown and uncertain. The recent Global Water Supply and Sanitation Assessment 2000 Report provided statistics regarding access to technologies that were either 'improved' or 'unimproved'. This was done on the assumption that some technologies were likely to be better for health, although it was recognised that would not always be the case. However, there was no information provided on water quality within the assessment. The inclusion of information regarding water quality in future assessments of the degree of access to water supplies is desirable. This handbook is designed to help in the implementation of rapid assessments of water quality to improve the knowledge and understanding of the level of safety of water supplies. There is significant value in reporting of independently verifiable water quality data to support national Governments and the international community in measuring progress in achieving the international development targets. Such data provides useful information regarding current conditions, deriving the likely public health burden relate to inadequate water supply and to gain an understanding of the extent of major water quality problems in developing countries. These data would, therefore, provide an indication of future investment priorities and needs on a country, regional and global basis.
Rapid Assessment of Drinking Water Quality
Introduction
The provision of water was one of the eight components of primary health care identified by the World Health Assembly in Alma Ata in 1978. The Alma Ata Declaration on Primary Health Care expanded the concept of health care to include broader concepts of affordability, accessibility, self-reliance, inter-sectoral collaboration, community participation, sustainability and social justice. The importance of water supply continues to be emphasised as critical to reducing poverty and improving the health and well-being of the World's children and adults. The global community has committed itself to halving the proportion of the world's population who are unable to reach or to afford safe drinking water by 2015. Although great strides have been made in meeting this challenge in terms of provision of services, the safety of many water supplies remains unknown and uncertain. The recent Global Water Supply and Sanitation Assessment 2000 Report provided statistics regarding access to technologies that were either 'improved' or 'unimproved'. This was done on the assumption that some technologies were likely to be better for health, although it was recognised that would not always be the case. However, there was no information provided on water quality within the assessment. The inclusion of information regarding water quality in future assessments of the degree of access to water supplies is desirable. This handbook is designed to help in the implementation of rapid assessments of water quality to improve the knowledge and understanding of the level of safety of water supplies. There is significant value in reporting of independently verifiable water quality data to support national Governments and the international community in measuring progress in achieving the international development targets. Such data provides useful information regarding current conditions, deriving the likely public health burden relate to inadequate water supply and to gain an understanding of the extent of major water quality problems in developing countries. These data would, therefore, provide an indication of future investment priorities and needs on a country, regional and global basis.
Boiler Water Quality Requirements and Associated Steam Quality for Industrial/Commercial and Institutional Boilers
Introduction:
The purpose of this publication is to acquaint engineers, purchasers and operators of industrial, commercial and institutional (ICI) boilers with ABMA's judgment as to the relationship between boiler water quality and boiler performance. This document is published for general guidance as a supplement to detailed operating manuals supplied by the equipment manufacturers. It should also be noted that the information presented is directed to steel boiler designs, as opposed to cast iron sectional or copper finned tube boilers. Furthermore Utility Boilers and Combined Cycle Boilers, which require extremely close control of water quality and steam purity, are not the topic of this document. This new document combines two previous ABMA Guideline documents, namely “Boiler Water Requirements and Associated Steam Purity for Commercial Boilers” (1998), and “Boiler Water Limits and Achievable Steam Purity for Water tube Boilers”, (1995). The document discusses the effect of various feed water and condensate systems on the boiler operation. It also provides information on boiler water and steam testing as well as system care and maintenance. It is recognized that specific boiler usage and water treatment will vary and may require values different from these recommendations. Boiler users therefore, need to define limits, equipment and operating parameters for their particular application. These recommendations are for information only. Everyone is free to accept or reject the conclusions of these suggestions as their own judgment warrants in all aspects of the conduct of their business. The ABMA does not represent or warrant that any level of steam purity depicted will be achieved by any particular boiler or boilers.
Boiler Water Quality Requirements and Associated Steam Quality for Industrial/Commercial and Institutional Boilers
Introduction:
The purpose of this publication is to acquaint engineers, purchasers and operators of industrial, commercial and institutional (ICI) boilers with ABMA's judgment as to the relationship between boiler water quality and boiler performance. This document is published for general guidance as a supplement to detailed operating manuals supplied by the equipment manufacturers. It should also be noted that the information presented is directed to steel boiler designs, as opposed to cast iron sectional or copper finned tube boilers. Furthermore Utility Boilers and Combined Cycle Boilers, which require extremely close control of water quality and steam purity, are not the topic of this document. This new document combines two previous ABMA Guideline documents, namely “Boiler Water Requirements and Associated Steam Purity for Commercial Boilers” (1998), and “Boiler Water Limits and Achievable Steam Purity for Water tube Boilers”, (1995). The document discusses the effect of various feed water and condensate systems on the boiler operation. It also provides information on boiler water and steam testing as well as system care and maintenance. It is recognized that specific boiler usage and water treatment will vary and may require values different from these recommendations. Boiler users therefore, need to define limits, equipment and operating parameters for their particular application. These recommendations are for information only. Everyone is free to accept or reject the conclusions of these suggestions as their own judgment warrants in all aspects of the conduct of their business. The ABMA does not represent or warrant that any level of steam purity depicted will be achieved by any particular boiler or boilers.
Reviews
There are no reviews yet.