IMS Design Quick Start Guide
Source : https://membranes.com/
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Design Guidelines
The IMSDesign Quick Start Guide contains information about how you can install the Integrated Membrane System Design (IMSDesign) application. Additionally, this guide contains detailed information about setting the options related to different modules of the application.
Only logged in customers who have purchased this product may leave a review.
Related products
Guidelines for Drinking-Water Quality
The primary purpose of the Guidelines for drinking-water quality is the protection of public health. The Guidelines provide the recommendations of the World Health Organization (WHO) for managing the risk from hazards that may compromise the safety of drinking-water. The recommendations should be
considered in the context of managing the risk from other sources of exposureto these hazards, such as waste, air, food and consumer products.
Guidelines for Drinking-Water Quality
The primary purpose of the Guidelines for drinking-water quality is the protection of public health. The Guidelines provide the recommendations of the World Health Organization (WHO) for managing the risk from hazards that may compromise the safety of drinking-water. The recommendations should be
considered in the context of managing the risk from other sources of exposureto these hazards, such as waste, air, food and consumer products.
Design Characteristics For Evaporation Ponds In Wyoming
ABSTRACT:
Information for the design of evaporation ponds in Wyoming has been developed. The suitability of various models for estimating evaporation and its variability was investigated while the spatial and temporal variabilities of net evaporation at seven locations were described. A routing procedure was developed to analyze the effects of uncertainty in net evaporation estimates on the probability of pond failure. Comparison of equations which estimate evaporation using climatological data showed that the equations vary greatly in their ability to define the variability of evaporation. The Kohler-Nordenson-Fox equation provided monthly and annual evaporation estimates having statistics resembling those of
measured pan data closer than any of seven other equations tested. The equation requires temperature, radiation, wind, and humidity data as inputs. The Kohler-Nordenson-Fox equation using climatic data extrapolated from nearby stations provided better definition of the variability of evaporation than did equations requiring only on-site temperature data. However, results indicate that extreme care must be taken in selecting the stations from which data will be extrapolated. Monthly and annual means, standard deviations, and highest and lowest evaporation and net evaporation values have been calculated for seven Wyoming stations. The year-to-year and spatial variation of evaporation and/or net evaporation in Wyoming was shown to be great enough to cause serious problems in defining rates for evaporation pond designs. Several factors were shown to exist which might produce uncertainties in any estimate of evaporation. The routing procedure was applied to analyze the effects of these uncertainties and variations. Results indicate that the liquid depth of an evaporation pond depends greatly on evaporation rates and maintenance of minimum liquid depths without pond overflow is very difficult.
Design Characteristics For Evaporation Ponds In Wyoming
ABSTRACT:
Information for the design of evaporation ponds in Wyoming has been developed. The suitability of various models for estimating evaporation and its variability was investigated while the spatial and temporal variabilities of net evaporation at seven locations were described. A routing procedure was developed to analyze the effects of uncertainty in net evaporation estimates on the probability of pond failure. Comparison of equations which estimate evaporation using climatological data showed that the equations vary greatly in their ability to define the variability of evaporation. The Kohler-Nordenson-Fox equation provided monthly and annual evaporation estimates having statistics resembling those of
measured pan data closer than any of seven other equations tested. The equation requires temperature, radiation, wind, and humidity data as inputs. The Kohler-Nordenson-Fox equation using climatic data extrapolated from nearby stations provided better definition of the variability of evaporation than did equations requiring only on-site temperature data. However, results indicate that extreme care must be taken in selecting the stations from which data will be extrapolated. Monthly and annual means, standard deviations, and highest and lowest evaporation and net evaporation values have been calculated for seven Wyoming stations. The year-to-year and spatial variation of evaporation and/or net evaporation in Wyoming was shown to be great enough to cause serious problems in defining rates for evaporation pond designs. Several factors were shown to exist which might produce uncertainties in any estimate of evaporation. The routing procedure was applied to analyze the effects of these uncertainties and variations. Results indicate that the liquid depth of an evaporation pond depends greatly on evaporation rates and maintenance of minimum liquid depths without pond overflow is very difficult.
Design and Optimization of Ultrafiltration Membrane Setup for Wastewater Treatment and Reuse
With the advances in the membrane technology, there is an ongoing quest to determine the best optimal configuration for an adopted treatment as well as it’s polishing to achieve cumulative sustainability for the treatment process. Henceforth, this thesis report is an evaluation to devise a membrane filtration process for investigating the possibility of treating pre-sedimented municipal wastewater with ceramic ultrafiltration, optimizing the membrane as a pre-treatment for reverse osmosis as an overall strategy for recovering wastewater.
Design and Optimization of Ultrafiltration Membrane Setup for Wastewater Treatment and Reuse
With the advances in the membrane technology, there is an ongoing quest to determine the best optimal configuration for an adopted treatment as well as it’s polishing to achieve cumulative sustainability for the treatment process. Henceforth, this thesis report is an evaluation to devise a membrane filtration process for investigating the possibility of treating pre-sedimented municipal wastewater with ceramic ultrafiltration, optimizing the membrane as a pre-treatment for reverse osmosis as an overall strategy for recovering wastewater.
Small Wastewater Treatment Works DPW Design Guidelines
This document’s purpose is to direct the design process for designing the best and most Appropriate wastewater process for effluent which is generated by small scale on site operations, Up to 100 m3/day such as police stations, border posts, DOJ etc. Larger plants are also addressed To some extent. In this manual, the best appropriate process for such small waste water treatment Plants has already been identified as the Rotating Biological Contactors (biodiscs) systems and Biological trickling filters (biofiters) for larger quantities. Consultants designing such plants for The DPW need to take cognizance of all the criteria set out herein and must ensure that apart from That the best available practices as regards such processes are incorporated into the design. The Designers of such plants are however still to consider other alternatives if the circumstances so Dictate.
Small Wastewater Treatment Works DPW Design Guidelines
This document’s purpose is to direct the design process for designing the best and most Appropriate wastewater process for effluent which is generated by small scale on site operations, Up to 100 m3/day such as police stations, border posts, DOJ etc. Larger plants are also addressed To some extent. In this manual, the best appropriate process for such small waste water treatment Plants has already been identified as the Rotating Biological Contactors (biodiscs) systems and Biological trickling filters (biofiters) for larger quantities. Consultants designing such plants for The DPW need to take cognizance of all the criteria set out herein and must ensure that apart from That the best available practices as regards such processes are incorporated into the design. The Designers of such plants are however still to consider other alternatives if the circumstances so Dictate.
Design of Reverse Osmosis Process For The Purification Of River Water In The Southern Belt Of Bangladesh
Introduction
Abundance and quality water supply is essential for all living species. Sustainable agriculture and industrial production need steady supply of freshwater. In many parts of the today’s world, desalination plays a vital role for sustaining human habitation besides the existing conventional water treatment technologies. Membrane based RO process has become a popular method to supply the fresh water from seawater and brackish water in different regions. RO (Figure 1) is a pressure driven process which under pressure reverses the flow direction of the solvent (in the opposite direction of osmosis process). Substantial efforts have been made by researchers on freshwater production (Sassi, 2012) and wastewater treatment (Stoller et al., 2016) using the RO. Rapid growth of membrane desalination processes enhanced the removal of ionic contaminants (Sassi and Mujtaba, 2013), pharmaceutical active compounds (Gur-Reznik et al., 2011) and other types of effluents from chemical, petrochemical, electrochemical, food, paper and tanning industries. Demineralised water can be supplied to several industries by treating the saline water using the RO process. However, there are limited studies on the production of demineralised water. Demineralised water is completely free (or almost) of dissolved minerals (Kremser et al. 2006) which has total dissolved solids (TDS) as low as 1 mg/l. Kremser et al. (2006) described operating experience on demineralized water plant.
In this work, RO based desalination process is considered using three stages described by (Sassi, 2012) as shown in Figure 1. The plant nominal operating and design parameters (of commercial Film Tec spiral wound RO membrane elements) are taken from Abbas (2005). Firstly, the model prediction is validated against those reported by Sassi and Mujtaba (2010). Secondly, an optimization problem incorporating a process model is formulated to optimize the design and operating parameters in order to minimize specific energy consumption and the results are compared with Sassi (2012). Since those models (Sassi, 2012) are validated for freshwater production, the model parameters such as (water and salt permeability coefficients) needs to be updated for demineralised water. A structure of the RO network is developed based on RO network (two-stage seawater pass and two-stage brackish water pass). Different parameters are updated for the model from the literature.
Design of Reverse Osmosis Process For The Purification Of River Water In The Southern Belt Of Bangladesh
Introduction
Abundance and quality water supply is essential for all living species. Sustainable agriculture and industrial production need steady supply of freshwater. In many parts of the today’s world, desalination plays a vital role for sustaining human habitation besides the existing conventional water treatment technologies. Membrane based RO process has become a popular method to supply the fresh water from seawater and brackish water in different regions. RO (Figure 1) is a pressure driven process which under pressure reverses the flow direction of the solvent (in the opposite direction of osmosis process). Substantial efforts have been made by researchers on freshwater production (Sassi, 2012) and wastewater treatment (Stoller et al., 2016) using the RO. Rapid growth of membrane desalination processes enhanced the removal of ionic contaminants (Sassi and Mujtaba, 2013), pharmaceutical active compounds (Gur-Reznik et al., 2011) and other types of effluents from chemical, petrochemical, electrochemical, food, paper and tanning industries. Demineralised water can be supplied to several industries by treating the saline water using the RO process. However, there are limited studies on the production of demineralised water. Demineralised water is completely free (or almost) of dissolved minerals (Kremser et al. 2006) which has total dissolved solids (TDS) as low as 1 mg/l. Kremser et al. (2006) described operating experience on demineralized water plant.
In this work, RO based desalination process is considered using three stages described by (Sassi, 2012) as shown in Figure 1. The plant nominal operating and design parameters (of commercial Film Tec spiral wound RO membrane elements) are taken from Abbas (2005). Firstly, the model prediction is validated against those reported by Sassi and Mujtaba (2010). Secondly, an optimization problem incorporating a process model is formulated to optimize the design and operating parameters in order to minimize specific energy consumption and the results are compared with Sassi (2012). Since those models (Sassi, 2012) are validated for freshwater production, the model parameters such as (water and salt permeability coefficients) needs to be updated for demineralised water. A structure of the RO network is developed based on RO network (two-stage seawater pass and two-stage brackish water pass). Different parameters are updated for the model from the literature.
Design And Analysis of Pressure Disc Type Filter
Abstract:
Presently used Filters for Beverages making industries are very bulky in shape and gives low outlet discharge. Hence they are less efficient .Therefore there is a need to design compact, automated unit that produces completely clear liquor and which have large outlet discharge. This concept highlights the design of new filter which fulfill the requirements of beverages making industries for filtration. For making filtration more feasible, unit is to be design in which multiple disc comprising of blades is to be mounted on a shaft for filtration. Multiple discs will get patterned throughout the shaft and number of disc decides the capacity of filter. The special arrangement of Two cake discharge blades (scrapper remover) suspended from a frame mounted on the tank and serve to deflect and guide the cake to the discharge tube. On large diameter filters, the blades are of the swing type that float to maintain the cake to disc clearance and so allow for the wobble of the turning discs.
Design And Analysis of Pressure Disc Type Filter
Abstract:
Presently used Filters for Beverages making industries are very bulky in shape and gives low outlet discharge. Hence they are less efficient .Therefore there is a need to design compact, automated unit that produces completely clear liquor and which have large outlet discharge. This concept highlights the design of new filter which fulfill the requirements of beverages making industries for filtration. For making filtration more feasible, unit is to be design in which multiple disc comprising of blades is to be mounted on a shaft for filtration. Multiple discs will get patterned throughout the shaft and number of disc decides the capacity of filter. The special arrangement of Two cake discharge blades (scrapper remover) suspended from a frame mounted on the tank and serve to deflect and guide the cake to the discharge tube. On large diameter filters, the blades are of the swing type that float to maintain the cake to disc clearance and so allow for the wobble of the turning discs.
Reviews
There are no reviews yet.