Industrial Flow Measurement
Source: https://global.abb/group/en
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Laboratory & Water Quality
This practical, technical overview of basic measuring principles, technologies, and limitations.
Topics include:
- Introduction to the physics of flow rate and total flow measurements
- Flow rate and total flow measurement of gases and liquids
- Regulations and requirements regarding quality, environment, safety, and data protection
- Device selection criteria
Only logged in customers who have purchased this product may leave a review.
Related products
Water Treatment and Pathogen Control
This document is part of a series of expert reviews on different aspects of microbial water quality and health, developed by the World Health Organization (WHO) to inform development of guidelines for drinking-water quality, and to help countries and suppliers to develop and implement effective water safety plans. Contamination of drinking-water by microbial pathogens can cause disease outbreaks and contribute to background rates of disease. There are many treatment options for eliminating pathogens from drinking-water. Finding the right solution for a particular supply involves choosing from a range of processes. This document is a critical review of some of the literature on removal and inactivation of pathogenic microbes in water. The aim is to provide water quality specialists and design engineers with guidance on selecting appropriate treatment processes, to ensure the production of high quality drinking-water. Specifically, the document provides information on choosing appropriate treatment in relation to raw water quality, estimating pathogen concentrations in drinking-water, assessing the ability of treatment processes to achieve health-based water safety targets and identifying control measures in process operation.
Water Treatment and Pathogen Control
This document is part of a series of expert reviews on different aspects of microbial water quality and health, developed by the World Health Organization (WHO) to inform development of guidelines for drinking-water quality, and to help countries and suppliers to develop and implement effective water safety plans. Contamination of drinking-water by microbial pathogens can cause disease outbreaks and contribute to background rates of disease. There are many treatment options for eliminating pathogens from drinking-water. Finding the right solution for a particular supply involves choosing from a range of processes. This document is a critical review of some of the literature on removal and inactivation of pathogenic microbes in water. The aim is to provide water quality specialists and design engineers with guidance on selecting appropriate treatment processes, to ensure the production of high quality drinking-water. Specifically, the document provides information on choosing appropriate treatment in relation to raw water quality, estimating pathogen concentrations in drinking-water, assessing the ability of treatment processes to achieve health-based water safety targets and identifying control measures in process operation.
Boiler Water Quality Requirements and Associated Steam Quality for Industrial/Commercial and Institutional Boilers
Introduction:
The purpose of this publication is to acquaint engineers, purchasers and operators of industrial, commercial and institutional (ICI) boilers with ABMA's judgment as to the relationship between boiler water quality and boiler performance. This document is published for general guidance as a supplement to detailed operating manuals supplied by the equipment manufacturers. It should also be noted that the information presented is directed to steel boiler designs, as opposed to cast iron sectional or copper finned tube boilers. Furthermore Utility Boilers and Combined Cycle Boilers, which require extremely close control of water quality and steam purity, are not the topic of this document. This new document combines two previous ABMA Guideline documents, namely “Boiler Water Requirements and Associated Steam Purity for Commercial Boilers” (1998), and “Boiler Water Limits and Achievable Steam Purity for Water tube Boilers”, (1995). The document discusses the effect of various feed water and condensate systems on the boiler operation. It also provides information on boiler water and steam testing as well as system care and maintenance. It is recognized that specific boiler usage and water treatment will vary and may require values different from these recommendations. Boiler users therefore, need to define limits, equipment and operating parameters for their particular application. These recommendations are for information only. Everyone is free to accept or reject the conclusions of these suggestions as their own judgment warrants in all aspects of the conduct of their business. The ABMA does not represent or warrant that any level of steam purity depicted will be achieved by any particular boiler or boilers.
Boiler Water Quality Requirements and Associated Steam Quality for Industrial/Commercial and Institutional Boilers
Introduction:
The purpose of this publication is to acquaint engineers, purchasers and operators of industrial, commercial and institutional (ICI) boilers with ABMA's judgment as to the relationship between boiler water quality and boiler performance. This document is published for general guidance as a supplement to detailed operating manuals supplied by the equipment manufacturers. It should also be noted that the information presented is directed to steel boiler designs, as opposed to cast iron sectional or copper finned tube boilers. Furthermore Utility Boilers and Combined Cycle Boilers, which require extremely close control of water quality and steam purity, are not the topic of this document. This new document combines two previous ABMA Guideline documents, namely “Boiler Water Requirements and Associated Steam Purity for Commercial Boilers” (1998), and “Boiler Water Limits and Achievable Steam Purity for Water tube Boilers”, (1995). The document discusses the effect of various feed water and condensate systems on the boiler operation. It also provides information on boiler water and steam testing as well as system care and maintenance. It is recognized that specific boiler usage and water treatment will vary and may require values different from these recommendations. Boiler users therefore, need to define limits, equipment and operating parameters for their particular application. These recommendations are for information only. Everyone is free to accept or reject the conclusions of these suggestions as their own judgment warrants in all aspects of the conduct of their business. The ABMA does not represent or warrant that any level of steam purity depicted will be achieved by any particular boiler or boilers.
Developing Quality Control Handbooks for Water and Wastewater Treatment
Introduction
This section provides a step by step discussion regarding the development of a Quality Control Handbook for a water or wastewater treatment plant. A workshop format has been chosen for the development of the handbook in order to channel the multiple knowledge inputs needed for it. For a proper. The workshop format targets participants coming from water or wastewater treatment facilities. These participants are expected to be knowledgeable of the operational activities of the plant and able to share their actual experiences. The successful implementation of this handbook depends on the creation of a setting in which the employees themselves act as both teachers and students. Active participation is a key success factor, and practical demonstrations are necessary to supplement the theoretical aspects. The workshop format can be easily replicated and as such, helps facilitate the development of operating manuals in other water treatment facilities or water companies. Once completed, these manuals may be used to define the required skills of the operating personnel and may also be used for actual on-the-job training. The handbook is to be finalized after successful completion of four group sessions.
Developing Quality Control Handbooks for Water and Wastewater Treatment
Introduction
This section provides a step by step discussion regarding the development of a Quality Control Handbook for a water or wastewater treatment plant. A workshop format has been chosen for the development of the handbook in order to channel the multiple knowledge inputs needed for it. For a proper. The workshop format targets participants coming from water or wastewater treatment facilities. These participants are expected to be knowledgeable of the operational activities of the plant and able to share their actual experiences. The successful implementation of this handbook depends on the creation of a setting in which the employees themselves act as both teachers and students. Active participation is a key success factor, and practical demonstrations are necessary to supplement the theoretical aspects. The workshop format can be easily replicated and as such, helps facilitate the development of operating manuals in other water treatment facilities or water companies. Once completed, these manuals may be used to define the required skills of the operating personnel and may also be used for actual on-the-job training. The handbook is to be finalized after successful completion of four group sessions.
Investigation of The Quality of Water Treated by Magnetic Fields
Abstract
Passing water through a magnetic field has been claimed to improve chemical, physical and bacteriological quality of water in many different applications. Although the treatment process has been used for decades, it still remains in the realms of pseudoscience. If the claims of treating water with magnets are true, the process offers improvements on many of our applications of water in today’s world. A large number of peer reviewed journal articles have reported contradictory claims about the treatment.. Some of the most beneficial claimed water applications from magnetically treated water include improvement in scale reduction in pipes and enhanced crop yields with reduced water usage. Today we are still unsure whether the technology works and those who do believe it works are still trying to understand the mechanisms of how it works. Many research papers are starting to develop similar theories behind the mechanism of the treatment. From previous studies, it has been determined that the most successful MTD’s are those with alternating poles. The majority of the experiments performed during this research were determined to have insufficient controls to produce conclusive results. The conclusions from this research were focused on designing improved experiments to provide more conclusive results. A theory was developed to explain the MTD’s mechanisms of scale reduction. While the experimental results were not conclusive, the results attained backed the theory. Magnetically treated water does not do all that it is claimed it does. However, some of the positive results obtained during this research suggest that the improved experiments developed from this research may provide conclusive results on this controversial topic.
Investigation of The Quality of Water Treated by Magnetic Fields
Abstract
Passing water through a magnetic field has been claimed to improve chemical, physical and bacteriological quality of water in many different applications. Although the treatment process has been used for decades, it still remains in the realms of pseudoscience. If the claims of treating water with magnets are true, the process offers improvements on many of our applications of water in today’s world. A large number of peer reviewed journal articles have reported contradictory claims about the treatment.. Some of the most beneficial claimed water applications from magnetically treated water include improvement in scale reduction in pipes and enhanced crop yields with reduced water usage. Today we are still unsure whether the technology works and those who do believe it works are still trying to understand the mechanisms of how it works. Many research papers are starting to develop similar theories behind the mechanism of the treatment. From previous studies, it has been determined that the most successful MTD’s are those with alternating poles. The majority of the experiments performed during this research were determined to have insufficient controls to produce conclusive results. The conclusions from this research were focused on designing improved experiments to provide more conclusive results. A theory was developed to explain the MTD’s mechanisms of scale reduction. While the experimental results were not conclusive, the results attained backed the theory. Magnetically treated water does not do all that it is claimed it does. However, some of the positive results obtained during this research suggest that the improved experiments developed from this research may provide conclusive results on this controversial topic.
Reviews
There are no reviews yet.