Innovative Separation Technology Utilizing Marine Bioresources: Multifaceted Development of a Chitosan-Based System Leading to Environmentally-Friendly Processes
Source: https://www.intechopen.com
Edited by: Keita Kashima,Tomoki Takahashi, Ryo-ichi Nakayama and Masanao Imai
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Environmental Engineering
Abstract
Chitosan, known as a most typical marine biological polymer, has a fruitful capability of biocompatible gel formation. Attempts of chitosan have been made to develop it from the multifaceted viewpoint of separation technology.
Only logged in customers who have purchased this product may leave a review.
Related products
Elimination of Infectious Diseases from the South-East Asia Region
This book discusses the historical context, country experience, and best practices that led to eliminating infectious diseases from the WHO’s South-East Asia Region, such as malaria, lymphatic filariasis, yaws, trachoma, and mother-to-child HIV in the mid-twentieth and twenty-first century. The UN Sustainable Development Goals (3.3) targets to end AIDS, tuberculosis, malaria, and neglected tropical diseases and combat hepatitis, water-borne diseases and other communicable diseases by 2030. In this context, this book is of high significance to countries from the SEA region and around the globe. It helps create national strategies and action plans on infectious disease elimination and thus attaining SDG 3.3. This is an open access book.
Elimination of Infectious Diseases from the South-East Asia Region
This book discusses the historical context, country experience, and best practices that led to eliminating infectious diseases from the WHO’s South-East Asia Region, such as malaria, lymphatic filariasis, yaws, trachoma, and mother-to-child HIV in the mid-twentieth and twenty-first century. The UN Sustainable Development Goals (3.3) targets to end AIDS, tuberculosis, malaria, and neglected tropical diseases and combat hepatitis, water-borne diseases and other communicable diseases by 2030. In this context, this book is of high significance to countries from the SEA region and around the globe. It helps create national strategies and action plans on infectious disease elimination and thus attaining SDG 3.3. This is an open access book.
Watershed Water Environment And Hydrology Under The Influence Of Anthropogenic And Natural Processes
The major aims of this book, “Watershed Water Environment and Hydrology under the Influence of Anthropogenic and Natural Processes”, are to focus on innovative/new ideas on the watershed water environment from different perspectives across the field; distinguish the evolution of watershed water ecological and environmental quality; clarify the biogeochemical cycling of elements or pollutants; identify and quantify the sources of pollutants; and assess the ecological risk and human health risk of pollutants in the water environment at different watershed scales. In particular, eight peer-reviewed articles were collected, mainly reporting the hydrochemistry-based watershed weathering processes and their environmental implications, trace elements and their risks, and the nutrients cycle in river–reservoir systems. Overall, these papers contribute to several aspects of the watershed water environment and are valuable for river water resource protection and management.
Watershed Water Environment And Hydrology Under The Influence Of Anthropogenic And Natural Processes
The major aims of this book, “Watershed Water Environment and Hydrology under the Influence of Anthropogenic and Natural Processes”, are to focus on innovative/new ideas on the watershed water environment from different perspectives across the field; distinguish the evolution of watershed water ecological and environmental quality; clarify the biogeochemical cycling of elements or pollutants; identify and quantify the sources of pollutants; and assess the ecological risk and human health risk of pollutants in the water environment at different watershed scales. In particular, eight peer-reviewed articles were collected, mainly reporting the hydrochemistry-based watershed weathering processes and their environmental implications, trace elements and their risks, and the nutrients cycle in river–reservoir systems. Overall, these papers contribute to several aspects of the watershed water environment and are valuable for river water resource protection and management.
Remote Sensing of the Aquatic Environments
The book highlights recent research efforts in the monitoring of aquatic districts with remote sensing observations and proximal sensing technology integrated with laboratory measurements. Optical satellite imagery gathered at spatial resolutions down to few meters has been used for quantitative estimations of harmful algal bloom extent and Chl-a mapping, as well as winds and currents from SAR acquisitions. The knowledge and understanding gained from this book can be used for the sustainable management of bodies of water across our planet.
Remote Sensing of the Aquatic Environments
The book highlights recent research efforts in the monitoring of aquatic districts with remote sensing observations and proximal sensing technology integrated with laboratory measurements. Optical satellite imagery gathered at spatial resolutions down to few meters has been used for quantitative estimations of harmful algal bloom extent and Chl-a mapping, as well as winds and currents from SAR acquisitions. The knowledge and understanding gained from this book can be used for the sustainable management of bodies of water across our planet.
Managing Forests and Water for People under a Changing Environment
Forests cover 30% of the Earth’s land area, or nearly four billion hectares. Enhancing the benefits and ecosystem services of forests has been increasingly recognized as an essential part of nature-based solutions for solving many emerging global environmental problems today. A core science supporting forest management is understanding the interactions of forests, water, and people. These interactions have become increasingly complex under climate change and its associated impacts, such as the increases in the intensity and frequency of drought and floods, increasing population and deforestation, and a rise in global demands for multiple ecosystem services including clean water supply and carbon sequestration. Forest watershed managers have recognized that water management is an essential component of forest management. Global environmental change is posing more challenges for managing forests and water toward sustainable development. New science on forest and water is critically needed across the globe.
Managing Forests and Water for People under a Changing Environment
Forests cover 30% of the Earth’s land area, or nearly four billion hectares. Enhancing the benefits and ecosystem services of forests has been increasingly recognized as an essential part of nature-based solutions for solving many emerging global environmental problems today. A core science supporting forest management is understanding the interactions of forests, water, and people. These interactions have become increasingly complex under climate change and its associated impacts, such as the increases in the intensity and frequency of drought and floods, increasing population and deforestation, and a rise in global demands for multiple ecosystem services including clean water supply and carbon sequestration. Forest watershed managers have recognized that water management is an essential component of forest management. Global environmental change is posing more challenges for managing forests and water toward sustainable development. New science on forest and water is critically needed across the globe.
Climate Variability and Change in the 21st Century.
Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales.
Climate Variability and Change in the 21st Century.
Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales.
The Contributions Of The MUNA Network To CUCS Naples 2022. Proceedings Of The MUNA Sessions
The Muna Consortium (Mediterranean and Middle East University Network Agreement) was founded in 2015 and renewed in 2021, when 30 Universities coming from all Countries of Mediterranean area and some others from Middle East signed the Framework Agreement. As written in the Framework Agreement, also in this Muna space in the CUCS Conference, we propose three different main themes: MARE NOSTRUM (our Sea, the Mediterranean), PERSONA (Man) and ORBIS (the Earth), to summarize the proposals of Cooperation between Muna Network Universities. The first session is dedicated to the field of ORBIS to share the sustainability, through the biodiversity as a key element for the development of soil in different aspects as agricolture, fauna and flora sustainable management, with impact in the field of veterinary. Neverthless, a focus is also related to the inclusion and integration in the sustainable cities during this time of pandemia and migration flows with regard to the problem of clima changes in the Mediterranean area.
The Contributions Of The MUNA Network To CUCS Naples 2022. Proceedings Of The MUNA Sessions
The Muna Consortium (Mediterranean and Middle East University Network Agreement) was founded in 2015 and renewed in 2021, when 30 Universities coming from all Countries of Mediterranean area and some others from Middle East signed the Framework Agreement. As written in the Framework Agreement, also in this Muna space in the CUCS Conference, we propose three different main themes: MARE NOSTRUM (our Sea, the Mediterranean), PERSONA (Man) and ORBIS (the Earth), to summarize the proposals of Cooperation between Muna Network Universities. The first session is dedicated to the field of ORBIS to share the sustainability, through the biodiversity as a key element for the development of soil in different aspects as agricolture, fauna and flora sustainable management, with impact in the field of veterinary. Neverthless, a focus is also related to the inclusion and integration in the sustainable cities during this time of pandemia and migration flows with regard to the problem of clima changes in the Mediterranean area.
Advances in Evaporation and Evaporative Demand
The importance of evapotranspiration is well-established in different disciplines such as hydrology, agronomy, climatology, and other geosciences. Reliable estimates of evapotranspiration are also vital to develop criteria for in-season irrigation management, water resource allocation, long-term estimates of water supply, demand and use, design and management of water resources infrastructure, and evaluation of the effect of land use and management changes on the water balance. The objective of this Special Issue is to define and discuss several ET terms, including potential, reference, and actual (crop) ET, and present a wide spectrum of innovative research papers and case studies.
Advances in Evaporation and Evaporative Demand
The importance of evapotranspiration is well-established in different disciplines such as hydrology, agronomy, climatology, and other geosciences. Reliable estimates of evapotranspiration are also vital to develop criteria for in-season irrigation management, water resource allocation, long-term estimates of water supply, demand and use, design and management of water resources infrastructure, and evaluation of the effect of land use and management changes on the water balance. The objective of this Special Issue is to define and discuss several ET terms, including potential, reference, and actual (crop) ET, and present a wide spectrum of innovative research papers and case studies.
Environmental Impact and Remediation of Heavy Metals
Heavy metals are a group of metals and metalloids that includes transition metals, lanthanides, and actinides. When released into water, these elements have toxic effects on water quality and surface sediments, affecting environmental parameters such as pH and temperature. Therefore, metals that are harmful to aquatic and terrestrial ecosystems pose a significant threat to plants, animals, and human health. As such, there is increased interest in mitigating the harmful environmental impacts of heavy metals. This book provides a comprehensive overview of heavy metals, their impacts on water, soil, food crops, and cosmetics, and techniques for their remediation. It is organized into three sections: “Heavy Metals and Their Effects on the Environment,” “Evaluation of Heavy Metals and Their Risks to Irrigation Water,” and “Remediation of Heavy Metals.
Environmental Impact and Remediation of Heavy Metals
Heavy metals are a group of metals and metalloids that includes transition metals, lanthanides, and actinides. When released into water, these elements have toxic effects on water quality and surface sediments, affecting environmental parameters such as pH and temperature. Therefore, metals that are harmful to aquatic and terrestrial ecosystems pose a significant threat to plants, animals, and human health. As such, there is increased interest in mitigating the harmful environmental impacts of heavy metals. This book provides a comprehensive overview of heavy metals, their impacts on water, soil, food crops, and cosmetics, and techniques for their remediation. It is organized into three sections: “Heavy Metals and Their Effects on the Environment,” “Evaluation of Heavy Metals and Their Risks to Irrigation Water,” and “Remediation of Heavy Metals.
Impacts of Anthropogenic Activities on Watersheds in a Changing Climate
The immediate goal of this Special Issue was the characterization of land uses and occupations (LULC) in watersheds and the assessment of impacts caused by anthropogenic activities. The goal was immediate because the ultimate purpose was to help bring disturbed watersheds to a better condition or a utopian sustainable status. The steps followed to attain this objective included publishing studies on the understanding of factors and variables that control hydrology and water quality changes in response to human activities. Following this first step, the Special Issue selected work that described adaption measures capable of improving the watershed condition (water availability and quality), namely LULC conversions (e.g., monocultures into agro-forestry systems). Concerning the LULC measures, however, efficacy was questioned unless supported by public programs that force consumers to participate in concomitant costs, because conversions may be viewed as an environmental service.
Impacts of Anthropogenic Activities on Watersheds in a Changing Climate
The immediate goal of this Special Issue was the characterization of land uses and occupations (LULC) in watersheds and the assessment of impacts caused by anthropogenic activities. The goal was immediate because the ultimate purpose was to help bring disturbed watersheds to a better condition or a utopian sustainable status. The steps followed to attain this objective included publishing studies on the understanding of factors and variables that control hydrology and water quality changes in response to human activities. Following this first step, the Special Issue selected work that described adaption measures capable of improving the watershed condition (water availability and quality), namely LULC conversions (e.g., monocultures into agro-forestry systems). Concerning the LULC measures, however, efficacy was questioned unless supported by public programs that force consumers to participate in concomitant costs, because conversions may be viewed as an environmental service.
Reviews
There are no reviews yet.