Instrumentation And Control Tutorial 4 – Instrument System Models And Calibration
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Engineering
Only logged in customers who have purchased this product may leave a review.
Related products
New Advances In Aerobic Granular Sludge Technology Using Continuous Flow Reactors: Engineering And Microbiological Aspects
Abstract
Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimen sional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundament tally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange.
Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.
New Advances In Aerobic Granular Sludge Technology Using Continuous Flow Reactors: Engineering And Microbiological Aspects
Abstract
Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimen sional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundament tally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange.
Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.
Engineering Drawing
Introduction
Basic concepts of engineering drawing; Instruments and their uses; First and third angle projections; Orthographic drawings; Principal views, Isometric views; Missing lines and views; Sectional views and convention practices; Auxiliary views.
Engineering Drawing
Introduction
Basic concepts of engineering drawing; Instruments and their uses; First and third angle projections; Orthographic drawings; Principal views, Isometric views; Missing lines and views; Sectional views and convention practices; Auxiliary views.
Engineering Design of a Disposable Water Bottle for an Australian Market
Abstract:
The primary purpose of this project is to investigate the engineering design process and use it to design a disposable water bottle for mass production that is aesthetically pleasing, structurally sound, market appropriate and financially viable. It is the intention that the water bottle, complete with branding, will go on sale in the Australian market. In the past decade bottled water has grown to become a major seller in the Australian beverage market. With many resources spent on the marketing and sales of a disposable water bottle, this project endeavor's to design a bottle tailored to its target demographic from the ground up. Largely in depth survey research from select focus groups within a target demographic will assure the accuracy of the specifications and the direct relevance to the intended consumer. An engineering design approach ensures that the bottle will not only be rigorously designed to heavily researched specifications but also computationally tested to guarantee the success of the completed product.
Engineering Design of a Disposable Water Bottle for an Australian Market
Abstract:
The primary purpose of this project is to investigate the engineering design process and use it to design a disposable water bottle for mass production that is aesthetically pleasing, structurally sound, market appropriate and financially viable. It is the intention that the water bottle, complete with branding, will go on sale in the Australian market. In the past decade bottled water has grown to become a major seller in the Australian beverage market. With many resources spent on the marketing and sales of a disposable water bottle, this project endeavor's to design a bottle tailored to its target demographic from the ground up. Largely in depth survey research from select focus groups within a target demographic will assure the accuracy of the specifications and the direct relevance to the intended consumer. An engineering design approach ensures that the bottle will not only be rigorously designed to heavily researched specifications but also computationally tested to guarantee the success of the completed product.
How To Add Value To Your Estimates With Value Engineering
A Brief History
During World War II, value engineering was first introduced in the manufacturing industry by General Electric. In the beginning, they actually called it “value analysis” because of the shortage of supplies, skilled labor, parts, and materials during the war. Interestingly enough, this time of scarcity allowed the AEC industry to apply value engineering methods to a variety of projects. This eventually grew into a highly efficient and valuable process that is still practiced today.1 A
How To Add Value To Your Estimates With Value Engineering
A Brief History
During World War II, value engineering was first introduced in the manufacturing industry by General Electric. In the beginning, they actually called it “value analysis” because of the shortage of supplies, skilled labor, parts, and materials during the war. Interestingly enough, this time of scarcity allowed the AEC industry to apply value engineering methods to a variety of projects. This eventually grew into a highly efficient and valuable process that is still practiced today.1 A
Reviews
There are no reviews yet.