Lecture 12 Introduction to Environmental Engineering
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Environmental Engineering
Only logged in customers who have purchased this product may leave a review.
Related products
Critical Zone (CZ) Export to Streams as Indicator for CZ Structure and Function
The goal of this Research Topic on streams as indicators for CZ structure and function is to explore linkages between biotic and abiotic weathering, soil biogeochemical processes, chemical and physical denudation and hydrology within the CZ. The CZ spans from the top of the vegetative canopy to the actively cycled groundwater providing life sustaining ecosystem services. However, rapid population growth and global climate change during the Anthropocene poses challenges to the Earth’s CZ which is pushed to balance increased demand (e.g. crop yield) while maintaining the CZ’s natural structure and other important ecosystem functions. Streams represent an integrator of many processes within the CZ and can thus carry the first signals of changing CZ health. As an important component of the CZ system, streams provide important information on hydrological, biogeochemical, and denudation fluxes, allowing a glimpse into the past, present and potential future of CZ function. The foci of recent stream water investigations include the role of catchment processes, riparian zone dynamics, hyporheic zone contributions and instream cycling to investigate nutrient dynamics, weathering and denudation, and hydrological partitioning. We now would like to expand this view conceptually to include the CZ.
Critical Zone (CZ) Export to Streams as Indicator for CZ Structure and Function
The goal of this Research Topic on streams as indicators for CZ structure and function is to explore linkages between biotic and abiotic weathering, soil biogeochemical processes, chemical and physical denudation and hydrology within the CZ. The CZ spans from the top of the vegetative canopy to the actively cycled groundwater providing life sustaining ecosystem services. However, rapid population growth and global climate change during the Anthropocene poses challenges to the Earth’s CZ which is pushed to balance increased demand (e.g. crop yield) while maintaining the CZ’s natural structure and other important ecosystem functions. Streams represent an integrator of many processes within the CZ and can thus carry the first signals of changing CZ health. As an important component of the CZ system, streams provide important information on hydrological, biogeochemical, and denudation fluxes, allowing a glimpse into the past, present and potential future of CZ function. The foci of recent stream water investigations include the role of catchment processes, riparian zone dynamics, hyporheic zone contributions and instream cycling to investigate nutrient dynamics, weathering and denudation, and hydrological partitioning. We now would like to expand this view conceptually to include the CZ.
Environmental Impact and Remediation of Heavy Metals
Heavy metals are a group of metals and metalloids that includes transition metals, lanthanides, and actinides. When released into water, these elements have toxic effects on water quality and surface sediments, affecting environmental parameters such as pH and temperature. Therefore, metals that are harmful to aquatic and terrestrial ecosystems pose a significant threat to plants, animals, and human health. As such, there is increased interest in mitigating the harmful environmental impacts of heavy metals. This book provides a comprehensive overview of heavy metals, their impacts on water, soil, food crops, and cosmetics, and techniques for their remediation. It is organized into three sections: “Heavy Metals and Their Effects on the Environment,” “Evaluation of Heavy Metals and Their Risks to Irrigation Water,” and “Remediation of Heavy Metals.
Environmental Impact and Remediation of Heavy Metals
Heavy metals are a group of metals and metalloids that includes transition metals, lanthanides, and actinides. When released into water, these elements have toxic effects on water quality and surface sediments, affecting environmental parameters such as pH and temperature. Therefore, metals that are harmful to aquatic and terrestrial ecosystems pose a significant threat to plants, animals, and human health. As such, there is increased interest in mitigating the harmful environmental impacts of heavy metals. This book provides a comprehensive overview of heavy metals, their impacts on water, soil, food crops, and cosmetics, and techniques for their remediation. It is organized into three sections: “Heavy Metals and Their Effects on the Environment,” “Evaluation of Heavy Metals and Their Risks to Irrigation Water,” and “Remediation of Heavy Metals.
Tackle Environmental Challenges in Pollution Controls Using Artificial Intelligence: A Review
This review presents the developments in artificial intelligence technologies for environmental pollution controls. A number of AI approaches, which start with the reliable mapping of nonlinear behavior between inputs and outputs in chemical and biological processes in terms of prediction models to the emerging optimization and control algorithms that study the pollutants removal processes and intelligent control systems, have been developed for environmental clean-ups. The characteristics, advantages and limitations of AI methods, including single and hybrid AI methods, were overviewed. Hybrid AI methods exhibited synergistic effects, but with computational heaviness.
Tackle Environmental Challenges in Pollution Controls Using Artificial Intelligence: A Review
This review presents the developments in artificial intelligence technologies for environmental pollution controls. A number of AI approaches, which start with the reliable mapping of nonlinear behavior between inputs and outputs in chemical and biological processes in terms of prediction models to the emerging optimization and control algorithms that study the pollutants removal processes and intelligent control systems, have been developed for environmental clean-ups. The characteristics, advantages and limitations of AI methods, including single and hybrid AI methods, were overviewed. Hybrid AI methods exhibited synergistic effects, but with computational heaviness.
Design Development of a Novel Sour Water Stripper
Sour water units are integral units in the refineries Proposed vapor compression design offers: Hot utilities reduction of 90%, Cold utilities reduction of 22%, TAC reduction by 52%.
Design Development of a Novel Sour Water Stripper
Sour water units are integral units in the refineries Proposed vapor compression design offers: Hot utilities reduction of 90%, Cold utilities reduction of 22%, TAC reduction by 52%.
Reviews
There are no reviews yet.