Manganese Removal From Groundwater Role Of Biological And Physico-Chemical Autocatalytic Processes
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Wells & Groundwater
Only logged in customers who have purchased this product may leave a review.
Related products
Nanotechnology in Groundwater Remediation
Introduction:
In recent years, nano science and technology has introduced a new dimension to scientific disciplines and technology sectors due to its ability to exhibit super functional properties of materials at nano-dimensions. There is a remarkable rise in research and development in all developed countries and many developing countries pertaining to this field. Organizations such as Universities, public research institutes and industrial R&D laboratories focus strongly on this new technology to benefit from its scientific and technological advantages [1]. Nanotechnology is a multidisciplinary field that applies engineering and manufacturing principles at molecular level [2]. In broad terms, nanotechnology is the development and use of techniques to study physical phenomena and construct structures in the physical size range of 1–100 nanometers (nm) as well as the incorporation of these structures into applications [3]. The past couple of decades have been dedicated to the synthesis, characterization, and application of nanomaterials Nanotechnology has revolutionized a multitude of sectors such as the electronic, chemical, biotechnology and biomedical industries [4]. Whereas various industries produce different varieties of nanomaterials there are increasing efforts to use nanotechnology in environmental engineering to protect the environment by pollution control, treatment and as a remedial measure to long term problems such as contaminated waste sites [5]. This technique has proved to be an effective alternative to the conventional practices for site remediation. Further research has also been carried out and its application is found useful in the treatment of in drinking water.
Nanotechnology in Groundwater Remediation
Introduction:
In recent years, nano science and technology has introduced a new dimension to scientific disciplines and technology sectors due to its ability to exhibit super functional properties of materials at nano-dimensions. There is a remarkable rise in research and development in all developed countries and many developing countries pertaining to this field. Organizations such as Universities, public research institutes and industrial R&D laboratories focus strongly on this new technology to benefit from its scientific and technological advantages [1]. Nanotechnology is a multidisciplinary field that applies engineering and manufacturing principles at molecular level [2]. In broad terms, nanotechnology is the development and use of techniques to study physical phenomena and construct structures in the physical size range of 1–100 nanometers (nm) as well as the incorporation of these structures into applications [3]. The past couple of decades have been dedicated to the synthesis, characterization, and application of nanomaterials Nanotechnology has revolutionized a multitude of sectors such as the electronic, chemical, biotechnology and biomedical industries [4]. Whereas various industries produce different varieties of nanomaterials there are increasing efforts to use nanotechnology in environmental engineering to protect the environment by pollution control, treatment and as a remedial measure to long term problems such as contaminated waste sites [5]. This technique has proved to be an effective alternative to the conventional practices for site remediation. Further research has also been carried out and its application is found useful in the treatment of in drinking water.
Treatment Of Groundwater For the Removal of Iron and Manganese From Groundwater wells of southern of Libya
Abstract:
The purpose of the study to investigate the impact of the presence of iron and manganese found in groundwater. The concentrations if both minerals as well as the location of the water source were identified along with its impact on water quality. Also, in this investigation a suitable method or technique for the removal of both iron and manganese is selected taking into consideration the local economic and environmental aspects. The removal will be accomplished by oxidizing both iron and manganese using aeration or using dissolved chemical oxidants converting them from soluble to insoluble precipitates. Precipitates of iron and manganese hydroxides are formed and removed from water through settling and filtration units. In this research the concentrations of iron and manganese were analyzed from groundwater aquifers of a number of towns in the southern part of Libya. These concentrations were compared to the local and international drinking water standards set by the World Health Organization (WHO). Some water samples reported have shown a wide difference in iron and manganese concentration and selected for treatment in this investigation. A complete treatment system has been designed to remove iron and manganese for the groundwater at Brak city of Alafia since the iron and manganese exceeds the limits. The oxidation of iron and manganese was done via aeration followed by flocculation and, settling, filtration and finally disinfection. At Alafia city, iron and manganese concentrations were 3.1mg/L, and 0.32mg/L respectively as compared to the standards set by the World Health Organization, 2004 for concentrations of 0.3 mg /L, 0.1 mg /L respectively, This process is believed to be very effective and economically feasible in the removal of both iron and manganese.
Treatment Of Groundwater For the Removal of Iron and Manganese From Groundwater wells of southern of Libya
Abstract:
The purpose of the study to investigate the impact of the presence of iron and manganese found in groundwater. The concentrations if both minerals as well as the location of the water source were identified along with its impact on water quality. Also, in this investigation a suitable method or technique for the removal of both iron and manganese is selected taking into consideration the local economic and environmental aspects. The removal will be accomplished by oxidizing both iron and manganese using aeration or using dissolved chemical oxidants converting them from soluble to insoluble precipitates. Precipitates of iron and manganese hydroxides are formed and removed from water through settling and filtration units. In this research the concentrations of iron and manganese were analyzed from groundwater aquifers of a number of towns in the southern part of Libya. These concentrations were compared to the local and international drinking water standards set by the World Health Organization (WHO). Some water samples reported have shown a wide difference in iron and manganese concentration and selected for treatment in this investigation. A complete treatment system has been designed to remove iron and manganese for the groundwater at Brak city of Alafia since the iron and manganese exceeds the limits. The oxidation of iron and manganese was done via aeration followed by flocculation and, settling, filtration and finally disinfection. At Alafia city, iron and manganese concentrations were 3.1mg/L, and 0.32mg/L respectively as compared to the standards set by the World Health Organization, 2004 for concentrations of 0.3 mg /L, 0.1 mg /L respectively, This process is believed to be very effective and economically feasible in the removal of both iron and manganese.
Reviews
There are no reviews yet.