Membrane Technology in Water Recycling Principles and Challenges
Membrane Technology In Water Recycling Principles And Challenges
Presented by: Menachem Elimelech
Integrated Concepts in Water Recycling
Wollongong, NSW, Australia
13-17 February, 2005
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Water Resources & Reuse
Only logged in customers who have purchased this product may leave a review.
Related products
Building-Scale Treatment for Direct Potable Water Reuse and Intelligent Control for Real Time Performance Monitoring Project (Pure Water SF)
Potable water reuse systems, whether centralized or decentralized, need to provide consistent high-quality water produced from a multiple barrier treatment system. In the United States, potable reuse projects have successfully produced high-quality water from a range of treatment systems from about 1 million gallons per day (mgd) to more than 100 mgd. This project adds to the body of knowledge for demonstrated project successes as it addresses the challenges of operating and maintaining small and decentralized purification systems. Currently, SFPUC uses a constructed wetland system to treat the wastewater generated in its headquarters building for non-potable reuse. PureWaterSF added to the existing system a demonstration direct potable reuse (DPR) building-scale treatment process that included ultrafiltration, reverse osmosis, and an ultraviolet advanced oxidation process (UF/RO/UV AOP) to purify the tertiary recycled water effluent from the wetland system. The treatment train, which treats approximately 80 percent of the water from the wetland system, was designed to have a small footprint and produce high-quality water that is able to meet drinking water standards. The treated water is redirected to the non-potable reuse system for toilet flushing in the SFPUC headquarter building.
Building-Scale Treatment for Direct Potable Water Reuse and Intelligent Control for Real Time Performance Monitoring Project (Pure Water SF)
Potable water reuse systems, whether centralized or decentralized, need to provide consistent high-quality water produced from a multiple barrier treatment system. In the United States, potable reuse projects have successfully produced high-quality water from a range of treatment systems from about 1 million gallons per day (mgd) to more than 100 mgd. This project adds to the body of knowledge for demonstrated project successes as it addresses the challenges of operating and maintaining small and decentralized purification systems. Currently, SFPUC uses a constructed wetland system to treat the wastewater generated in its headquarters building for non-potable reuse. PureWaterSF added to the existing system a demonstration direct potable reuse (DPR) building-scale treatment process that included ultrafiltration, reverse osmosis, and an ultraviolet advanced oxidation process (UF/RO/UV AOP) to purify the tertiary recycled water effluent from the wetland system. The treatment train, which treats approximately 80 percent of the water from the wetland system, was designed to have a small footprint and produce high-quality water that is able to meet drinking water standards. The treated water is redirected to the non-potable reuse system for toilet flushing in the SFPUC headquarter building.
Decentralized Solutions for Non Potable water Reuse
• Decentralized alternatives
• Resources for Decentralized Non-Resources Guidelines
• Case studies
• Future possibilities
Decentralized Solutions for Non Potable water Reuse
• Decentralized alternatives
• Resources for Decentralized Non-Resources Guidelines
• Case studies
• Future possibilities
Guidelines for Water Reuse and Recycling in Victorian Health Care Facilities
Security and quality of water supply is vital for a number of key processes within health care facilities (HCF), such as hospitals, aged care facilities, medical centres and mental health facilities. Many HCF however consume large volumes of potable water and as the population of Victoria continues to grow and climate change reduces inflows to traditional water storages increased pressure is placed on potable water supplies. As such there is a need for HCF to consider ways to reduce their reliance on reticulated potable water through conservation or augmentation with alternative water supplies for non-drinking applications. Augmentation can be achieved through either alternative water supplies such as rainwater, onsite reuse (direct use of water for the same or
another function without the need for treatment) or recycling (treatment of water) of water sources. Community benefits to such an approach include both reduced potable water consumption and reduced trade waste discharge.
Guidelines for Water Reuse and Recycling in Victorian Health Care Facilities
Security and quality of water supply is vital for a number of key processes within health care facilities (HCF), such as hospitals, aged care facilities, medical centres and mental health facilities. Many HCF however consume large volumes of potable water and as the population of Victoria continues to grow and climate change reduces inflows to traditional water storages increased pressure is placed on potable water supplies. As such there is a need for HCF to consider ways to reduce their reliance on reticulated potable water through conservation or augmentation with alternative water supplies for non-drinking applications. Augmentation can be achieved through either alternative water supplies such as rainwater, onsite reuse (direct use of water for the same or
another function without the need for treatment) or recycling (treatment of water) of water sources. Community benefits to such an approach include both reduced potable water consumption and reduced trade waste discharge.
A Handbook for Integrated Water Resources Management in Basins
Water issues touch all segments of society and all economic sectors. Population growth, rapid urbanisation and industrialisation, the expansion of agriculture and tourism, and climate change all put water under increasing stress. Given this growing pressure it is critical that this vital resource is properly managed.
A Handbook for Integrated Water Resources Management in Basins
Water issues touch all segments of society and all economic sectors. Population growth, rapid urbanisation and industrialisation, the expansion of agriculture and tourism, and climate change all put water under increasing stress. Given this growing pressure it is critical that this vital resource is properly managed.
Reviews
There are no reviews yet.