Motor Control Handbook A Guide For Electrical Contractors
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Electrical & Automation
This NHP Motor Control Handbook 2018 provides technical information of a general nature about low voltage switchgear, protective devices and their combination.
Only logged in customers who have purchased this product may leave a review.
Related products
Electrical Temperature Measurement
Electrical temperature measurement
The measurement of temperature is of special importance in numerous processes, with around 45% of all required measurement points associated with temperature. Applications include smelting, chemical reactions, food processing, energy measurement, and air conditioning. The applications mentioned are so very different, as are the service requirements imposed on the temperature sensors, their principle of operation, and their technical construction. In industrial processes, the measurement point is often a long way from the indication point; this may be demanded by the process conditions, with smelting and annealing furnaces, for example, or because central data acquisition is required. Often there is a requirement for further processing of the measurements in controllers or recorders.
The direct-reading thermometers familiar to us all in our everyday life are unsuitable for these applications; devices are needed that convert temperature into another form, an electrical signal. Incidentally, these electrical transducers are still referred to as thermometers, although, strictly speaking, what is meant is the transducer, comprising the sensor element and its surrounding protection fitting. In industrial electrical temperature measurement, pyrometers, resistance thermometers, and thermocouples are in common use. There are other measurement systems, such as oscillating quartz sensors and fiber-optic systems that have not yet found a wide application in the industry
Electrical Temperature Measurement
Electrical temperature measurement
The measurement of temperature is of special importance in numerous processes, with around 45% of all required measurement points associated with temperature. Applications include smelting, chemical reactions, food processing, energy measurement, and air conditioning. The applications mentioned are so very different, as are the service requirements imposed on the temperature sensors, their principle of operation, and their technical construction. In industrial processes, the measurement point is often a long way from the indication point; this may be demanded by the process conditions, with smelting and annealing furnaces, for example, or because central data acquisition is required. Often there is a requirement for further processing of the measurements in controllers or recorders.
The direct-reading thermometers familiar to us all in our everyday life are unsuitable for these applications; devices are needed that convert temperature into another form, an electrical signal. Incidentally, these electrical transducers are still referred to as thermometers, although, strictly speaking, what is meant is the transducer, comprising the sensor element and its surrounding protection fitting. In industrial electrical temperature measurement, pyrometers, resistance thermometers, and thermocouples are in common use. There are other measurement systems, such as oscillating quartz sensors and fiber-optic systems that have not yet found a wide application in the industry
VFD Smart Drive Technology Saving Electric Motor Energy
Electric Motors Use 70% of the World’s Power
■ We impact that load 30 – 50%
■ Savings can be as much as 20% to 30% on the overall bill
■ Look for 1hp and above operating at least 2,000 hrs/yr
VFD Smart Drive Technology Saving Electric Motor Energy
Electric Motors Use 70% of the World’s Power
■ We impact that load 30 – 50%
■ Savings can be as much as 20% to 30% on the overall bill
■ Look for 1hp and above operating at least 2,000 hrs/yr
Electrical Advanced-Level Training
Introduction:
This training is recommended for inspectors performing component design bases inspections (CDBIs) or other detailed inspections of electrical systems. Inspectors with demonstrated experience may be grandfathered in the completion of this training, if approved by the division director.
Completion of technical proficiency-level training (Appendix C in IMC 1245) is strongly recommended before beginning this training. You may complete the requirements in this training standard along with the general proficiency requirements contained in Appendix B and
the technical proficiency requirements in Appendix C.
Objectives of Advanced-Level Training This training focuses on the activities necessary to fully develop individuals as lead or “experts” in the electrical inspection area. It is not the intent that all certified inspectors will complete all of the ISAs in this advanced appendix. In addition, this appendix should also be viewed as an inspector’s aid and could be used during an inspection to assist in inspecting a particular area.
Electrical Advanced-Level Training
Introduction:
This training is recommended for inspectors performing component design bases inspections (CDBIs) or other detailed inspections of electrical systems. Inspectors with demonstrated experience may be grandfathered in the completion of this training, if approved by the division director.
Completion of technical proficiency-level training (Appendix C in IMC 1245) is strongly recommended before beginning this training. You may complete the requirements in this training standard along with the general proficiency requirements contained in Appendix B and
the technical proficiency requirements in Appendix C.
Objectives of Advanced-Level Training This training focuses on the activities necessary to fully develop individuals as lead or “experts” in the electrical inspection area. It is not the intent that all certified inspectors will complete all of the ISAs in this advanced appendix. In addition, this appendix should also be viewed as an inspector’s aid and could be used during an inspection to assist in inspecting a particular area.
Installation of Optical Fibre Cables Inside Sewer Ducts
Summary
ITU-T Recommendation L.77 describes methods to install optical cables inside sewer ducts, which applies to both the cable installation and the pre-installation of an infrastructure, if requested. This Recommendation covers both man- and non-man-accessible sewer ducts. This Recommendation is not intended to address all of the safety concerns, if any, associated with its use. Therefore, it shall be the responsibility of the user of this Recommendation to establish appropriate health and safety practices and determine the applicability of regulatory limitations, if any, prior to its use.
Installation of Optical Fibre Cables Inside Sewer Ducts
Summary
ITU-T Recommendation L.77 describes methods to install optical cables inside sewer ducts, which applies to both the cable installation and the pre-installation of an infrastructure, if requested. This Recommendation covers both man- and non-man-accessible sewer ducts. This Recommendation is not intended to address all of the safety concerns, if any, associated with its use. Therefore, it shall be the responsibility of the user of this Recommendation to establish appropriate health and safety practices and determine the applicability of regulatory limitations, if any, prior to its use.
Design Calculations for Electrical Design
Introduction:
Design calculations establish minimum guidelines and requirements for generating electrical calculations on projects. Electrical calculations should be made for all SPU projects that include electrical components and should be filed in the project notebook. Design calculations may be made either manually or by SPU-approved computer programs
Design Calculations for Electrical Design
Introduction:
Design calculations establish minimum guidelines and requirements for generating electrical calculations on projects. Electrical calculations should be made for all SPU projects that include electrical components and should be filed in the project notebook. Design calculations may be made either manually or by SPU-approved computer programs
Reviews
There are no reviews yet.