Optimizing Building Management with a Lifecycle Approach
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Engineering
Only logged in customers who have purchased this product may leave a review.
Related products
Engineering and Design- Design Of Small Water Systems
Introduction:
This manual provides guidance and criteria for the design of small water supply, treatment, and distribution systems. For the purpose of this manual, small water systems shall be those having average daily design flow rates of 380 000 liters per day (l/d) (100 000 gallons per day (gpd)) or less. However, the use of the term small is arbitrary, there being no consensus in the water supply literature with respect to its meaning. Regulations regarding the acceptability of a water source, degree of treatment required, and the monitoring requirements are not based on flow rates, but rather on a water system classification relating to the number of people served and for what period of time. Figure 1-1 provides a flowchart for system classification. Refer to Chapter 3, paragraph 3-4b for the appropriate nomenclature.
Engineering and Design- Design Of Small Water Systems
Introduction:
This manual provides guidance and criteria for the design of small water supply, treatment, and distribution systems. For the purpose of this manual, small water systems shall be those having average daily design flow rates of 380 000 liters per day (l/d) (100 000 gallons per day (gpd)) or less. However, the use of the term small is arbitrary, there being no consensus in the water supply literature with respect to its meaning. Regulations regarding the acceptability of a water source, degree of treatment required, and the monitoring requirements are not based on flow rates, but rather on a water system classification relating to the number of people served and for what period of time. Figure 1-1 provides a flowchart for system classification. Refer to Chapter 3, paragraph 3-4b for the appropriate nomenclature.
Engineering Handbook
Introduction
This document was created based on research and the experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc. of New York, NY. Steel making information and flowcharts were produced with information from the website of The American Iron and Steel Institute (AISI) 1140 Connecticut Ave., NW, Suite 705 Washington, D.C. 20036. Many technical definitions are from “Everything You Always Wanted to Know About Steel. . . A Glossary of Terms and Concepts,” Summer 1998 Courtesy of Michelle Applebaum, Managing Director. Copyright 2000, Salomon Smith Barney Inc. Other glossary definitions are taken from “Cutting Tool Engineering” (ISSN:0011-4189) Copyright by CTE Publications Inc. 107 W. Van Buren, Ste. 204, Chicago, IL 60605. Information regarding differences of steel grades and their properties came from the McMaster-Carr Supply Company website at www.mcmaster.com, copyright 2003 by the McMaster-Carr Supply Company. Much basic and helpful information about steel properties and usage came from Metallurgy FAQ v 1.0 Copyright 1999 Drake H. Damerau, All rights reserved, at Survivalist Books. This document is provided to customers, vendors, and associates of G.L. Huyett for technical information relating to the manufacture and sale of non-threaded industrial fasteners. As such, this document is not a design standard, design guide, or otherwise. G.L. Huyett in not engaged in part and product design, because of the unknown uses of parts made or distributed by the company. Designs must be produced and tested by our customers for individual and commercial use. As such, Huyett assumes no liability of any kind, implied or expressed, for the accuracy, scope, and completion of the information herein
Engineering Handbook
Introduction
This document was created based on research and the experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc. of New York, NY. Steel making information and flowcharts were produced with information from the website of The American Iron and Steel Institute (AISI) 1140 Connecticut Ave., NW, Suite 705 Washington, D.C. 20036. Many technical definitions are from “Everything You Always Wanted to Know About Steel. . . A Glossary of Terms and Concepts,” Summer 1998 Courtesy of Michelle Applebaum, Managing Director. Copyright 2000, Salomon Smith Barney Inc. Other glossary definitions are taken from “Cutting Tool Engineering” (ISSN:0011-4189) Copyright by CTE Publications Inc. 107 W. Van Buren, Ste. 204, Chicago, IL 60605. Information regarding differences of steel grades and their properties came from the McMaster-Carr Supply Company website at www.mcmaster.com, copyright 2003 by the McMaster-Carr Supply Company. Much basic and helpful information about steel properties and usage came from Metallurgy FAQ v 1.0 Copyright 1999 Drake H. Damerau, All rights reserved, at Survivalist Books. This document is provided to customers, vendors, and associates of G.L. Huyett for technical information relating to the manufacture and sale of non-threaded industrial fasteners. As such, this document is not a design standard, design guide, or otherwise. G.L. Huyett in not engaged in part and product design, because of the unknown uses of parts made or distributed by the company. Designs must be produced and tested by our customers for individual and commercial use. As such, Huyett assumes no liability of any kind, implied or expressed, for the accuracy, scope, and completion of the information herein
How To Add Value To Your Estimates With Value Engineering
A Brief History
During World War II, value engineering was first introduced in the manufacturing industry by General Electric. In the beginning, they actually called it “value analysis” because of the shortage of supplies, skilled labor, parts, and materials during the war. Interestingly enough, this time of scarcity allowed the AEC industry to apply value engineering methods to a variety of projects. This eventually grew into a highly efficient and valuable process that is still practiced today.1 A
How To Add Value To Your Estimates With Value Engineering
A Brief History
During World War II, value engineering was first introduced in the manufacturing industry by General Electric. In the beginning, they actually called it “value analysis” because of the shortage of supplies, skilled labor, parts, and materials during the war. Interestingly enough, this time of scarcity allowed the AEC industry to apply value engineering methods to a variety of projects. This eventually grew into a highly efficient and valuable process that is still practiced today.1 A
Reviews
There are no reviews yet.