PLC Basics Course
Source: https://www.se.com
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Engineering
A Programmable Logic Controller(PLC) is an industrial computer that accepts inputs from switches and sensors, evaluates these in accordance with a stored program, and generates outputs to control machines and processes.
Only logged in customers who have purchased this product may leave a review.
Related products
Engineering Design of a Disposable Water Bottle for an Australian Market
Abstract:
The primary purpose of this project is to investigate the engineering design process and use it to design a disposable water bottle for mass production that is aesthetically pleasing, structurally sound, market appropriate and financially viable. It is the intention that the water bottle, complete with branding, will go on sale in the Australian market. In the past decade bottled water has grown to become a major seller in the Australian beverage market. With many resources spent on the marketing and sales of a disposable water bottle, this project endeavor's to design a bottle tailored to its target demographic from the ground up. Largely in depth survey research from select focus groups within a target demographic will assure the accuracy of the specifications and the direct relevance to the intended consumer. An engineering design approach ensures that the bottle will not only be rigorously designed to heavily researched specifications but also computationally tested to guarantee the success of the completed product.
Engineering Design of a Disposable Water Bottle for an Australian Market
Abstract:
The primary purpose of this project is to investigate the engineering design process and use it to design a disposable water bottle for mass production that is aesthetically pleasing, structurally sound, market appropriate and financially viable. It is the intention that the water bottle, complete with branding, will go on sale in the Australian market. In the past decade bottled water has grown to become a major seller in the Australian beverage market. With many resources spent on the marketing and sales of a disposable water bottle, this project endeavor's to design a bottle tailored to its target demographic from the ground up. Largely in depth survey research from select focus groups within a target demographic will assure the accuracy of the specifications and the direct relevance to the intended consumer. An engineering design approach ensures that the bottle will not only be rigorously designed to heavily researched specifications but also computationally tested to guarantee the success of the completed product.
Development Of An Engineered Wetland System For Sustainable Landfill Leachate Treatment
ABSTRACT
Sustainable and effective treatment of landfill leachate has become one of the most important environmental problems due to the fluctuating composition and quantity, as well as its high concentrations of pollutants. High-tech solutions applied for the leachate treatment are expensive and energy consuming, and in addition they are not suitable at many landfill sites, especially those in rural areas. Hence there is need to develop novel and sustainable low-energy systems for the effective treatment of landfill leachates. Constructed wetlands (CWs) are inexpensive simple to operate and they have the potential to remove not only organic carbon and nitrogen compounds, but heavy metals. This study focussed on the design, development and experimental investigation of a novel CWs for the treatment of landfill leachate. The CWs employed dewatered ferric waterworks sludge (DFWS) as the main substrate. The overall aim of the study was to design and assess the novel configuration of the CWs, whilst also contributing to advancing the understanding of pollutant removal from the landfill leachate in the CWs, through the development of models to explain the internal processes and predict performance. The key design and operational variables investigated were: the primary media used, i.e. the DFWS, and the wetting and drying regimes. The CWs was configured as 4- stages in series which was operated for 220 days. Thereafter, an additional unit was added due to clogging and the CWs was operated for 185 days in this second period. Results and experimental observations indicate that the chemical treatment processes (adsorption and precipitation) contributed to the clogging. The DFWS used served as adsorbent for heavy metals removal in the system. Results of heavy metals, organic matter (COD), ammonia and total nitrogen removal indicate average removals of 99%, 62%, 83% and 81%, respectively in first period; and 100%, 86%, 90% and 82% in second period, with an average heavy metals loading rate 0.76 g m-2 day-1 , organic loading rate 1070 g m-2 day-1 , ammonia loading rate of 178 g m-2 day-1 and total nitrogen loading rate 192 g m-2 day-1 . Results were supported through mathematical analysis using STELLA model for heavy metals transformation in CWs and numerical modelling using HYDRUS CW2D, which enhanced understanding of the internal processes for organic matter and nitrogen 3removal. The result from STELLA modelling showed that up to 90% of the removal of heavy metals was through adsorption, which is highly significant. While HYDRUS CW2D results showed that the main path of nitrogen removal was through simultaneous nitrification and denitrification. Overall, results have shown that CWs design has great potential for reduction of metals and nutrients in landfill leachate. Results of this study can contribute to future CW research and design for landfill leachate treatment, through the increased understanding of long-term pollutant removal in these systems. In time, this may result in the wider application of CWs for landfill leachate treatment to better protect the environment.
Development Of An Engineered Wetland System For Sustainable Landfill Leachate Treatment
ABSTRACT
Sustainable and effective treatment of landfill leachate has become one of the most important environmental problems due to the fluctuating composition and quantity, as well as its high concentrations of pollutants. High-tech solutions applied for the leachate treatment are expensive and energy consuming, and in addition they are not suitable at many landfill sites, especially those in rural areas. Hence there is need to develop novel and sustainable low-energy systems for the effective treatment of landfill leachates. Constructed wetlands (CWs) are inexpensive simple to operate and they have the potential to remove not only organic carbon and nitrogen compounds, but heavy metals. This study focussed on the design, development and experimental investigation of a novel CWs for the treatment of landfill leachate. The CWs employed dewatered ferric waterworks sludge (DFWS) as the main substrate. The overall aim of the study was to design and assess the novel configuration of the CWs, whilst also contributing to advancing the understanding of pollutant removal from the landfill leachate in the CWs, through the development of models to explain the internal processes and predict performance. The key design and operational variables investigated were: the primary media used, i.e. the DFWS, and the wetting and drying regimes. The CWs was configured as 4- stages in series which was operated for 220 days. Thereafter, an additional unit was added due to clogging and the CWs was operated for 185 days in this second period. Results and experimental observations indicate that the chemical treatment processes (adsorption and precipitation) contributed to the clogging. The DFWS used served as adsorbent for heavy metals removal in the system. Results of heavy metals, organic matter (COD), ammonia and total nitrogen removal indicate average removals of 99%, 62%, 83% and 81%, respectively in first period; and 100%, 86%, 90% and 82% in second period, with an average heavy metals loading rate 0.76 g m-2 day-1 , organic loading rate 1070 g m-2 day-1 , ammonia loading rate of 178 g m-2 day-1 and total nitrogen loading rate 192 g m-2 day-1 . Results were supported through mathematical analysis using STELLA model for heavy metals transformation in CWs and numerical modelling using HYDRUS CW2D, which enhanced understanding of the internal processes for organic matter and nitrogen 3removal. The result from STELLA modelling showed that up to 90% of the removal of heavy metals was through adsorption, which is highly significant. While HYDRUS CW2D results showed that the main path of nitrogen removal was through simultaneous nitrification and denitrification. Overall, results have shown that CWs design has great potential for reduction of metals and nutrients in landfill leachate. Results of this study can contribute to future CW research and design for landfill leachate treatment, through the increased understanding of long-term pollutant removal in these systems. In time, this may result in the wider application of CWs for landfill leachate treatment to better protect the environment.
Engineering and Design- Design Of Small Water Systems
Introduction:
This manual provides guidance and criteria for the design of small water supply, treatment, and distribution systems. For the purpose of this manual, small water systems shall be those having average daily design flow rates of 380 000 liters per day (l/d) (100 000 gallons per day (gpd)) or less. However, the use of the term small is arbitrary, there being no consensus in the water supply literature with respect to its meaning. Regulations regarding the acceptability of a water source, degree of treatment required, and the monitoring requirements are not based on flow rates, but rather on a water system classification relating to the number of people served and for what period of time. Figure 1-1 provides a flowchart for system classification. Refer to Chapter 3, paragraph 3-4b for the appropriate nomenclature.
Engineering and Design- Design Of Small Water Systems
Introduction:
This manual provides guidance and criteria for the design of small water supply, treatment, and distribution systems. For the purpose of this manual, small water systems shall be those having average daily design flow rates of 380 000 liters per day (l/d) (100 000 gallons per day (gpd)) or less. However, the use of the term small is arbitrary, there being no consensus in the water supply literature with respect to its meaning. Regulations regarding the acceptability of a water source, degree of treatment required, and the monitoring requirements are not based on flow rates, but rather on a water system classification relating to the number of people served and for what period of time. Figure 1-1 provides a flowchart for system classification. Refer to Chapter 3, paragraph 3-4b for the appropriate nomenclature.
Maintenance Engineering
Introduction
• The same holds true for industrial equipment/system.
• Maintenance is one of the most indispensable job in any industrial organization.
Maintenance Engineering
Introduction
• The same holds true for industrial equipment/system.
• Maintenance is one of the most indispensable job in any industrial organization.
Engineering Drawing
Introduction
Basic concepts of engineering drawing; Instruments and their uses; First and third angle projections; Orthographic drawings; Principal views, Isometric views; Missing lines and views; Sectional views and convention practices; Auxiliary views.
Engineering Drawing
Introduction
Basic concepts of engineering drawing; Instruments and their uses; First and third angle projections; Orthographic drawings; Principal views, Isometric views; Missing lines and views; Sectional views and convention practices; Auxiliary views.
New Advances In Aerobic Granular Sludge Technology Using Continuous Flow Reactors: Engineering And Microbiological Aspects
Abstract
Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimen sional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundament tally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange.
Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.
New Advances In Aerobic Granular Sludge Technology Using Continuous Flow Reactors: Engineering And Microbiological Aspects
Abstract
Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimen sional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundament tally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange.
Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.
How To Add Value To Your Estimates With Value Engineering
A Brief History
During World War II, value engineering was first introduced in the manufacturing industry by General Electric. In the beginning, they actually called it “value analysis” because of the shortage of supplies, skilled labor, parts, and materials during the war. Interestingly enough, this time of scarcity allowed the AEC industry to apply value engineering methods to a variety of projects. This eventually grew into a highly efficient and valuable process that is still practiced today.1 A
How To Add Value To Your Estimates With Value Engineering
A Brief History
During World War II, value engineering was first introduced in the manufacturing industry by General Electric. In the beginning, they actually called it “value analysis” because of the shortage of supplies, skilled labor, parts, and materials during the war. Interestingly enough, this time of scarcity allowed the AEC industry to apply value engineering methods to a variety of projects. This eventually grew into a highly efficient and valuable process that is still practiced today.1 A
Reviews
There are no reviews yet.