Sanitary Engineering (Water and wastewater Engineering)
Sanitary Engineering (Water and wastewater Engineering)
Source: http://www.menofia.edu.eg/eng/Home/en
Prepared by: Eng./ Abd el rahman Fathy Amer
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Engineering
Only logged in customers who have purchased this product may leave a review.
Related products
Development Of An Engineered Wetland System For Sustainable Landfill Leachate Treatment
ABSTRACT
Sustainable and effective treatment of landfill leachate has become one of the most important environmental problems due to the fluctuating composition and quantity, as well as its high concentrations of pollutants. High-tech solutions applied for the leachate treatment are expensive and energy consuming, and in addition they are not suitable at many landfill sites, especially those in rural areas. Hence there is need to develop novel and sustainable low-energy systems for the effective treatment of landfill leachates. Constructed wetlands (CWs) are inexpensive simple to operate and they have the potential to remove not only organic carbon and nitrogen compounds, but heavy metals. This study focussed on the design, development and experimental investigation of a novel CWs for the treatment of landfill leachate. The CWs employed dewatered ferric waterworks sludge (DFWS) as the main substrate. The overall aim of the study was to design and assess the novel configuration of the CWs, whilst also contributing to advancing the understanding of pollutant removal from the landfill leachate in the CWs, through the development of models to explain the internal processes and predict performance. The key design and operational variables investigated were: the primary media used, i.e. the DFWS, and the wetting and drying regimes. The CWs was configured as 4- stages in series which was operated for 220 days. Thereafter, an additional unit was added due to clogging and the CWs was operated for 185 days in this second period. Results and experimental observations indicate that the chemical treatment processes (adsorption and precipitation) contributed to the clogging. The DFWS used served as adsorbent for heavy metals removal in the system. Results of heavy metals, organic matter (COD), ammonia and total nitrogen removal indicate average removals of 99%, 62%, 83% and 81%, respectively in first period; and 100%, 86%, 90% and 82% in second period, with an average heavy metals loading rate 0.76 g m-2 day-1 , organic loading rate 1070 g m-2 day-1 , ammonia loading rate of 178 g m-2 day-1 and total nitrogen loading rate 192 g m-2 day-1 . Results were supported through mathematical analysis using STELLA model for heavy metals transformation in CWs and numerical modelling using HYDRUS CW2D, which enhanced understanding of the internal processes for organic matter and nitrogen 3removal. The result from STELLA modelling showed that up to 90% of the removal of heavy metals was through adsorption, which is highly significant. While HYDRUS CW2D results showed that the main path of nitrogen removal was through simultaneous nitrification and denitrification. Overall, results have shown that CWs design has great potential for reduction of metals and nutrients in landfill leachate. Results of this study can contribute to future CW research and design for landfill leachate treatment, through the increased understanding of long-term pollutant removal in these systems. In time, this may result in the wider application of CWs for landfill leachate treatment to better protect the environment.
Development Of An Engineered Wetland System For Sustainable Landfill Leachate Treatment
ABSTRACT
Sustainable and effective treatment of landfill leachate has become one of the most important environmental problems due to the fluctuating composition and quantity, as well as its high concentrations of pollutants. High-tech solutions applied for the leachate treatment are expensive and energy consuming, and in addition they are not suitable at many landfill sites, especially those in rural areas. Hence there is need to develop novel and sustainable low-energy systems for the effective treatment of landfill leachates. Constructed wetlands (CWs) are inexpensive simple to operate and they have the potential to remove not only organic carbon and nitrogen compounds, but heavy metals. This study focussed on the design, development and experimental investigation of a novel CWs for the treatment of landfill leachate. The CWs employed dewatered ferric waterworks sludge (DFWS) as the main substrate. The overall aim of the study was to design and assess the novel configuration of the CWs, whilst also contributing to advancing the understanding of pollutant removal from the landfill leachate in the CWs, through the development of models to explain the internal processes and predict performance. The key design and operational variables investigated were: the primary media used, i.e. the DFWS, and the wetting and drying regimes. The CWs was configured as 4- stages in series which was operated for 220 days. Thereafter, an additional unit was added due to clogging and the CWs was operated for 185 days in this second period. Results and experimental observations indicate that the chemical treatment processes (adsorption and precipitation) contributed to the clogging. The DFWS used served as adsorbent for heavy metals removal in the system. Results of heavy metals, organic matter (COD), ammonia and total nitrogen removal indicate average removals of 99%, 62%, 83% and 81%, respectively in first period; and 100%, 86%, 90% and 82% in second period, with an average heavy metals loading rate 0.76 g m-2 day-1 , organic loading rate 1070 g m-2 day-1 , ammonia loading rate of 178 g m-2 day-1 and total nitrogen loading rate 192 g m-2 day-1 . Results were supported through mathematical analysis using STELLA model for heavy metals transformation in CWs and numerical modelling using HYDRUS CW2D, which enhanced understanding of the internal processes for organic matter and nitrogen 3removal. The result from STELLA modelling showed that up to 90% of the removal of heavy metals was through adsorption, which is highly significant. While HYDRUS CW2D results showed that the main path of nitrogen removal was through simultaneous nitrification and denitrification. Overall, results have shown that CWs design has great potential for reduction of metals and nutrients in landfill leachate. Results of this study can contribute to future CW research and design for landfill leachate treatment, through the increased understanding of long-term pollutant removal in these systems. In time, this may result in the wider application of CWs for landfill leachate treatment to better protect the environment.
New Advances In Aerobic Granular Sludge Technology Using Continuous Flow Reactors: Engineering And Microbiological Aspects
Abstract
Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimen sional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundament tally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange.
Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.
New Advances In Aerobic Granular Sludge Technology Using Continuous Flow Reactors: Engineering And Microbiological Aspects
Abstract
Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimen sional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundament tally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange.
Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.
Engineering Handbook
Introduction
This document was created based on research and the experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc. of New York, NY. Steel making information and flowcharts were produced with information from the website of The American Iron and Steel Institute (AISI) 1140 Connecticut Ave., NW, Suite 705 Washington, D.C. 20036. Many technical definitions are from “Everything You Always Wanted to Know About Steel. . . A Glossary of Terms and Concepts,” Summer 1998 Courtesy of Michelle Applebaum, Managing Director. Copyright 2000, Salomon Smith Barney Inc. Other glossary definitions are taken from “Cutting Tool Engineering” (ISSN:0011-4189) Copyright by CTE Publications Inc. 107 W. Van Buren, Ste. 204, Chicago, IL 60605. Information regarding differences of steel grades and their properties came from the McMaster-Carr Supply Company website at www.mcmaster.com, copyright 2003 by the McMaster-Carr Supply Company. Much basic and helpful information about steel properties and usage came from Metallurgy FAQ v 1.0 Copyright 1999 Drake H. Damerau, All rights reserved, at Survivalist Books. This document is provided to customers, vendors, and associates of G.L. Huyett for technical information relating to the manufacture and sale of non-threaded industrial fasteners. As such, this document is not a design standard, design guide, or otherwise. G.L. Huyett in not engaged in part and product design, because of the unknown uses of parts made or distributed by the company. Designs must be produced and tested by our customers for individual and commercial use. As such, Huyett assumes no liability of any kind, implied or expressed, for the accuracy, scope, and completion of the information herein
Engineering Handbook
Introduction
This document was created based on research and the experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc. of New York, NY. Steel making information and flowcharts were produced with information from the website of The American Iron and Steel Institute (AISI) 1140 Connecticut Ave., NW, Suite 705 Washington, D.C. 20036. Many technical definitions are from “Everything You Always Wanted to Know About Steel. . . A Glossary of Terms and Concepts,” Summer 1998 Courtesy of Michelle Applebaum, Managing Director. Copyright 2000, Salomon Smith Barney Inc. Other glossary definitions are taken from “Cutting Tool Engineering” (ISSN:0011-4189) Copyright by CTE Publications Inc. 107 W. Van Buren, Ste. 204, Chicago, IL 60605. Information regarding differences of steel grades and their properties came from the McMaster-Carr Supply Company website at www.mcmaster.com, copyright 2003 by the McMaster-Carr Supply Company. Much basic and helpful information about steel properties and usage came from Metallurgy FAQ v 1.0 Copyright 1999 Drake H. Damerau, All rights reserved, at Survivalist Books. This document is provided to customers, vendors, and associates of G.L. Huyett for technical information relating to the manufacture and sale of non-threaded industrial fasteners. As such, this document is not a design standard, design guide, or otherwise. G.L. Huyett in not engaged in part and product design, because of the unknown uses of parts made or distributed by the company. Designs must be produced and tested by our customers for individual and commercial use. As such, Huyett assumes no liability of any kind, implied or expressed, for the accuracy, scope, and completion of the information herein
Engineering Bulletin
Introduction:
Founded in 1981, Purolite is a leading manufacturer of ion exchange, catalyst, adsorbent and specialty resins. With global headquarters in the United States, Purolite is the only company that focuses 100% of its resources on the development and production of resin technology. Responding to the needs of our customers, Purolite has built the largest technical sales force in the industry, the widest variety of products and five strategically located Research and Development groups. Our ISO 9001 certified manufacturing facilities in the U.S.A, Romania and China combined with more than 40 sales offices in 30 countries ensure complete worldwide coverage.
Engineering Bulletin
Introduction:
Founded in 1981, Purolite is a leading manufacturer of ion exchange, catalyst, adsorbent and specialty resins. With global headquarters in the United States, Purolite is the only company that focuses 100% of its resources on the development and production of resin technology. Responding to the needs of our customers, Purolite has built the largest technical sales force in the industry, the widest variety of products and five strategically located Research and Development groups. Our ISO 9001 certified manufacturing facilities in the U.S.A, Romania and China combined with more than 40 sales offices in 30 countries ensure complete worldwide coverage.
Engineering Aspects of Reverse Osmosis Module Design
Abstract:
During the half century of development from a laboratory discovery to plants capable of producing up to half a million tons of desalinated seawater per day, Reverse Osmosis (RO) technology has undergone rapid transition. This transition process has caused signification transformation and consolidation in membrane chemistry, module design, and RO plant configuration and operation. From the early days, when cellulose acetate membranes were used in hollow fiber module configuration, technology has transitioned to thin film composite polyamide flat-sheet membranes in a spiral wound configuration. Early elements – about 4-inches in diameter during the early 70s – displayed flow rates approaching 250 L/h and sodium chloride rejection of about 98.5 percent. One of today’s 16-inch diameter elements is capable of delivering 15-30 times more permeate (4000-8000 L/h) with 5 to 8 times less salt passage (hence a rejection rate of 99.7 percent or higher).
This paper focuses on the transition process in RO module configuration, and how it helped to achieve these performance improvements. An introduction is provided to the two main module configurations present in the early days, hollow fiber and spiral wound and the convergence to spiral wound designs is described as well. The development and current state of the art of the spiral wound element is then reviewed in more detail, focusing on membrane properties (briefly), membrane sheet placement (sheet length and quantity), the changes in materials used (e.g. feed and permeate spacers), element size (most notably diameter), element connection systems (interconnectors versus interlocking systems). The paper concludes with some future perspectives, describing areas for further improvement.
Engineering Aspects of Reverse Osmosis Module Design
Abstract:
During the half century of development from a laboratory discovery to plants capable of producing up to half a million tons of desalinated seawater per day, Reverse Osmosis (RO) technology has undergone rapid transition. This transition process has caused signification transformation and consolidation in membrane chemistry, module design, and RO plant configuration and operation. From the early days, when cellulose acetate membranes were used in hollow fiber module configuration, technology has transitioned to thin film composite polyamide flat-sheet membranes in a spiral wound configuration. Early elements – about 4-inches in diameter during the early 70s – displayed flow rates approaching 250 L/h and sodium chloride rejection of about 98.5 percent. One of today’s 16-inch diameter elements is capable of delivering 15-30 times more permeate (4000-8000 L/h) with 5 to 8 times less salt passage (hence a rejection rate of 99.7 percent or higher).
This paper focuses on the transition process in RO module configuration, and how it helped to achieve these performance improvements. An introduction is provided to the two main module configurations present in the early days, hollow fiber and spiral wound and the convergence to spiral wound designs is described as well. The development and current state of the art of the spiral wound element is then reviewed in more detail, focusing on membrane properties (briefly), membrane sheet placement (sheet length and quantity), the changes in materials used (e.g. feed and permeate spacers), element size (most notably diameter), element connection systems (interconnectors versus interlocking systems). The paper concludes with some future perspectives, describing areas for further improvement.
Reviews
There are no reviews yet.