Sludge System
Source : https://www.cranfield.ac.uk/
Presented by : Mr. Tony Salisbury
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Sludge, Odors & Biogas
Only logged in customers who have purchased this product may leave a review.
Related products
Energy from Wastewater Sewage Sludge in Lebanon
The Ministry of Energy and Water (MEW) and the Council for Development and Reconstruction (CDR) are considering investing in energy produced from
wastewater sludge through anaerobic digestion (AD). Currently, Lebanon has only a few constructed wastewater treatment plants (WWTPs), however many
others are either under construction, under designphase assessment, or are envisioned to be assessed in the future. The goal of this study is to undergo a feasibility assessment to identify the WWTPs that meet the conditions to implement AD and elaborate the related technical specifications.
Energy from Wastewater Sewage Sludge in Lebanon
The Ministry of Energy and Water (MEW) and the Council for Development and Reconstruction (CDR) are considering investing in energy produced from
wastewater sludge through anaerobic digestion (AD). Currently, Lebanon has only a few constructed wastewater treatment plants (WWTPs), however many
others are either under construction, under designphase assessment, or are envisioned to be assessed in the future. The goal of this study is to undergo a feasibility assessment to identify the WWTPs that meet the conditions to implement AD and elaborate the related technical specifications.
Activated Sludge Aeration Waste Heat for Membrane Evaporation of Desalination Brine Concentrate: A Bench Scale Collaborative Study
This study examines a potential membrane evaporation process to reduce brine concentrate volume at the San Antonio Water System’s (SAWS) 45.4 million liters per day (MLD) brackish water desalination facility in San Antonio, Texas, which is currently being constructed. This facility is a reverse osmosis (RO) process operating with 90% recovery by blending 37.9 MLD of permeate with 7.6 MLD of bypass water, producing 4.2 MLD of brine concentrate. The brine concentrate residuals are to be disposed of through deep-well injection. The deep-well injection process is anticipated to be expensive due to well-drilling costs and maintenance costs of operating at high injection pressures. Membrane evaporation systems are promising because they are compact systems and they can be used with low grade waste heat energy sources. This study investigates the potential of coupling membrane evaporation with waste heat generated from activated sludge aeration blowers.
Activated Sludge Aeration Waste Heat for Membrane Evaporation of Desalination Brine Concentrate: A Bench Scale Collaborative Study
This study examines a potential membrane evaporation process to reduce brine concentrate volume at the San Antonio Water System’s (SAWS) 45.4 million liters per day (MLD) brackish water desalination facility in San Antonio, Texas, which is currently being constructed. This facility is a reverse osmosis (RO) process operating with 90% recovery by blending 37.9 MLD of permeate with 7.6 MLD of bypass water, producing 4.2 MLD of brine concentrate. The brine concentrate residuals are to be disposed of through deep-well injection. The deep-well injection process is anticipated to be expensive due to well-drilling costs and maintenance costs of operating at high injection pressures. Membrane evaporation systems are promising because they are compact systems and they can be used with low grade waste heat energy sources. This study investigates the potential of coupling membrane evaporation with waste heat generated from activated sludge aeration blowers.
Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage Sludge
. Ultimate Goal: Transform negative-value or low-value biosolids into high-energy-density, fungible hydrocarbon precursors.
.Enables sustainable production of biogas that is considered as a cellulosic biofuel under new RFS2 (EPA, July 2014).
.Addresses DOE's goals of development of cost-competitive and sustainable biofuels by advancing efficient production strategies for drop-in biofuels.
Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production from Sewage Sludge
. Ultimate Goal: Transform negative-value or low-value biosolids into high-energy-density, fungible hydrocarbon precursors.
.Enables sustainable production of biogas that is considered as a cellulosic biofuel under new RFS2 (EPA, July 2014).
.Addresses DOE's goals of development of cost-competitive and sustainable biofuels by advancing efficient production strategies for drop-in biofuels.
Odor Control
20 years ago there was little talk of odor control. WWTP’s and PS were located out of town, and odor was not a problem.
Today odor control is generally considered an essential process in sewage treatment plant design, and in many other industries.
Odor Control
20 years ago there was little talk of odor control. WWTP’s and PS were located out of town, and odor was not a problem.
Today odor control is generally considered an essential process in sewage treatment plant design, and in many other industries.
Reviews
There are no reviews yet.