Switching on the Biogas Resource
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Sludge, Odors & Biogas
Biogas is a powerful source of renewable energy
Biogas can be converted into electricity and heat to meet the energy needs of wastewater treatment plants, homes and businesses.
Only logged in customers who have purchased this product may leave a review.
Related products
Energy from Wastewater Sewage Sludge in Lebanon
The Ministry of Energy and Water (MEW) and the Council for Development and Reconstruction (CDR) are considering investing in energy produced from
wastewater sludge through anaerobic digestion (AD). Currently, Lebanon has only a few constructed wastewater treatment plants (WWTPs), however many
others are either under construction, under designphase assessment, or are envisioned to be assessed in the future. The goal of this study is to undergo a feasibility assessment to identify the WWTPs that meet the conditions to implement AD and elaborate the related technical specifications.
Energy from Wastewater Sewage Sludge in Lebanon
The Ministry of Energy and Water (MEW) and the Council for Development and Reconstruction (CDR) are considering investing in energy produced from
wastewater sludge through anaerobic digestion (AD). Currently, Lebanon has only a few constructed wastewater treatment plants (WWTPs), however many
others are either under construction, under designphase assessment, or are envisioned to be assessed in the future. The goal of this study is to undergo a feasibility assessment to identify the WWTPs that meet the conditions to implement AD and elaborate the related technical specifications.
Wastewater Biogas to Energy
Overview
The organic matter in raw wastewater contains almost 10 times the energy needed to treat it. Some wastewater treatment works (WWTW) can produce up to 100% of the energy they need to operate, though more typically 60% of operational energy can be produced. Biogas is typically used to meet on site power and thermal energy needs. Export of gas to local industrial users, power producers or for use as a municipal vehicle fleet fuel is also possible. In a wastewater treatment works (WWTW) biogas is produced when sludge decomposes in the absence of oxygen, in digesters. This process is referred to as Anaerobic Digestion. South Africa was one of the first countries in the world to utilise digesters as part of sludge management at WWTW. Digesters at WWTW were, however, not built to capture and use the biogas produced, but rather to assist in sludge management. In most cases, digesters can actually be refurbished to allow for biogas collection.
Biogas (a methane-rich natural gas) derived from anaerobic digestion and captured at WWTW plants provides a renewable energy source which can be used for electricity, heat and biofuel production. At the same time the sludge is stabilized and its dry matter content is reduced. This sludge, or digestate (remaining solid matter after the gas has been removed), contains valuable chemical nutrients such as nitrogen and potassium, and can be used as an organic fertilizer.
Wastewater Biogas to Energy
Overview
The organic matter in raw wastewater contains almost 10 times the energy needed to treat it. Some wastewater treatment works (WWTW) can produce up to 100% of the energy they need to operate, though more typically 60% of operational energy can be produced. Biogas is typically used to meet on site power and thermal energy needs. Export of gas to local industrial users, power producers or for use as a municipal vehicle fleet fuel is also possible. In a wastewater treatment works (WWTW) biogas is produced when sludge decomposes in the absence of oxygen, in digesters. This process is referred to as Anaerobic Digestion. South Africa was one of the first countries in the world to utilise digesters as part of sludge management at WWTW. Digesters at WWTW were, however, not built to capture and use the biogas produced, but rather to assist in sludge management. In most cases, digesters can actually be refurbished to allow for biogas collection.
Biogas (a methane-rich natural gas) derived from anaerobic digestion and captured at WWTW plants provides a renewable energy source which can be used for electricity, heat and biofuel production. At the same time the sludge is stabilized and its dry matter content is reduced. This sludge, or digestate (remaining solid matter after the gas has been removed), contains valuable chemical nutrients such as nitrogen and potassium, and can be used as an organic fertilizer.
Odor Control
20 years ago there was little talk of odor control. WWTP’s and PS were located out of town, and odor was not a problem.
Today odor control is generally considered an essential process in sewage treatment plant design, and in many other industries.
Odor Control
20 years ago there was little talk of odor control. WWTP’s and PS were located out of town, and odor was not a problem.
Today odor control is generally considered an essential process in sewage treatment plant design, and in many other industries.
Sewage Sludge Management In Germany
Introduction
What is sewage sludge?
In Germany, daily water use now reaches 120 litres per person. All of this water ultimately ends up in the sewage system, and from there is channelled to sewage treatment plants. At such plants, the sewage passes through screens and sieves and undergoes mechanical and biological purification,
the goal being to remove impurities from the sewage and to then channel the resulting purified water into waterbodies. The residue of this process is known as
sewage sludge, which can occur in anhydrous, dried or other processed forms.
Sewage Sludge Management In Germany
Introduction
What is sewage sludge?
In Germany, daily water use now reaches 120 litres per person. All of this water ultimately ends up in the sewage system, and from there is channelled to sewage treatment plants. At such plants, the sewage passes through screens and sieves and undergoes mechanical and biological purification,
the goal being to remove impurities from the sewage and to then channel the resulting purified water into waterbodies. The residue of this process is known as
sewage sludge, which can occur in anhydrous, dried or other processed forms.
Activated Sludge Aeration Waste Heat for Membrane Evaporation of Desalination Brine Concentrate: A Bench Scale Collaborative Study
This study examines a potential membrane evaporation process to reduce brine concentrate volume at the San Antonio Water System’s (SAWS) 45.4 million liters per day (MLD) brackish water desalination facility in San Antonio, Texas, which is currently being constructed. This facility is a reverse osmosis (RO) process operating with 90% recovery by blending 37.9 MLD of permeate with 7.6 MLD of bypass water, producing 4.2 MLD of brine concentrate. The brine concentrate residuals are to be disposed of through deep-well injection. The deep-well injection process is anticipated to be expensive due to well-drilling costs and maintenance costs of operating at high injection pressures. Membrane evaporation systems are promising because they are compact systems and they can be used with low grade waste heat energy sources. This study investigates the potential of coupling membrane evaporation with waste heat generated from activated sludge aeration blowers.
Activated Sludge Aeration Waste Heat for Membrane Evaporation of Desalination Brine Concentrate: A Bench Scale Collaborative Study
This study examines a potential membrane evaporation process to reduce brine concentrate volume at the San Antonio Water System’s (SAWS) 45.4 million liters per day (MLD) brackish water desalination facility in San Antonio, Texas, which is currently being constructed. This facility is a reverse osmosis (RO) process operating with 90% recovery by blending 37.9 MLD of permeate with 7.6 MLD of bypass water, producing 4.2 MLD of brine concentrate. The brine concentrate residuals are to be disposed of through deep-well injection. The deep-well injection process is anticipated to be expensive due to well-drilling costs and maintenance costs of operating at high injection pressures. Membrane evaporation systems are promising because they are compact systems and they can be used with low grade waste heat energy sources. This study investigates the potential of coupling membrane evaporation with waste heat generated from activated sludge aeration blowers.
Reviews
There are no reviews yet.