Technical Application Papers No.7 Three-Phase Asynchronous Motors Generalities And ABB Proposals For The Coordination Of Protective Devices
Source: https://global.abb/group/en
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Electrical & Automation
Three-phase asynchronous motors can be considered among the most reliable electrical machines: they carry out their function for many years with reduced maintenance and adapt themselves to different performances according to the requirements of both production as well
as service applications.
Only logged in customers who have purchased this product may leave a review.
Related products
Field Instrumentation
Basic terms related to temperature
Different scales conversion
Basic temperature measuring techniques
RTD’s and its application
Thermocouples and their applications
Comparison between RTDs and Thermocouples
State the effect on the indicated temperature for failures, open circuits, and short
circuit
Field Instrumentation
Basic terms related to temperature
Different scales conversion
Basic temperature measuring techniques
RTD’s and its application
Thermocouples and their applications
Comparison between RTDs and Thermocouples
State the effect on the indicated temperature for failures, open circuits, and short
circuit
Using EDI to Meet the Needs of Pure Water Production
Summary
This report describes the advantages of using EDI for ultrapure water production for power plant boiler makeup water and microelectronics fabrication rinse water. Operating data is presented showing the advantages of EDI for these applications.
Using EDI to Meet the Needs of Pure Water Production
Summary
This report describes the advantages of using EDI for ultrapure water production for power plant boiler makeup water and microelectronics fabrication rinse water. Operating data is presented showing the advantages of EDI for these applications.
Energy Efficient Electric Motors Systems
Introduction:
This manual gives a brief description of state-of-the-art technologies used to develop high efficiency motors, including premium efficiency induction motors, permanent magnet motors, and switched reluctance motors.
It also analyses issues that affect motor system efficiency and provides guidelines on how to deal with those issues namely by:
Selection of energy‐efficient motors
Properly sizing of motors;
Using Variable Speed Drives (VSDs), where appropriate. The use of VSDs can
lead to better process control, less wear in the mechanical equipment, less
acoustical noise, and significant energy savings;
Optimisation of the complete system, including, the distribution network,
power quality and efficient transmissions;
Motor Systems Energy Assessments
Taking Measurements
Applying best maintenance practices.
Motor Repair
How to win approval for energy efficiency projects
Energy Management Systems
Energy Efficient Electric Motors Systems
Introduction:
This manual gives a brief description of state-of-the-art technologies used to develop high efficiency motors, including premium efficiency induction motors, permanent magnet motors, and switched reluctance motors.
It also analyses issues that affect motor system efficiency and provides guidelines on how to deal with those issues namely by:
Selection of energy‐efficient motors
Properly sizing of motors;
Using Variable Speed Drives (VSDs), where appropriate. The use of VSDs can
lead to better process control, less wear in the mechanical equipment, less
acoustical noise, and significant energy savings;
Optimisation of the complete system, including, the distribution network,
power quality and efficient transmissions;
Motor Systems Energy Assessments
Taking Measurements
Applying best maintenance practices.
Motor Repair
How to win approval for energy efficiency projects
Energy Management Systems
Electrodeionization versus Electrodialysis: A Clean- Up of Produced Water in Hydraulic Fracturing
Abstract:
Electrodeionization (EDI) is a widely studied process ranging from applications in wastewater clean-up in the food and beverage industry to purifying organic compounds. To date, there are no apparent studies on applying this technology to produced wastewater recovered from hydraulic fracking sites. Water consumption within hydraulic fracturing sites can reach in the upwards of millions of gallons per site, so a need for a water recycling process becomes necessary within areas where water requirements are scarce. Implementation of an EDI module that is capable of handling high salt solutions from produced wastewater in subsequent fracturing practices will decrease overall water demands, making this an environmentally sustainable process as well. This study will focus on the selective removal of high concentrations of ions using ion-selective membranes and ion exchange wafers in Wafer-Enhanced Electrodeionization (WE-EDI) of hydraulic fracturing solutions for improved water recovery and reuse within industrial applications. Experiments were performed using a WE-EDI setup with varied wafer composition and thickness in comparison with electrodialysis for selective removal of divalent ions (Ca2+) over monovalent ions (Na+ ) from simulated and fracking solutions. Research sought to show that when increasing the wafer thickness and changing the composition (weak acid compared to strong acid resins) there would be a greater overall current efficiency observed and subsequently lower power consumption. This research concluded that there is some degree of enhanced selectivity with increased wafer size, as well as varied composition compared to a traditional ED system. Continued research is recommended to conclude uncertainties, eliminate areas of system performance error and to further solidify all hypothesizes within this research.
Electrodeionization versus Electrodialysis: A Clean- Up of Produced Water in Hydraulic Fracturing
Abstract:
Electrodeionization (EDI) is a widely studied process ranging from applications in wastewater clean-up in the food and beverage industry to purifying organic compounds. To date, there are no apparent studies on applying this technology to produced wastewater recovered from hydraulic fracking sites. Water consumption within hydraulic fracturing sites can reach in the upwards of millions of gallons per site, so a need for a water recycling process becomes necessary within areas where water requirements are scarce. Implementation of an EDI module that is capable of handling high salt solutions from produced wastewater in subsequent fracturing practices will decrease overall water demands, making this an environmentally sustainable process as well. This study will focus on the selective removal of high concentrations of ions using ion-selective membranes and ion exchange wafers in Wafer-Enhanced Electrodeionization (WE-EDI) of hydraulic fracturing solutions for improved water recovery and reuse within industrial applications. Experiments were performed using a WE-EDI setup with varied wafer composition and thickness in comparison with electrodialysis for selective removal of divalent ions (Ca2+) over monovalent ions (Na+ ) from simulated and fracking solutions. Research sought to show that when increasing the wafer thickness and changing the composition (weak acid compared to strong acid resins) there would be a greater overall current efficiency observed and subsequently lower power consumption. This research concluded that there is some degree of enhanced selectivity with increased wafer size, as well as varied composition compared to a traditional ED system. Continued research is recommended to conclude uncertainties, eliminate areas of system performance error and to further solidify all hypothesizes within this research.
Reviews
There are no reviews yet.