The Effect of Source Water Quality and Chlorination on Biofouling in SWCC Seawater Reverse Osmosis Plants
Source:https://swcc.gov.sa/en
Authirs: MOHOMMED O. SAEED AND TROY N. GREEN
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Laboratory & Water Quality
Only logged in customers who have purchased this product may leave a review.
Related products
Analysis of Wastewater for Use in Agriculture – A Laboratory Manual of Parasitological and Bacteriological Techniques
Introduction:
The use of wastewater for crop irrigation is becoming increasingly common, especially in arid and semi-arid areas. Crop yields are higher as the wastewater contains not only water for crop growth, but also plant nutrients (mainly nitrogen and phosphorus). However, there is the risk that wastewater irrigation may facilitate the transmission of excreta-related diseases. In the late 1980s, the World Health Organization, the World Bank and the International Reference Centre for Waste Disposal sponsored a series of studies and meetings of experts to examine these health risks (International Reference Centre for Waste Disposal, 1985; Shuval et al., 1986; Prost, 1988; World Health Organization, 1989). From an appraisal of the available epidemiological evidence, it was established that the major risks were: the transmission of intestinal nematode infections both to those working in the waste-water irrigated fields and to those consuming vegetables grown in the fields; these infections are due to Ascaris lumbricoides (the human roundworm), Trichuris trichiura (the human whipworm), and Ancylostoma duodenale and Necator americanus (the human hookworms); and- the transmission of faecal bacterial diseases - bacterial diarrhoea and dysentery, typhoid and cholera - to the crop consumers.
Analysis of Wastewater for Use in Agriculture – A Laboratory Manual of Parasitological and Bacteriological Techniques
Introduction:
The use of wastewater for crop irrigation is becoming increasingly common, especially in arid and semi-arid areas. Crop yields are higher as the wastewater contains not only water for crop growth, but also plant nutrients (mainly nitrogen and phosphorus). However, there is the risk that wastewater irrigation may facilitate the transmission of excreta-related diseases. In the late 1980s, the World Health Organization, the World Bank and the International Reference Centre for Waste Disposal sponsored a series of studies and meetings of experts to examine these health risks (International Reference Centre for Waste Disposal, 1985; Shuval et al., 1986; Prost, 1988; World Health Organization, 1989). From an appraisal of the available epidemiological evidence, it was established that the major risks were: the transmission of intestinal nematode infections both to those working in the waste-water irrigated fields and to those consuming vegetables grown in the fields; these infections are due to Ascaris lumbricoides (the human roundworm), Trichuris trichiura (the human whipworm), and Ancylostoma duodenale and Necator americanus (the human hookworms); and- the transmission of faecal bacterial diseases - bacterial diarrhoea and dysentery, typhoid and cholera - to the crop consumers.
Effect of the Quality of Water Used for Dialysis on the Efficacy of Hemodialysis
Abstract
The quality of the water used for dialysis has been suggested as a factor causing inflammation in patients on hemodialysis (HD). We therefore conducted this study to identify the effect of quality of the water on nutritional state, inflammation and need for human recombinant erythropoietin (EPO) in patients undergoing HD at Agadir, Morocco. This prospective study included patients on HD for at least one year. The water treatment was done according to the standard protocol, which was followed by additional enhancement of ultrafiltration using an additional polysulfone filter (diasafe, Fresenius, Bad Homburg, Germany) before the dialyser. Water was monitored regularly during the study period to ensure acceptable levels of bacterial count as well as endotoxin levels. Various parameters including dry weight, systolic and diastolic blood pressure (PA) before and after an HD session, need for human recombinant EPO, levels of hemoglobin (Hb), albumin, ferritin, C-reactive protein (CRP), and the dose of dialysis delivered (Kt/V) were measured first at the beginning of the study and thereafter, in the third, sixth and 12 th months of the study. The study involved 47 patients, and after 12 months of the study, an improvement in median dry weight (1.2 kg, P = 0017) and a simultaneous median reduction of 20.7 IU/kg/week of EPO, with an in-crease of the median level of Hb, was noted. The results of our study suggest that by improving the biocompatibility of HD with the use of good quality water, patients acquire a better nutritional, inflammatory and hematologic status.
Effect of the Quality of Water Used for Dialysis on the Efficacy of Hemodialysis
Abstract
The quality of the water used for dialysis has been suggested as a factor causing inflammation in patients on hemodialysis (HD). We therefore conducted this study to identify the effect of quality of the water on nutritional state, inflammation and need for human recombinant erythropoietin (EPO) in patients undergoing HD at Agadir, Morocco. This prospective study included patients on HD for at least one year. The water treatment was done according to the standard protocol, which was followed by additional enhancement of ultrafiltration using an additional polysulfone filter (diasafe, Fresenius, Bad Homburg, Germany) before the dialyser. Water was monitored regularly during the study period to ensure acceptable levels of bacterial count as well as endotoxin levels. Various parameters including dry weight, systolic and diastolic blood pressure (PA) before and after an HD session, need for human recombinant EPO, levels of hemoglobin (Hb), albumin, ferritin, C-reactive protein (CRP), and the dose of dialysis delivered (Kt/V) were measured first at the beginning of the study and thereafter, in the third, sixth and 12 th months of the study. The study involved 47 patients, and after 12 months of the study, an improvement in median dry weight (1.2 kg, P = 0017) and a simultaneous median reduction of 20.7 IU/kg/week of EPO, with an in-crease of the median level of Hb, was noted. The results of our study suggest that by improving the biocompatibility of HD with the use of good quality water, patients acquire a better nutritional, inflammatory and hematologic status.
Developing Quality Control Handbooks for Water and Wastewater Treatment
Introduction
This section provides a step by step discussion regarding the development of a Quality Control Handbook for a water or wastewater treatment plant. A workshop format has been chosen for the development of the handbook in order to channel the multiple knowledge inputs needed for it. For a proper. The workshop format targets participants coming from water or wastewater treatment facilities. These participants are expected to be knowledgeable of the operational activities of the plant and able to share their actual experiences. The successful implementation of this handbook depends on the creation of a setting in which the employees themselves act as both teachers and students. Active participation is a key success factor, and practical demonstrations are necessary to supplement the theoretical aspects. The workshop format can be easily replicated and as such, helps facilitate the development of operating manuals in other water treatment facilities or water companies. Once completed, these manuals may be used to define the required skills of the operating personnel and may also be used for actual on-the-job training. The handbook is to be finalized after successful completion of four group sessions.
Developing Quality Control Handbooks for Water and Wastewater Treatment
Introduction
This section provides a step by step discussion regarding the development of a Quality Control Handbook for a water or wastewater treatment plant. A workshop format has been chosen for the development of the handbook in order to channel the multiple knowledge inputs needed for it. For a proper. The workshop format targets participants coming from water or wastewater treatment facilities. These participants are expected to be knowledgeable of the operational activities of the plant and able to share their actual experiences. The successful implementation of this handbook depends on the creation of a setting in which the employees themselves act as both teachers and students. Active participation is a key success factor, and practical demonstrations are necessary to supplement the theoretical aspects. The workshop format can be easily replicated and as such, helps facilitate the development of operating manuals in other water treatment facilities or water companies. Once completed, these manuals may be used to define the required skills of the operating personnel and may also be used for actual on-the-job training. The handbook is to be finalized after successful completion of four group sessions.
Reviews
There are no reviews yet.