The WEF Nexus Summer School 2023
The WEF Nexus Summer School 2023
Source: https://www.egyptcoewater.eg
Edited by: Prof. Mahamed M. Awad
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Energy
Only logged in customers who have purchased this product may leave a review.
Related products
Water and Wastewater Energy Best Practice Guidebook
Executive Summary
The objective of this Water and Wastewater Industry Energy Best Practice Guidebook is to provide information and resources to assist water/wastewater management and staff in identifying and implementing opportunities to reduce energy use. The information in this guidebook will help managers, administrators and/or operators to identify opportunities to significantly reduce energy requirements at their facilities without affecting production. It also provides the user with information on the value and need for proactive energy management with water and wastewater systems.
Contents include:
- Benchmarking results from selected Wisconsin wastewater facilities
- Best practice approaches to on-going management of energy use
- Documentation of technical best practices for planning, designing and operating water/wastewater system treatment and for conveyance and distribution
- Best practice funding and financing opportunities
- References for further opportunities in water/wastewater system energy efficiency and power demand reduction
Water and Wastewater Energy Best Practice Guidebook
Executive Summary
The objective of this Water and Wastewater Industry Energy Best Practice Guidebook is to provide information and resources to assist water/wastewater management and staff in identifying and implementing opportunities to reduce energy use. The information in this guidebook will help managers, administrators and/or operators to identify opportunities to significantly reduce energy requirements at their facilities without affecting production. It also provides the user with information on the value and need for proactive energy management with water and wastewater systems.
Contents include:
- Benchmarking results from selected Wisconsin wastewater facilities
- Best practice approaches to on-going management of energy use
- Documentation of technical best practices for planning, designing and operating water/wastewater system treatment and for conveyance and distribution
- Best practice funding and financing opportunities
- References for further opportunities in water/wastewater system energy efficiency and power demand reduction
Wastewater Management Fact Sheet Energy Conservation
INTRODUCTION
Continual increases in energy costs in the United States affect wastewater treatment plants (WWTPs) just as they do other facilities. Energy costs can account for 30 percent of the total op[1]eration and maintenance (O&M) costs of WWTPs (Carns 2005), and WWTPs account for approximately 3 percent of the electric load in the United States. Furthermore, as populations grow and environmental requirements become more stringent, demand for electricity at such plants is expected to grow by approximately 20 percent over the next 15 years (Carns 2005). Energy conservation is thus an issue of increas[1]ing importance to WWTPs. This fact sheet describes possible practices that can be imple[1]mented to conserve energy at a WWTP.
Wastewater Management Fact Sheet Energy Conservation
INTRODUCTION
Continual increases in energy costs in the United States affect wastewater treatment plants (WWTPs) just as they do other facilities. Energy costs can account for 30 percent of the total op[1]eration and maintenance (O&M) costs of WWTPs (Carns 2005), and WWTPs account for approximately 3 percent of the electric load in the United States. Furthermore, as populations grow and environmental requirements become more stringent, demand for electricity at such plants is expected to grow by approximately 20 percent over the next 15 years (Carns 2005). Energy conservation is thus an issue of increas[1]ing importance to WWTPs. This fact sheet describes possible practices that can be imple[1]mented to conserve energy at a WWTP.
An Introduction to Design of Solar Water Heating Systems
Introduction:
This course presents the information required to design a solar energy water heating system, after planning and system selection have been completed.
An Introduction to Design of Solar Water Heating Systems
Introduction:
This course presents the information required to design a solar energy water heating system, after planning and system selection have been completed.
Water Treatment for Fossil Fuel Power Generation
SUMMARY
The process of electricity generation from fossil fuels such as coal, oil and natural gas requires water supplies for a number of essential power plant processes. The primary application of modern water treatment technology is to maintain the integrity and performance of the power plant. Critical plant applications have water purity or conditioning requirements that must be adhered to for safe, reliable and efficient power generation. Experience has shown that integration of water technology treatments with power plant design can be very important in reducing operational problems and component failures.
Water Treatment for Fossil Fuel Power Generation
SUMMARY
The process of electricity generation from fossil fuels such as coal, oil and natural gas requires water supplies for a number of essential power plant processes. The primary application of modern water treatment technology is to maintain the integrity and performance of the power plant. Critical plant applications have water purity or conditioning requirements that must be adhered to for safe, reliable and efficient power generation. Experience has shown that integration of water technology treatments with power plant design can be very important in reducing operational problems and component failures.
Reviews
There are no reviews yet.