Water Determination by Karl Fischer Titration
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Laboratory & Water Quality
Only logged in customers who have purchased this product may leave a review.
Related products
Boiler Water Quality Requirements and Associated Steam Quality for Industrial/Commercial and Institutional Boilers
Introduction:
The purpose of this publication is to acquaint engineers, purchasers and operators of industrial, commercial and institutional (ICI) boilers with ABMA's judgment as to the relationship between boiler water quality and boiler performance. This document is published for general guidance as a supplement to detailed operating manuals supplied by the equipment manufacturers. It should also be noted that the information presented is directed to steel boiler designs, as opposed to cast iron sectional or copper finned tube boilers. Furthermore Utility Boilers and Combined Cycle Boilers, which require extremely close control of water quality and steam purity, are not the topic of this document. This new document combines two previous ABMA Guideline documents, namely “Boiler Water Requirements and Associated Steam Purity for Commercial Boilers” (1998), and “Boiler Water Limits and Achievable Steam Purity for Water tube Boilers”, (1995). The document discusses the effect of various feed water and condensate systems on the boiler operation. It also provides information on boiler water and steam testing as well as system care and maintenance. It is recognized that specific boiler usage and water treatment will vary and may require values different from these recommendations. Boiler users therefore, need to define limits, equipment and operating parameters for their particular application. These recommendations are for information only. Everyone is free to accept or reject the conclusions of these suggestions as their own judgment warrants in all aspects of the conduct of their business. The ABMA does not represent or warrant that any level of steam purity depicted will be achieved by any particular boiler or boilers.
Boiler Water Quality Requirements and Associated Steam Quality for Industrial/Commercial and Institutional Boilers
Introduction:
The purpose of this publication is to acquaint engineers, purchasers and operators of industrial, commercial and institutional (ICI) boilers with ABMA's judgment as to the relationship between boiler water quality and boiler performance. This document is published for general guidance as a supplement to detailed operating manuals supplied by the equipment manufacturers. It should also be noted that the information presented is directed to steel boiler designs, as opposed to cast iron sectional or copper finned tube boilers. Furthermore Utility Boilers and Combined Cycle Boilers, which require extremely close control of water quality and steam purity, are not the topic of this document. This new document combines two previous ABMA Guideline documents, namely “Boiler Water Requirements and Associated Steam Purity for Commercial Boilers” (1998), and “Boiler Water Limits and Achievable Steam Purity for Water tube Boilers”, (1995). The document discusses the effect of various feed water and condensate systems on the boiler operation. It also provides information on boiler water and steam testing as well as system care and maintenance. It is recognized that specific boiler usage and water treatment will vary and may require values different from these recommendations. Boiler users therefore, need to define limits, equipment and operating parameters for their particular application. These recommendations are for information only. Everyone is free to accept or reject the conclusions of these suggestions as their own judgment warrants in all aspects of the conduct of their business. The ABMA does not represent or warrant that any level of steam purity depicted will be achieved by any particular boiler or boilers.
A Manual On Water Quality Treatment Methods At Community And Household Level
About this book :
This book is a compilation work of various techniques adopted at different parts of the world for removal of a range of chemical parameters which are present beyond the permissible limit in drinking water. The different technologies those are described in this book are mainly limited to household level and for community level. The stepwise pictorial presentation for treatment of contaminated water to remove different chemical parameters and biological treatment will possibly be appreciated by the readers of this book. The authors of this book have tried their best, put their utmost thought and taken maximum care while compiling the available information so that this piece of work will be accepted by every individual. This book in general comprises three sections and eight chapters are within these sections. Section-I comprises only one chapter which describes different water quality problems in India with specific interest to Odisha and for whom this book is designed. Similarly, the section-II encompasses four chapters. Water quality standards, water quality occurrence in different parts of the state and its presentation in shape of a map are reflected in these chapters. Section –III, which is the most important section of this book, illustrates identification of problems and their mitigation measures at household level as well as at community level. Material quantification and maintenance procedures are also depicted in this section.
A Manual On Water Quality Treatment Methods At Community And Household Level
About this book :
This book is a compilation work of various techniques adopted at different parts of the world for removal of a range of chemical parameters which are present beyond the permissible limit in drinking water. The different technologies those are described in this book are mainly limited to household level and for community level. The stepwise pictorial presentation for treatment of contaminated water to remove different chemical parameters and biological treatment will possibly be appreciated by the readers of this book. The authors of this book have tried their best, put their utmost thought and taken maximum care while compiling the available information so that this piece of work will be accepted by every individual. This book in general comprises three sections and eight chapters are within these sections. Section-I comprises only one chapter which describes different water quality problems in India with specific interest to Odisha and for whom this book is designed. Similarly, the section-II encompasses four chapters. Water quality standards, water quality occurrence in different parts of the state and its presentation in shape of a map are reflected in these chapters. Section –III, which is the most important section of this book, illustrates identification of problems and their mitigation measures at household level as well as at community level. Material quantification and maintenance procedures are also depicted in this section.
Clearing the Waters A focus on water quality solutions
Reproduction
This publication may be reproduced in whole or in part and in any form for educational or nonprofit purposes without special permission from the copyright holders, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme.
Clearing the Waters A focus on water quality solutions
Reproduction
This publication may be reproduced in whole or in part and in any form for educational or nonprofit purposes without special permission from the copyright holders, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme.
Effect of the Quality of Water Used for Dialysis on the Efficacy of Hemodialysis
Abstract
The quality of the water used for dialysis has been suggested as a factor causing inflammation in patients on hemodialysis (HD). We therefore conducted this study to identify the effect of quality of the water on nutritional state, inflammation and need for human recombinant erythropoietin (EPO) in patients undergoing HD at Agadir, Morocco. This prospective study included patients on HD for at least one year. The water treatment was done according to the standard protocol, which was followed by additional enhancement of ultrafiltration using an additional polysulfone filter (diasafe, Fresenius, Bad Homburg, Germany) before the dialyser. Water was monitored regularly during the study period to ensure acceptable levels of bacterial count as well as endotoxin levels. Various parameters including dry weight, systolic and diastolic blood pressure (PA) before and after an HD session, need for human recombinant EPO, levels of hemoglobin (Hb), albumin, ferritin, C-reactive protein (CRP), and the dose of dialysis delivered (Kt/V) were measured first at the beginning of the study and thereafter, in the third, sixth and 12 th months of the study. The study involved 47 patients, and after 12 months of the study, an improvement in median dry weight (1.2 kg, P = 0017) and a simultaneous median reduction of 20.7 IU/kg/week of EPO, with an in-crease of the median level of Hb, was noted. The results of our study suggest that by improving the biocompatibility of HD with the use of good quality water, patients acquire a better nutritional, inflammatory and hematologic status.
Effect of the Quality of Water Used for Dialysis on the Efficacy of Hemodialysis
Abstract
The quality of the water used for dialysis has been suggested as a factor causing inflammation in patients on hemodialysis (HD). We therefore conducted this study to identify the effect of quality of the water on nutritional state, inflammation and need for human recombinant erythropoietin (EPO) in patients undergoing HD at Agadir, Morocco. This prospective study included patients on HD for at least one year. The water treatment was done according to the standard protocol, which was followed by additional enhancement of ultrafiltration using an additional polysulfone filter (diasafe, Fresenius, Bad Homburg, Germany) before the dialyser. Water was monitored regularly during the study period to ensure acceptable levels of bacterial count as well as endotoxin levels. Various parameters including dry weight, systolic and diastolic blood pressure (PA) before and after an HD session, need for human recombinant EPO, levels of hemoglobin (Hb), albumin, ferritin, C-reactive protein (CRP), and the dose of dialysis delivered (Kt/V) were measured first at the beginning of the study and thereafter, in the third, sixth and 12 th months of the study. The study involved 47 patients, and after 12 months of the study, an improvement in median dry weight (1.2 kg, P = 0017) and a simultaneous median reduction of 20.7 IU/kg/week of EPO, with an in-crease of the median level of Hb, was noted. The results of our study suggest that by improving the biocompatibility of HD with the use of good quality water, patients acquire a better nutritional, inflammatory and hematologic status.
Investigation of The Quality of Water Treated by Magnetic Fields
Abstract
Passing water through a magnetic field has been claimed to improve chemical, physical and bacteriological quality of water in many different applications. Although the treatment process has been used for decades, it still remains in the realms of pseudoscience. If the claims of treating water with magnets are true, the process offers improvements on many of our applications of water in today’s world. A large number of peer reviewed journal articles have reported contradictory claims about the treatment.. Some of the most beneficial claimed water applications from magnetically treated water include improvement in scale reduction in pipes and enhanced crop yields with reduced water usage. Today we are still unsure whether the technology works and those who do believe it works are still trying to understand the mechanisms of how it works. Many research papers are starting to develop similar theories behind the mechanism of the treatment. From previous studies, it has been determined that the most successful MTD’s are those with alternating poles. The majority of the experiments performed during this research were determined to have insufficient controls to produce conclusive results. The conclusions from this research were focused on designing improved experiments to provide more conclusive results. A theory was developed to explain the MTD’s mechanisms of scale reduction. While the experimental results were not conclusive, the results attained backed the theory. Magnetically treated water does not do all that it is claimed it does. However, some of the positive results obtained during this research suggest that the improved experiments developed from this research may provide conclusive results on this controversial topic.
Investigation of The Quality of Water Treated by Magnetic Fields
Abstract
Passing water through a magnetic field has been claimed to improve chemical, physical and bacteriological quality of water in many different applications. Although the treatment process has been used for decades, it still remains in the realms of pseudoscience. If the claims of treating water with magnets are true, the process offers improvements on many of our applications of water in today’s world. A large number of peer reviewed journal articles have reported contradictory claims about the treatment.. Some of the most beneficial claimed water applications from magnetically treated water include improvement in scale reduction in pipes and enhanced crop yields with reduced water usage. Today we are still unsure whether the technology works and those who do believe it works are still trying to understand the mechanisms of how it works. Many research papers are starting to develop similar theories behind the mechanism of the treatment. From previous studies, it has been determined that the most successful MTD’s are those with alternating poles. The majority of the experiments performed during this research were determined to have insufficient controls to produce conclusive results. The conclusions from this research were focused on designing improved experiments to provide more conclusive results. A theory was developed to explain the MTD’s mechanisms of scale reduction. While the experimental results were not conclusive, the results attained backed the theory. Magnetically treated water does not do all that it is claimed it does. However, some of the positive results obtained during this research suggest that the improved experiments developed from this research may provide conclusive results on this controversial topic.
Reviews
There are no reviews yet.