Water Utility Business Risk And Opportunity Framework
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Occupational Safety and Health
Only logged in customers who have purchased this product may leave a review.
Related products
Lifting Guide
Introduction : This manual is your pocket guide to the use of lifting equipment. It covers equipment made of synthetic fibre, steel wire rope and chain with associated master links, hooks and couplings. It consists of four colour-coded sections which can be read individually when required:
-Lifting Equipment in General -Choosing Lifting Equipment -When Lifting -Maintenance
Gunnebo Lifting does not, however, in any way claim that this manual covers all kinds of lifting equipment or all lifting situations.
Lifting Guide
Introduction : This manual is your pocket guide to the use of lifting equipment. It covers equipment made of synthetic fibre, steel wire rope and chain with associated master links, hooks and couplings. It consists of four colour-coded sections which can be read individually when required:
-Lifting Equipment in General -Choosing Lifting Equipment -When Lifting -Maintenance
Gunnebo Lifting does not, however, in any way claim that this manual covers all kinds of lifting equipment or all lifting situations.
Quantitative Risk Analyses In The Process Industries: Methodology, Case Studies, And Cost-Benefit Analysis
Abstract
This presentation demonstrates the quantitative risk analysis technique as applied to process industries, with references to several case studies. Demonstration of successful execution, how these studies assisted in reducing overall risk, and the cost-benefit aspect will be addressed. Types of hazardous consequences which can contribute to overall risk will be outlined as well, including fire, toxic and explosive effects. The effect of likelihood is addressed in terms of mechanical failure rates, meteorological data, population densities, and ignition probabilities. Quantitative risk analysis is a widely accepted technique within the chemical and process industries. It has been adopted to form legislative requirements in many countries within Europe and Asia. Quantitative risk analysis typically assesses the risk to society as a whole, or to individuals affected by process operations.
Quantitative Risk Analyses In The Process Industries: Methodology, Case Studies, And Cost-Benefit Analysis
Abstract
This presentation demonstrates the quantitative risk analysis technique as applied to process industries, with references to several case studies. Demonstration of successful execution, how these studies assisted in reducing overall risk, and the cost-benefit aspect will be addressed. Types of hazardous consequences which can contribute to overall risk will be outlined as well, including fire, toxic and explosive effects. The effect of likelihood is addressed in terms of mechanical failure rates, meteorological data, population densities, and ignition probabilities. Quantitative risk analysis is a widely accepted technique within the chemical and process industries. It has been adopted to form legislative requirements in many countries within Europe and Asia. Quantitative risk analysis typically assesses the risk to society as a whole, or to individuals affected by process operations.
Giving Safety Talks A Guide For The Construction Sector
Introduction and Importance
Biohazardous infectious material contains organisms that can cause diseases such as HIV/AIDS, Hepatitis B, and Salmonella in humans or animals. These materials are usually found in hospitals and laboratories. However, you could! nd them at work. Universal Precautions are guidelines to help protect you from exposure to infectious diseases spread by blood or body fluids.
Consequences
Biohazardous infectious materials can cause AIDS, hepatitis, or other diseases. 157 disabling injury claims took place in 2007 – primarily in the Health Care profession. Procedure/Practice
If your work requires you to handle biohazardous infectious materials, ask your supervisor for training so you understand the hazards, roles, responsibilities, and regulations you are to follow. Wear the proper PPE as every tissue or fluid is to be considered dangerous. Make sure you have a tetanus immunization every 10 years. Trash bins in the Health & Safety department may contain infectious materials. Be careful in this area.
Giving Safety Talks A Guide For The Construction Sector
Introduction and Importance
Biohazardous infectious material contains organisms that can cause diseases such as HIV/AIDS, Hepatitis B, and Salmonella in humans or animals. These materials are usually found in hospitals and laboratories. However, you could! nd them at work. Universal Precautions are guidelines to help protect you from exposure to infectious diseases spread by blood or body fluids.
Consequences
Biohazardous infectious materials can cause AIDS, hepatitis, or other diseases. 157 disabling injury claims took place in 2007 – primarily in the Health Care profession. Procedure/Practice
If your work requires you to handle biohazardous infectious materials, ask your supervisor for training so you understand the hazards, roles, responsibilities, and regulations you are to follow. Wear the proper PPE as every tissue or fluid is to be considered dangerous. Make sure you have a tetanus immunization every 10 years. Trash bins in the Health & Safety department may contain infectious materials. Be careful in this area.
Progressing Safety And Best Practice Step By Step
Introduction
Ladders are an everyday tool in homes and workplaces across the world, allowing millions of people to work at height quickly and easily. They’re versatile and vital pieces of equipment, that can be used
for a whole range of jobs. But too many people still fall from ladders. The consequences of these falls can be life-changing, for both the victim and their loved ones. The Ladder Association wants everyone who climbs a ladder to come back down safely. To achieve this, we believe the entire ladder industry must work in collaboration. That’s why the Association was formed in 1947; it’s the place where ladder manufacturers, suppliers, and training providers meet. Separately, these businesses innovate and compete. But when it comes to advancing user safety, they work together. Our members have made a clear commitment to put safety at the heart of everything they do:
• Ladder Association Manufacturers only make ladders that comply with EN 131 (or international equivalents) and are certified by a third-party Conformity Assessment Body;
• Ladder Association Suppliers only sell or hire ladders that are certified to EN 131 (or international equivalents);
• Ladder Association Training Providers use approved centers to deliver approved training courses, using approved instructors. We also work closely with the Health & Safety Executive, the Office for Product Safety and Standards, the British Standards Institution and other National Standards Bodies, RoSPA, and similar safety-minded organizations to combine insights, experience, and knowledge. It means that when our campaigns, training courses, and documents like this Code of Practice are put together, there’s as much expertise in the room as possible. And remember, we’re all there in support of you, the ladder user. This edition of the Ladder Association Code of Practice takes account of the latest guidance and product standards at the time of issue and supersedes all previous editions. It’s designed to keep you, and those around you, safe.
Progressing Safety And Best Practice Step By Step
Introduction
Ladders are an everyday tool in homes and workplaces across the world, allowing millions of people to work at height quickly and easily. They’re versatile and vital pieces of equipment, that can be used
for a whole range of jobs. But too many people still fall from ladders. The consequences of these falls can be life-changing, for both the victim and their loved ones. The Ladder Association wants everyone who climbs a ladder to come back down safely. To achieve this, we believe the entire ladder industry must work in collaboration. That’s why the Association was formed in 1947; it’s the place where ladder manufacturers, suppliers, and training providers meet. Separately, these businesses innovate and compete. But when it comes to advancing user safety, they work together. Our members have made a clear commitment to put safety at the heart of everything they do:
• Ladder Association Manufacturers only make ladders that comply with EN 131 (or international equivalents) and are certified by a third-party Conformity Assessment Body;
• Ladder Association Suppliers only sell or hire ladders that are certified to EN 131 (or international equivalents);
• Ladder Association Training Providers use approved centers to deliver approved training courses, using approved instructors. We also work closely with the Health & Safety Executive, the Office for Product Safety and Standards, the British Standards Institution and other National Standards Bodies, RoSPA, and similar safety-minded organizations to combine insights, experience, and knowledge. It means that when our campaigns, training courses, and documents like this Code of Practice are put together, there’s as much expertise in the room as possible. And remember, we’re all there in support of you, the ladder user. This edition of the Ladder Association Code of Practice takes account of the latest guidance and product standards at the time of issue and supersedes all previous editions. It’s designed to keep you, and those around you, safe.
Safety Guide For Work In Manholes
Introduction
Working near or in a manhole inherits potential dangers which may result in serious accidents. The common ones include falls/slips, fire or explosion, oxygen depletion, gas poisoning, heat stress, drowning, asphyxiation arising from gas, fume, vapor, and entrapment by free-flowing solid. Amongst these, dangers involving gases are easily overlooked or neglected, leading to serious casualties. This guide aims to remind persons entering or working in a manhole to take appropriate measures, including measures for the prevention of oxygen depletion and gas poisoning. ‘‘Certified workers’’ (Note 1) must be familiar with the ‘Code of Practice – Safety and Health at Work in Confined Spaces, and before entering a manhole, they must take all the necessary safety precautions to ensure safety at work
Safety Guide For Work In Manholes
Introduction
Working near or in a manhole inherits potential dangers which may result in serious accidents. The common ones include falls/slips, fire or explosion, oxygen depletion, gas poisoning, heat stress, drowning, asphyxiation arising from gas, fume, vapor, and entrapment by free-flowing solid. Amongst these, dangers involving gases are easily overlooked or neglected, leading to serious casualties. This guide aims to remind persons entering or working in a manhole to take appropriate measures, including measures for the prevention of oxygen depletion and gas poisoning. ‘‘Certified workers’’ (Note 1) must be familiar with the ‘Code of Practice – Safety and Health at Work in Confined Spaces, and before entering a manhole, they must take all the necessary safety precautions to ensure safety at work
Hazardous Area Classification
Ignition sources
Open flames - matches, welding, etc.
Electrical sparking.
Spontaneous ignition.
Static electricity.
Hot surfaces.
Smoking
Hazardous Area Classification
Ignition sources
Open flames - matches, welding, etc.
Electrical sparking.
Spontaneous ignition.
Static electricity.
Hot surfaces.
Smoking
Reviews
There are no reviews yet.