Zero Discharge Treatment Method for Cooling Towers and Heat Exchangerswith SP3, I-SOFT-OB,OXYDES& KATALOX LIGHT
Zero Discharge Water Treatment for Cooling Towers
Source : https://www.watchwater.de/
Author : Deepak Chopra
Usually dispatched in 2 to 3 days
Usually dispatched in 2 to 3 days
Category:
Industrial Water & Wastewater
Only logged in customers who have purchased this product may leave a review.
Related products
Industrial Water Treatment Operation And Maintenance
INTRODUCTION TO INDUSTRIAL WATER TREATMENT
1-1 PURPOSE AND SCOPE. This UFC provides an overview of industrial water treatment operations and management. As used in this UFC, the term “industrial water” refers to the water used in military power generation, heating, air conditioning, refrigeration, cooling, processing, and all other equipment and systems that require water for operation. Industrial water is not the same as potable water. Industrial water is never consumed or used in situations that require a high degree of sanitation. Industrial water requires water preparation or chemical treatment, or both, to avoid the problems described in paragraph
1-1.2. Water preparation and chemical treatment requirements are described in Chapters 2 through 5 according to the type of system in question. The Navy has special uses for shore-to-ship steam. The Naval Sea Systems Command (NAVSEASYSCOM) shore-to-ship steam purity standards are described in Chapter 3. Examples of industrial water systems and their uses are
• Steam Boiler Systems. (See Chapter 3.) Steam uses include space and hot water heating, sterilization, humidification, indirect food processing, and power generation.
• Cooling Water Systems. (See Chapter 4.) Cooling water is used in cooling towers, evaporative coolers, evaporative condensers, and once-through systems. Applications are broad, ranging from simple refrigeration to temperature regulation of nuclear reactors.
• Closed Water Systems. (See Chapter 5.) These include closed hot water, closed chilled water, and diesel jacket systems.
Industrial Water Treatment Operation And Maintenance
INTRODUCTION TO INDUSTRIAL WATER TREATMENT
1-1 PURPOSE AND SCOPE. This UFC provides an overview of industrial water treatment operations and management. As used in this UFC, the term “industrial water” refers to the water used in military power generation, heating, air conditioning, refrigeration, cooling, processing, and all other equipment and systems that require water for operation. Industrial water is not the same as potable water. Industrial water is never consumed or used in situations that require a high degree of sanitation. Industrial water requires water preparation or chemical treatment, or both, to avoid the problems described in paragraph
1-1.2. Water preparation and chemical treatment requirements are described in Chapters 2 through 5 according to the type of system in question. The Navy has special uses for shore-to-ship steam. The Naval Sea Systems Command (NAVSEASYSCOM) shore-to-ship steam purity standards are described in Chapter 3. Examples of industrial water systems and their uses are
• Steam Boiler Systems. (See Chapter 3.) Steam uses include space and hot water heating, sterilization, humidification, indirect food processing, and power generation.
• Cooling Water Systems. (See Chapter 4.) Cooling water is used in cooling towers, evaporative coolers, evaporative condensers, and once-through systems. Applications are broad, ranging from simple refrigeration to temperature regulation of nuclear reactors.
• Closed Water Systems. (See Chapter 5.) These include closed hot water, closed chilled water, and diesel jacket systems.
Alternative Water Treatment Technologies for Cooling Tower Applications
This GSA Proving Ground (GPG) project assessed the performance of three alternative water treatment systems (AWT) for cooling tower water treatment applications at the Denver Federal Center (DFC) in Denver, Colorado. Cooling towers are commonly applied to water cooled chilled water plants in medium to large commercial buildings and are the point in the system where heat is dissipated to the atmosphere through the evaporative cooling process. Cooling towers also consume a large amount of water. Cooling tower related water consumption is one of largest potable water loads within buildings in the United States, with over 26% of water use associated with heating and cooling. Reducing water consumption is a priority for the General Services Administration (GSA) due to Executive Order 13693, Energy Policy Act of 1992, and regional water shortages. These factors have brought about the investigation of cost effective opportunities to reduce water use, such as AWT technologies for cooling towers. The current state of water treatment in GSA buildings is to use conventional chemical based cooling tower water treatment to maintain cooling tower water quality and contract out this specialized service to a third-party company specializing in such service.
Alternative Water Treatment Technologies for Cooling Tower Applications
This GSA Proving Ground (GPG) project assessed the performance of three alternative water treatment systems (AWT) for cooling tower water treatment applications at the Denver Federal Center (DFC) in Denver, Colorado. Cooling towers are commonly applied to water cooled chilled water plants in medium to large commercial buildings and are the point in the system where heat is dissipated to the atmosphere through the evaporative cooling process. Cooling towers also consume a large amount of water. Cooling tower related water consumption is one of largest potable water loads within buildings in the United States, with over 26% of water use associated with heating and cooling. Reducing water consumption is a priority for the General Services Administration (GSA) due to Executive Order 13693, Energy Policy Act of 1992, and regional water shortages. These factors have brought about the investigation of cost effective opportunities to reduce water use, such as AWT technologies for cooling towers. The current state of water treatment in GSA buildings is to use conventional chemical based cooling tower water treatment to maintain cooling tower water quality and contract out this specialized service to a third-party company specializing in such service.
An Introduction to Industrial Demineralization Systems
In industrial water treatment, demineralization refers to the removal of dissolved solids from feed water and process streams.
An Introduction to Industrial Demineralization Systems
In industrial water treatment, demineralization refers to the removal of dissolved solids from feed water and process streams.
Module 22: Industrial Pretreatment Programs Updated 2020
• Identify the historical basis for the National Pretreatment Program.
• Explain the general regulatory structure of the National Pretreatment Program.
• List three prohibited discharges under the National Pretreatment Program.
• Describe what a categorical pretreatment standard is under the National Pretreatment Program.
Module 22: Industrial Pretreatment Programs Updated 2020
• Identify the historical basis for the National Pretreatment Program.
• Explain the general regulatory structure of the National Pretreatment Program.
• List three prohibited discharges under the National Pretreatment Program.
• Describe what a categorical pretreatment standard is under the National Pretreatment Program.
Water Softening Treatment Plant Study City of Grand Ledge
Executive Summary
The City of Grand Ledge (City) retained Fishbeck to evaluate options for the replacement of the City’s existing iron removal treatment system. Fishbeck is evaluating three options as part of this process: the installation of a new iron removal system, the installation of a new softening system, and receiving water from the adjacent Lansing Board of Water & Light (LBWL) system. This report evaluates the second option, the installation of a new softening treatment system to replace the existing iron removal system. The City’s existing iron removal plant utilizes an AERALATER® Type II-Q Packaged Iron and Manganese Removal System by General Filter (Aeralater) for iron removal. The Aeralater is at the end of its useful life, and has significant signs of deterioration. The repair of the Aeralater system was investigated as part of a prior study completed by Fishbeck, which determined that repair of the Aeralater would be costly and would give a low return on investment. The City opted to move forward assuming that the Aeralater unit would need to be
replaced, rather than attempt to repair it.
Water Softening Treatment Plant Study City of Grand Ledge
Executive Summary
The City of Grand Ledge (City) retained Fishbeck to evaluate options for the replacement of the City’s existing iron removal treatment system. Fishbeck is evaluating three options as part of this process: the installation of a new iron removal system, the installation of a new softening system, and receiving water from the adjacent Lansing Board of Water & Light (LBWL) system. This report evaluates the second option, the installation of a new softening treatment system to replace the existing iron removal system. The City’s existing iron removal plant utilizes an AERALATER® Type II-Q Packaged Iron and Manganese Removal System by General Filter (Aeralater) for iron removal. The Aeralater is at the end of its useful life, and has significant signs of deterioration. The repair of the Aeralater system was investigated as part of a prior study completed by Fishbeck, which determined that repair of the Aeralater would be costly and would give a low return on investment. The City opted to move forward assuming that the Aeralater unit would need to be
replaced, rather than attempt to repair it.
Reviews
There are no reviews yet.