

October 17,18 &19, 2017 Al-Khobar, Saudi Arabia

High TBT (85°C) MED Technology Development

Osman A. Hamed, Khalid Bamardouf, Abdulaziz S. Al-Jamhan, Faisal A. Abu Derman Desalination Technologies Research Institute (DTRI) Saline Water Conversion Corporation (SWCC)

Younggeun Lee*, Amr M. Ahmed, Byungsung Park, Seungwon Ihm Doosan Water R&D Center Dammam, KSA

TABLE OF CONTENTS

INTRODUCTION TO DOOSAN WATER

BUSINESS GROUPS

WATER BUSINESS IN DOOSAN

HT MED TECHNOLOGY DEVELOPMENT

INTRODUCTION

PREVIOUS STUDY IN KOREA

JOINT DEMONSTRATION IN KSA

CONCLUDING REMARKS

DOOSAN HEAVY INDUSTRIES & CONSTRUCTION

At Doosan Heavy Industries & Construction, our vision is to be a global leader in power and water, and we are committed to helping our clients meet tomorrow's challenges and opportunities.

DESALINATION TECHNOLOGIES

MSF (MULTI-STAGE FLASH)

Large-scale unit, one-module fabrication, and hybrid solution

[Ras Al Khair Ph.1 Hybrid] KSA

World's Largest Desalination Plant with Hybrid Config. (MSF + RO)

- Capacity : 228MIGD (1,036,488m³/day)
- Location : Ras Al Khair, Saudi Arabia
- Client : Saline Water Conversion Corporation (SWCC)

Evaporator Unit Capacity : 20MIGD (90,920m³/day)

- Configuration : 20 MIGD x 8 units
- Performance Ratio : 9.5
- Dimensions(m) : W118.8 x L24.3 x H11.4

MED (MULTI-EFFECT DISTILLATION) High TBT MED-TVC

[Yanbu Ph.2 Exp. MED] KSA

World's Largest Multi-Effect Distillation (MED) Distiller

Location : Yanbu, Saudi Arabia
Client : SWCC
Distiller Unit Capacity

: 15MIGD (68,190m³/day)

Configuration : 15 MIGD x 1 unit
Gain Output Ratio : 9.7
Delivery : 18 months

RO (REVERSE OSMOSIS)

World's largest RO train with application of 16-inch membranes

[Escondida Water Supply] Chile

Largest Desalination Plant in South America

- Capacity : 47.5MIGD (215,935m³/day)
- Pretreatment : Pressurized DMF
- Configuration : 5.3MIGD x 9 trains
- Feed water TDS : 39,300 mg/L
- Product water TDS : < 700 mg/L</p>
- Client : Minera Escondida (BHP Billiton)
- Currently delivering the project for the world's largest copper mining operation

OPERATION & MAINTENANCE

Know-how

Based on commissioning experience with over 20 plants

<u>Flexibility</u> Offered through a unified channel (EPC + O&M)

<u>Efficiency</u> Provided through ICT* solutions

O&M Optimization

[Shuwaikh RO] Kuwait

Kuwait's First SWRO Desalination Plant

- Capacity : 30MIGD (136,380m³/day)
- Pretreatment : DAF+UF
- TDS : 45,000 mg/L
- •O&M Period : <u>3 years ('11.10~'14.10)</u>
- Client : Ministry of Electricity & Water
- Challenging conditions including frequent red tides events and high TDS

[Ras Al Khair Ph.1] Saudi Arabia

World's Largest Desalination Plant (Hybrid (MSF+RO))

- Capacity : 228MIGD (1,036,488m³/day)
- Pretreatment : DAF+DMF+Cartridge filters
- TDS : 45,000 mg/L
- •O&M Period : <u>6 years</u> ('13.12~'19.4)
- Client : SWCC
- Simultaneous service for both thermal (MSF) and SWRO plants

[Busan Gijang RO] Korea

Korea's First Large-scale Desalination Plant

- Capacity : 10MIGD (45,460m³/day)
- Pretreatment : DABF+UF/DABF+DMF+C.F.
- TDS : 34,500 mg/L
- •O&M Period : 20 years ('14.7~'34.6)
- Client : Busan Metropolitan City
- Service for the world's largest capacity RO train (8MIGD) with 16-inch membranes

MORE THAN 20 LARGE-SCALE DESALINATION PLANT REFERENCES IN MENA AREA

References & Records

Droject Norse	Capacity	Turne	Country	Construction Period													
Project Name	(MIGD)	туре	Country	'04	' 05	' 06	'07	'08	'09	'10	'11	'12	'13	'14	'15	'16	'17
Shoaiba Ph.4	88	RO	KSA														
Doha RO Ph.1	60	RO	Kuwait														
Escondida SWRO	47.5	RO	Chile														
Yanbu Ph.3	121	MSF	KSA														
Marafiq MED	12	MED	KSA									1					
Yanbu MED	15	MED	KSA														
Ras Al Khair Ph.1	228	MSF+RO	KSA														
Jeddah RO Ph.3	53	RO	KSA														
Shuweihat S2	100	MSF	UAE														
Shuwaikh RO	30	RO	Kuwait														
Shuaibah Ph.3 Exp.R	O 30	RO	KSA														
Shuaibah Ph.3 IWPP	194	MSF	KSA														
Sabiya Ph.3	50	MSF	Kuwait														
Sabiya Ph. 1&2	60	MSF	Kuwait														
Ras Laffan B	33	MSF	Qatar						Tat			ieste	•1 6	26 M		*	
Sohar	50	MSF	Oman						Ear	ar or s doilte			. 1,0/ 7 mill	ion			*
Fujairah Hybrid	100	MSF+RO	UAE								use p	y 24.1			peo	pie	

TABLE OF CONTENTS

INTRODUCTION TO DOOSAN WATER

BUSINESS GROUPS

WATER BUSINESS IN DOOSAN

HT MED TECHNOLOGY DEVELOPMENT

INTRODUCTION

PREVIOUS STUDY IN KOREA

JOINT DEMONSTRATION IN KSA

CONCLUDING REMARKS

INTRO... Desalination Technology

COMPARISON FOR SEAWATER CONDITION

DIFFICULTIES FOR SWRO IN GULF AREA

	Gulf Area	Difficulty	
Salinity (TDS, ppm)	 Highest salinity in the world (45,000ppm) 	 Recovery ratio to be decreased Shorten life time of membrane 	
Turbidity (NTU)	• 5~12 NTU • Peak 50 NTU	 Conservative pretreatment design to be required (2~3 stage) 	 ✓ High CAPEX for sufficient pretreatment ✓ Low recovery ratio
TSS (Total suspended Solid, ppm)	 20~30 ppm Peak 80 ppm 	 Conservative pretreatment design to be required (< 5ppm) 	✓ Low reliability ✓ High O&M Cost
Red Tide	 Occasionally 	 Reliability to be decreased sharply DAF is essential system Beach well can be required. 	

INTRODUCTION: MED TECHNOLOGY

Multi-Effect Distillation (MED) is an advanced form of thermal desalination now playing a major role in large-scale desalination projects with the higher efficiency.

How It Works

Steam passes through the inside of the tubes

(2) Seawater is sprayed onto the outside of tube, generating vapor which is moved to next effect to be used as the heat source (3) Vapor condenses inside of the tube and is collected as fresh water

INTRODUCTION: BENEFITS OF ADVANCED HT-MED

Increasing TBT 65 \rightarrow 85°C allows 50% increase in MED efficiency (GOR* & PR**). = ~33% Steam Saving to produce the same amount of water

* GOR: Gain Output Ratio = product water [kg] / steam consumption [kg] ** PR: Performance Ratio = product water [kg] x 2,326 [kJ/kg] / energy input by steam [kJ]

INTRODUCTION: BENEFITS OF ADVANCED HT-MED

Energy cost is a huge portion in desalting seawater. Saving steam consumption in HT-MED reduces the water production cost of MED.

Global Water Intelligence, Vol. 11, Issue 9, Sep. 2010, p. 8

MED-TVC TECHNOLOGY DEVELOPMENT

- \bigcirc High Performance (PR 10 → 15+) MED
 - Breakthrough in MED EFFICIENCY (by 50+%)

PREVIOUS STUDY: 24 ton/day Pilot

[2008-2009] 24 ton/day Pilot in Korea - precise experiments for different conditions : TBT 85°C is targeted after 29 experiments for 75~95°C

No. of Exp.	TBT ('C)	Steam T('C)	Feed Flow Rate (kg/hr)	Test Period	A-Sc. Type*	A-Sc. Desing (ppm)	Anti-Foam (ppm)	Date of Exp.	Remarks
29	85	89.3	700	24 hrs	N/A	0	0.15	Jan. 26~27 '10	TDS=64,000ppm
28	85	88.7	700	14 days	206	0.5	0.15	Dec. 11~24	TDS=64,000ppm
27	95	99.4	700	48 hrs	206	1	0.15	Dec. 1~3	TDS=64,000ppm
26	95	99.4	700	48 hrs	N/A	0	0.15	Nov. 24~26	TDS=64,000ppm
25	85	88.7	700	48 hrs	206	1	0.15	Nov. 19~21	TDS=64,000ppm
24	85	89	700	48 hrs	N/A	0	0.15	Oct. 28~30	TDS=64,000ppm
23	85	88.8	700	48 hrs	N/A	0	0.15	Oct. 20~22	TDS=64,000ppm
22	85	88.9	700	48 hrs.	206	0.5	0.15	Oct. 12~14	TDS=64,000ppm
21	85	90.2	700	48 hrs	206	2	0.15	Sep. 15~17	TDS=64,000ppm
20	85	90.2	700	24 hrs	206	4	0.15	Sep. 9~10	TDS=64,000ppm
19	85	87.5	700	24 hrs	206	0.5	0.15	Aug. 26~27	
18	85	87.4	700	48 hrs	N/A	0	0.15	Aug. 18~20	
17	85	87.3	700	96 hrs	206	0.5	0.15	Aug. 10~14	
16	95	97.6	700	48 hrs	202	0.5	0.15	July 28~30	Anti-Scalant Testing
15	95	99	700	48 hrs	206	1	0.15	July 20~22	
14	95	98.5	700	48 hrs	N/A	0	0.15	July 13~15	
13	95	98.4	700	48 hrs	206	0.5	0.15	June 29~July 1	
12	85	88.3	700	48 hrs	206	0.5	0.15	June 22~24	
11	95	98.3	1100	48 hrs	202	1	0.15	June 15~17	Heat Transfer Testing
10	85	88	1100	48 hrs	202	L. L.	0.15	June 8~10	Chiefen and The Chiefen
9	75	77.5	1100	48 hrs	202	1	0.15	June 2~4	
8	75	77.1	700	48 hrs	202	1	0.15	May 25~ 27	
7	95	97.9	700	48 hrs	202	1	0.15	May 18~20	
6	85	87.5	900	48 hrs	202	1	0.15	May 11~13	
5	85	87.9	700	48 hrs	202	2	0.15	Apr. 27~29	
4	75	78.3	900	48 hrs	202	2	0.15	Apr. 20~22	
3	95	98.5	900	48 hrs	202	2	0.15	Apr. 6~8	
2	85	88.7	900	48 hrs	202	2	0.15	Mar. 16~18	
1	95	87.6	970	24 bro	202	2	0.15	Feb 23-24 109	No A-Sc during first 15 brs

✓ 29 experiments

- ✓ Feed TDS up to 64,000ppm (MENA tube bundle bottom)
- ✓ Temperature: 75~95 °C
- ✓ Feed flow: 700~1,100 kg/hr
- ✓ New chemicals tested
- → TBT 85 °C achievable!!

PREVIOUS STUDY: 410 ton/day Pilot Demonstration

[2010~2012] Demonstration of TBT 85°C MED-TVC with industrial-size pilot (410 ton/day) in Korea

- TVC performance test
- Feed optimization test
- Anti-scalant dosage rate test
- Long term operational demonstration

- 0.1MIGD High Temperature MED-TVC with Brine-Recirculation
 - Top Brine Temperature: 85'C
 - Bottom Brine Temperature: 67'C
 - Sea water intake: 30~40 (ton/hr), 20'C, 27,000~32,000 ppm
 - Total feed water supply: 60~70 (ton/hr), 65'C, 45,000~53,000 ppm
 - Distillate production: 17 t/h = 0.1 MIGD (410 t/d)

PREVIOUS STUDY: 410 ton/day Pilot Demonstration

At the end of each experimental case, tubes were sampled and shipped to A/S Supplier for further analysis.

16

PREVIOUS STUDY: 410 ton/day Pilot Demonstration

As a result of chemical composition analysis, it was shown that soft scale was dominant in the scale deposition as an amorphous species.

► SEM

- Coupon surface totally covered with a thin scale layer

► XRD

- Indicates that scale is only based on amorphous species

SOFT SCALE

AAS (Tube)

- scale detected in Effect #1
- very low scale detected in Effect #2
- very low scale detected in Effect #5

JOINT DEMONSTRATION WITH SWCC-DTRI

• Signing Ceremony for HT MED Collaboration Project

< Signing Ceremony >

- Date: 7th Feb, 2016
- Collaboration Period
 - : 3 years (2016 ~ 2018)
- Collaboration Target
 - Demonstration of High Temperature (TBT 85°C) MED-TVC at Gulf Water condition with DTRI(SWCC)

JOINT DEMONSTRATION WITH SWCC-DTRI

DTRI MED Pilot

DTRI MED Pilot

- Location: DTRI in Jubail
- Capacity: 1.3 ton/hr
- Type: Brine Recirculation MED-TVC
- No. of Effect: 4
- Tube Material: Titanium
- No. of Pass: 2
- Feed Type: Tray + Perforated plate

Operating Condition of 5 Months Scale Test

- Top Brine Temperature: 85°C
- Bottom Brine Temperature: 78°C
- Total feed water supply: 35 ton/hr, 60,000~63,000 ppm
- Distillate production: 1 ton/hr

JOINT DEMONSTRATION with SWCC-DTRI

MED Pilot Schematic Diagram

OPERATION DATA : TEMPERATURE PROFILE

Shutdown due to electricity supply issue

OPERATION DATA: FLOWRATE & CONCENTRATION PROFILE

FOULING FACTOR ANALYSIS: HTC* & FF** PROFILE

*HTC, Heat transfer coefficient **FF, Fouling factor

FOULING FACTOR ANALYSIS: HTC* & FF** PROFILE

FF value is expected to be less than the design value after 1 year

• Expected Trend of Overall Fouling Factor Increase

VISUAL INSPECTION REUSULT

VISUAL INSPECTION REUSULT

After 5-month test, very thin film layer was entirely formed on the tube, which expected to be soft scale

Before 5-month Scale Test

After 5-month Scale Test

VISUAL INSPECTION REUSULT

Very thin film layer was easily removed after water flushing and scale composition was confirmed as mostly CaCO3 (Soft Scale) by chemical analysis

Before 5-month Scale Test

After 5-month Scale Test

Cleaning with water

- Chemical composition analysis
 - CaCO3 is a dominant part of scale.

TECHNO-ECONOMIC ANALYSIS

- Comparing to conventional MED-TVC (PR 11.5), High TBT MED-TVC plant (PR 18.3) has significant improvement in HTC and reduction in OPEX
 - Steam consumption reduction: Over 30%

- LCOW* reduction: 6.4 %

CONCLUDING REMARKS

- Based on technical and experimental studies (2008~2012), high TBT (85°C) MED-TVC is a competitive technology.
 - ✓ PR is increased from 9-11 to 13.5-15.8 kg distillate/2,326kJ
 - ✓ 33% Less Steam Consumption
- SWCC-Doosan Joint Demonstration (5 months) verified the High TBT (85°C) MED-TVC technology under Jubail seawater condition (2016~2017).
 - ✓ HTC & FF monitoring: Consistent HTC and FF trend show high TBT (85°C) MED-TVC operation can be achieved.
 - ✓ Visual inspection: Only thin film soft scale appeared on the tube surface, which can be easily removed by water flushing
 - ✓ Chemical analysis: Ongoing to verify scale composition
- Based on demonstration test, it is proved that HT MED-TVC is technologically viable in Gulf Area.

Building Your Tomorrow Today

