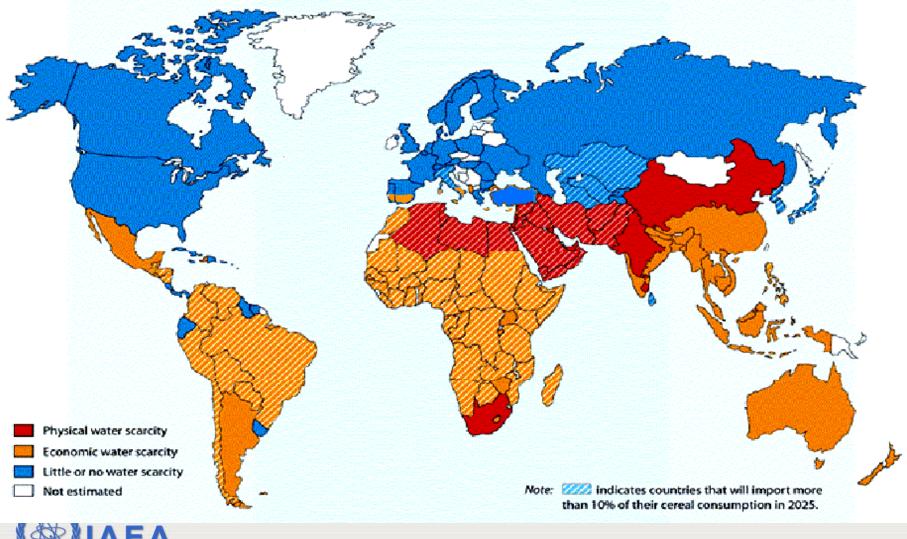
ECONOMIC MERITS OF NUCLEAR DESALINATION

KHAMIS, Ibrahim

- Nuclear energy and desalination
- Nuclear Desalination
- Incentives of Nuclear desalination
- Economics of Nuclear Desalination
- Summary


70% of the planet is covered with water

Only 2.5% of that is fresh water.

- Nearly 70% of this fresh water is frozen in the icecaps of Antarctica and Greenland.
- Less than 0.08% of total supply is accessible for direct human use
- By the year 2025 : 40% increase in water use
 - > the number of people suffering from water stress or scarcity could swell to 3.5 billion,

 > 33% of would population in absolute water scarcity.
 Gulf Water Conf. 3-6, Bahrain 2008

Regions facing water shortages

Atoms for Peace: The First Half Century 1957–2007

Gulf Water Conf. 3-6, Bahrain 2008

Role of nuclear energy

- Increase energy and water demands necessitates increased supply
- >90% of world's primary energy will come from fossil fuels → increased greenhouse gas (GHG) emissions
- Nuclear power reduces GHG emissions and alleviates energy shortages
- Mid of 2007: 439 reactors in over 30 countries producing over 15.2% of world's electricity (371.7 GW(e)) (in the US: 104 reactors = 97,411 MW(e))

Why nuclear desalination?

- "Clean" energy and minimal waste [Environmentfriendly].
- Waste heat and electricity produced by nuclear plants are ideal for energy-intensive desalination processes.
- Economically competitive with conventional coproduction plants, especially when a strong national grid exists and interest rates are low.
- Many years of successful operation have proved technical feasibility and reliability.

Global experience on ND

Desalination:

- More than 17 000 installed desalination units
- Total capacity is about 38 million m3/day.

ND:

- The use of ND started early in the 1960s
- There are 15 ND Projects

• More than 200 reactor-years experience

Global experience on ND

React or Type	Location	Desalinati on Process	Status
LMFR	Kazakhstan (Aktau) 80000 m3/d	MED	In service till 1999 $_{27}$ y
	Japan (Ohi, Takahama, Ikata, Genkai)	MED, MSF, RO	In service with operating experience of over 150 reactor- years
PWR	Rep. of Korea, Argentina etc	MED RO	Integral SMRs of the PWR type; under design or to be constructed
	Russia	MED, RO	Under consideration (Barge mounted floating unit with KLT- 40)
	USA (Diabolo Canyon)	RO	Operating

Global experience on ND- Cont.

Reactor Type	Location	Desalination Process	Status
BWR	Japan (Kashiwazaki- Kariva)	MSF	Never in service following testing in 1980s, due to alternative freshwater sources; dismantled in 1999.
HWR	India (Kalpakkam)	MSF/RO	RO operating since 2002
	India (Trombay)	LT-MED	In service since 2004
	Pakistan (KANUPP)	MED	Existing CANDU modified to be coupled to an MED plant (under construction)
NHR- 200	China	MED	Dedicated heat only integral PWR; under design
HTRs	France, The Netherlands, South Africa	MED,RO	ANTARES, multipurpose reactor, GT-MHR and PBMR; under development and design.

Diablo Canyon

Gulf Water Conf. 3-6, Bahrain 2008

Operating plant: Ohi, Japan

Evaporators at Aktau, Kazakhstan 80 000 m3/day for 27 years

SWRO Plant at KANUPP, Pakistan

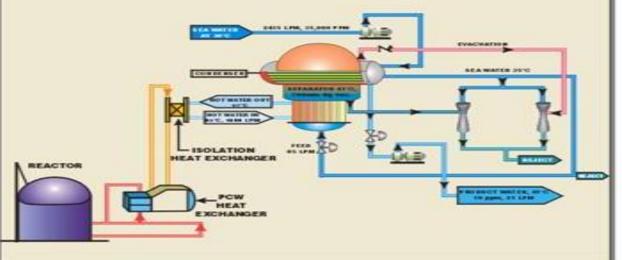
MED for 1600 m3/day



1000 m3/day desalted pure water

Guit water Cont. 3-6, Banrain 2008

Integrated LTE Nuclear Desalination System, Mumbai, India



Use of waste heat

CIRUS Research Reactor

40 MWth

Various types of nuclear desalination systems

Reactor type	Country	Desalination process	Status	
LMFR	Kazakhstan	MED, MSF	150 reactor-years	
PWRs	Japan	MED, MSF, RO	100 reactor-years	
	Korea, Argentina	MED, RO	Design stage	
	Russia	MED, RO	Design stage	
PHWR	India	MSF, RO	Commissioning	
	Canada	RO	Design stage	
	Pakistan	MED	Construction	
BWR	Japan	MSF	Installed	
HTGR	South Africa	MED, MSF, RO	Design stage	
NHR	China	MED	Design stage	

Incentives of Nuclear desalination

 PBMR: Reject heat (from pre-cooler and intercooler) >220 MWth at 70 C

Clean and fresh desalinated water

15 000 - 30 000 m3/day of

55 000 - 600 000 person

Gulf Water Conf. 3-6, Bahrain 2008

Incentives of Nuclear desalination-cont.

- To produce 130 000 m3/day of desalinated water using 1000 MWe PWR Using MED:
- Total revenue (Cogeneration 90% electricity +10% water) :
- Electricity: 6771.6 M\$
- Water: 888.59 M\$
- Total: 7660 M\$

Total revenue from 100% for electricity alone: 7166.8 M\$

Net benefit of ND: 493.2 M\$ ~ 7% more

Incentives of Nuclear desalination-cont.

Using RO even better:

- Increased availability (more water)
- No lost shaft power as in MED
- Considerable fraction of energy will be recovered.

Revenue: -From electricity: 7026.72 M\$ -From Water: 672 M\$

Total: 7700 M\$

Net benefit: 532 M\$~ 7.5% more

Recent study on nuclear desalination

- Study started 2002-2006 (4 Years)
- Participants: 10 Countries (Argentina, China, Egypt, France, USA, India, Republic of Korea, Pakistan, Russia, Syria).

Economics of Nuclear Desalination

Estimated cost of ND: \$0.40 – 1.50 / m3

- RO: 0.6-0.74 \$/m3
- MED: 0.75-0.88 \$/m3
- MSF: 1.2-1.5 \$/m3

Economic target of nuclear desalination costs:

0.4-0.6US\$/m³ depending on the region

Cost of new reactors (in the USA)

- June 2007 study (by Keystone Center): Overnight estimates (with interest): \$3600 - 4000/kW
- Oct. 2007 study (by Moody's Investor Service): Estimated total costs including interest would be between: \$5000 and 6000/kW
- For the Turkey Point in Florida:
- In 2004: cost of ABWR ~ \$1611/kW

Materials, Labor, and equipment, had risen more than 50%

- - \$ 6.5 8.9 billion for AP1000 (Westinghouse)
 - \$8.25 12.15 billion for ESBWR (GE)

Some Major Factors that affect cost of Nuclear Projects

- Scale of Economics (The larger the better)
- Local Participations
- Rate and quality of Transfer of technology
- Modularization
- Learning curve

Economics of Nuclear Desalination-DEEP

1957-2007

Specify Case and Configuration Data Case: My Case Project: My Site Water Plant Capacity 35000 ppm Feed Temperature Feed Salinity degC 30 Total Capacity: 100000 m3/d Interest Rate Purchased Electricity Cost 5 % \$/kWh 0.06 Power Plant Data Distillation Plant Data Reverse Osmosis Plant Data Pipeline Transport Option Transport cost 1200 N/A % Thermal Power MWt. Energy Recovery Fraction 110degC Maximum Brine Recovery Ratio (optional) 50 Net Electric Power 600 MWe % Distance (kms) N/A Heating Steam Temperature 0 degC N/A 1/(m2h)0 Power (MWe) Design Flux FuelCost 50 \$/boe 1000 \$/(m3/d) Specific Construction Cost 700 \$/kW N/A Specific Construction Cost Specific Construction Cost \$/(m3/d) 1 scc (M\$/km) First, select a coupling configuration from the matrix of supported energy sources and desalination technologies **Configuration Switches** o&m (% of scc) Steam Source MED. MSE RO MED-RO MSE-RO • Extraction / Condensing NUCLEAR STEAM TURBINE NSC+MED NSC+MSF NSC+RO NSC+MED-RO NSC+MSF-RO Carbon Tax Option O Backpressure NUCLEAR GAS TURBINE NBC+MED NBC+MSF NBC+RO NBC+MED-RO NBC+MSF-RO Carbon Tax NUCLEAR HEAT NH+MED. NH+MSE 0.5 CO2 emission (t/MWh) STEAM CYCLE - COAL COAL+MED COAL+MSF COAL+RO COAL+MED-RO COAL+MSF-RO 50 Carbon tax (\$/t) Thermal Vapor Compression STEAM CYCLE - OIL OIL+MED OIL+MSF OIL+RO OIL+MED-RO OIL+MSF-RO O Yes GAS TURBINE / HRSG GT+MED GT+MSF GT+RO GT+MED-RO GT+MSF-RO • No COMBINED CYCLE CC+MED CC+MSE CC+RO CC+MED-RO CC+MSF-RO FH+MED EH+MSE FOSSIL HEAT Backup heat source RENEWABLE HEAT RH+MED RH+MSE ÷ Desalination Type: MSF • Power Source: CC SA-RO STAND-ALONE RO New CC+MSF Compose O.K. Cancel File Name:

The Various energy options considered in DEEP

RC	Energy source	Abbreviation	Description	Plant type
1	Nuclear	PWR	Pressurised light water reactor	Co-generation plant
2	Nuclear	PHWR	Pressurised heavy water reactor	Co-generation plant
3	Fossil – coal	SSBC	Superheated steam boiler	Co-generation plant
4	Fossil oil - gas	SSBOG	Superheated steam boiler	Co-generation plant
5	Fossil	GT	Open cycle gas turbine	Co-generation plant
6	Fossil	СС	Combined cycle	Co-generation plant
7	Nuclear	HR	Heat reactor (steam or hot water)	Heat-only plant
8	Fossil	В	Boiler (steam or hot water)	Heat-only plant
9	Nuclear	GTMHR	Gas turbine modular helium reactor	Power plant
10	Fossil	D	Diesel	Power plant
11	Nuclear	SPWR	Small PWR	Co-generation plant

Process	Abbreviation	Description
Distillation MED		Multi-Effect Distillation
	MSF	Multi-Stage Flash
Membrane	SA-RO	Stand-Alone Reverse Osmosis
	C-RO	Contiguous Reverse Osmosis
Hybrid	MED/RO	Multi-Effect Distillation with Reverse Osmosis
	MSF/RO	Multi-Stage Flash with Reverse Osmosis

DEEP sample input and output – part I

					-			
/	Economic parameters inpu	<mark>it data</mark>	_		1	Energy plant cost input	<u>data</u>	
ſ.	Discount rate:	8.0	%/a	1	1	Plant economic life:	60	а
	Interest rate:	8.0	%/a			Specific construction cost:	1672	\$ / kW
	Currency reference year:	2003				Additional site related construction cost:	167	\$ / kW
	Initial construction date:	2003						
	Initial year of operation:	2005				Construction lead time:	60	m
	Purchased electricity cost:	0.06	\$7 kWh			Specific O&M cost:	9	\$ / MWh
	Backup heat source input data		Value se	t	F	actor in % Specific nuclear fuel cost:	11	\$ / MWh
	Lifetime of backup heat source Optional:	0.00	30	a	1		16.72	\$ / MWh
	Backup heat source unit cost:	0.00	\$ / MW			Fossil fuel price at startup:	N/A	\$/bbl (\$/t)
	Fossil fuel price:	20.00	\$ / bbl			Nuclear fuel annual real escalation:	0.0	%/a
K	Fossil fuel real escalation:	2.00	%/a		Ľ	Fossil fuel annual real escalation:	N/A	%/a /
1					- `			
	Distillation plant cost input	data			-	RO plant cost input da	ata	
1	Plant economic life:	30	а		1	Plant economic life:	30	a 🔪
1	Distillation plant lead time:	12	m		1	RO plant lead time:	24	m
1	Optional value (type 0 for Deep default):	0	m		1	Optional value (type 0 for Deep default):	0	m
						Hybrid plant lead time:	24	m
	Reference unit size for cost:	48,000	m ³ /d			Optional value (type 0 for Deep default):	0	m
	Base unit cost:	1200	\$/m ³			Base unit cost:	800	\$ / (m ³ /d)
	Optional in/outfall specific base cost:	0	\$/m ³			Optional in/outfall specific base cost:	0	\$ / (m ³ /d)
	Optional intermediate loop cost:	0	\$/m ³		M	lembrane equipment cost to total cost ratio:	0.10	
	Distillation plant cost contingency factor:	0.100				RO plant cost contingency factor:	0.100	
	Distillation plant owners cost factor:	0.050				RO plant owners cost factor:	0.050	
	Distillation plant lead time:	12	m			RO plant lead time:	24	m
	Average management salary:	66000	\$/a			Average management salary:	66,000	\$/a
	Average labor salary:	29700	\$/a			Average labor salary:	29,700	\$/a
	Optional no. of management personnel:	0	3			Optional no. of management personnel:	0	2
	Optional number of labor personnel:	0	26			Optional number of labor personnel:	0	12
	Specific O&M spare parts cost:	0.04	\$/m ³			O&M membrane replacement cost:	0.05	\$/m ³
	Tubing replacement cost:	0.00	\$/m ³		1	O&M spare parts cost:	0.04	\$/m ³
1	Specific O&M cost for pre-treatment:	0.03	\$/m ³			Specific O&M cost for pre-treatment:	0.03	\$/m ³
	Specific O&M cost for post-treatment:	0.02	\$/m ³	/		Specific O&M cost for post-treatment:	0.01	\$/m ³
	Distillation plant O&M insurance cost:	0.50	%			RO plant O&M insurance cost:	0.50	%

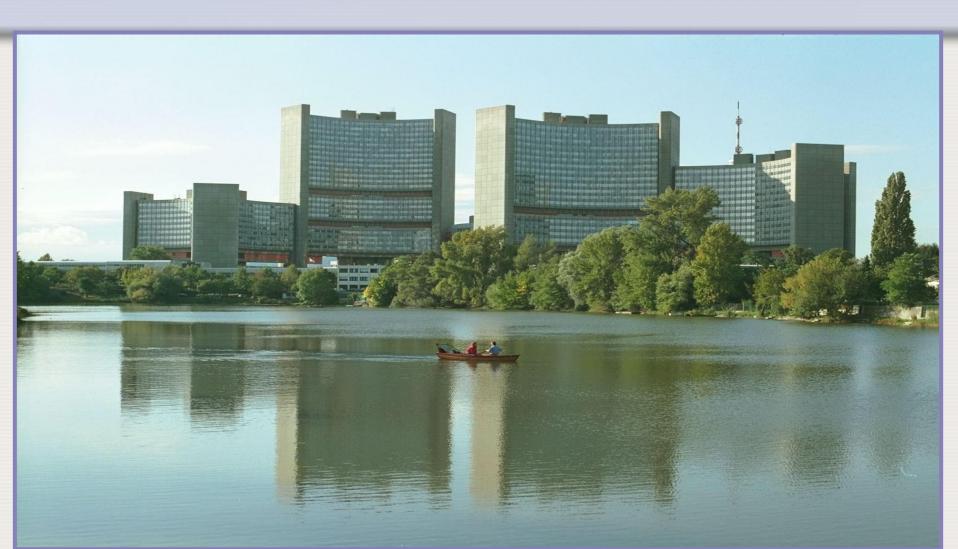
DEEP sample input and output – part II

I	_		WAT	TER & POWER COS	ST SUMM	ARY	
1	Case identification and site characteristics						
	Energy source: NUCLEAR			esalination plant type: MSF-RO Backup heat source: N ermediate loop (MSF): Y RO membrane type: SW		Total required water plant capacity at site: Capacity of distillation part: Capacity of RO part:	350,000 m³/d 140,000 m³/d 210,000 m³/d
1		Case: Case X	A	ssumed site location: Sit	te Y		
,							
(Seawater TDS: 38,5 0 Average annual seawater temperatur	00 ppm re: 21.0 ° C	General input	 Distillat 	ion plant design cooling water t alone RO design cooling water t	
	_	Purchased electricity cost: 0.00	60 \$#WV(e).h	Discount rate: Interest rate:	8.0 % 8.0 %		2005 60 a
	/		10(a)	ter and power plant o	cost summ	ap(
(Specific construction cost: 1,672 Specific investment cost: 2,156	\$ / K/V \$ / K/V	→ x P → P=620 MVV	Powe	er plant total construction cost: ant interest during construction: Total power plant investment:	1,104 м \$ 34 м <u>\$</u> 1,338 м \$
		DOES THE POWER PLANT ALREA	•		CHANGE	Levelized electricity cost:	0.057 \$ / KWh
		Total installed water plant cap	acity:	360,000 m³/d		Recovery ratio :	0.4 0.399
ļ		Total construction Interest during constru Total investment	ction: _	443.1 м \$ <u>35.4 м \$</u> 478.5 м \$	Average	Net saleable power: e daily water production:	508.2 M/V 307,800 m³/d
1		Specific investment	cost:	1,329.3 \$ / (m³/d)		Water cost:	0.95 \$/m ³

Challenges facing nuclear desalination

- 1) Disparity: Countries vs. nuclear energy technology.
- 2) Public perception: Product water is not radioactively contaminated .

• 3) Economics: competitive if nuclear electricity is competitive.



Conclusion

- Nuclear desalination is feasible, safe, and economically competitive.
- Compared to the most economical fossil fuelled based option (the gas turbine Combined Cycle), cost of ND is 30-60% lower depending on gas prices.

 Net revenues for cogeneration (electricity and water) is better than electricity generation alone: at least by 7% (as much as 20% in some studies for specific cases of cogeneration plants)

....Thank you for your attention

Gulf Water Conf. 3-6, Bahrain 2008