MWEA Annual Conference June 20, 2017

Advances in Wastewater Treatment Technology

Nathan Cassity, Donohue

Presentation Agenda

- History of Activated Sludge Process
- >Advancement & Current Status
- Future Challenges
- Innovative Technologies
- Hypothetical Case Study for West Chicago, IL
- Conclusions

Early Sanitation

Once upon a time ...

- Human waste & animal manure were simply returned to land to be used as fertilizers
- Industrial revolution of 20th century...
 - Increased population growth and urbanization
 - 'Cesspools' were constructed to treat increased sewage
 - Rivers became septic producing H2S
 - The 'Great Stink of 1858': Thames River in London

Early Sanitation

- Interceptor sewers + 'Sewage Farms'
- Development of processes to extract nutrients from sewage for irrigation
 - ABC Process (alum, blood, and clay)
 - Septic tanks
 - Travis 'Colloider' or 'Hydrolytic' Tank
 - Imhoff Tank
- Obnoxious and imposed health hazards

> Aerobic conditions to avoid undesirable malodors

1914 – Origins of Activated Sludge

In 1913 Dr. Fowler (University of Manchester)

- 'Lawrence Experimental Station' in Massachusetts
- Purification of sewage in 24 hours in aerated bottles
- Ardern & Lockett repeated wastewater aeration experiments back in Manchester
 - Sludge was left in the bottle & mixed with new batch
 - Active role of sludge formed during aeration
 'Activated Sludge'
 - Published three papers which formed design basis

Activated Sludge - Principles

Retention of solids in aeration basin (RAS)

- Excess sludge wasting (WAS)
- Solids separation
- SRT

- BOD removal, nitrification
- MLSS
- Effluent

Activated Sludge – Process Advancement

BOD Removal	BOD Removal + Nitrification	BOD Removal + Nitrification + Selectors	BOD Removal + Nitrification + TN & TP Removal			
Nitrification –	Aquatic toxicity	Sludge Bulking	Eutrophication			
Unnecessary High-rate systems with short SRTs	Systems with longer SRTs	Use of Selectors to Bio-select Microorganisms	Unaerated zones			
Increasing Process Complexities						

Existing Treatment Schemes

Challenges

More Stringent Effluent Limits

- Limits of Technology (LOT)
 - More chemicals (ferric, alum, methanol, polymers, etc.)
 - More energy consumption (carbon footprint, GHG emissions)
 - More sludge production
 - More land requirements

Resource Scarcity

- Increasing water demand but limited supply
 - Utilize treated effluent, gray water
- Phosphorus is limited and irreplaceable
 - 200 years supply at current consumption
- Increasing energy costs
 - Renewable energy generation

Paradigm Shift

Paradigm Shift

Innovative Technologies

- Oxygen diffusion through hollow fiber membrane
- > Biofilm Development
 - Aerobic ... outside wall
 - Anoxic ... inside
- BOD along with SND
- ~ 95% reduction in energy
- > 30%-50% reduction in sludge

Sealed end of membrane Biofilm

Microporous Hollow fiber membrane

Spiral Aerobic Biofilm Reactor (SABRE)

Courtesy: Emefcy

Parameter	Valve	Units	
Design Temperature	18 (64)	°C (°F)	
Wastewater Flow	1000 (0.26)	m ³ /d (MGD)	
Influent Filtered BOD	150	mg/l	
Influent TKN	52	mg/l	
Effluent BOD	8	mg/l	
Effluent NH-3 Req.	1.0	mg/l	

Process	SABRE	Activated Sludge	Units
Power Consumption	1.2	13	kW
Normalized Energy	0.06	1.10	kWh/kg BOD
	(0.03)	(0.5)	(kWh/lb BOD)
Normalized Energy	0.02	0.31	kWh/m ³
	(0.06)	(1.18)	(kWh/1000 gal)

Power consumption reduction 95%

SABRE wastewater treatment plant 50 m³/d (13,000G/d)

Figure 1: MABR operation principle

Figure 4: ZeeLung MABR process flow diagram

Microbial Fuel Cells

Solution: Arbcell[®] Microbial Fuel Cell

- High-throughput treatment compared to anaerobic digestion
- 700 kWh energy recovery potential per 1000 kg BOD removed
- Reduced cost through automated process control
- Small, enclosed modular design for customer facility compatibility
- BOD treatment range 1,000-10,000 mg/L influent
- Excellent way for customer to bolster green marketing initiatives

Scaled-up Design Concept

Air cathode frame

Arbcell MEC

Arbcell MFC

Biomass Immobilization

Biofilms – Attached Growth

- Current form immobilized biomass
- Sand, gravel, Plastic, etc.
- Trickling filter, MBBR, IFAS

- Capture pure cultures of microorganisms in activated sludge in gel pellets
- Use entrapped bacteria for wastewater treatment

Biocatalyst Operation

BOD Oxidation

Paracoccus sp., Pseudomonas sp.

Nitrification

Nitrosomonas europaea, Nitrobacter and Nitrospira sp.

Denitrification

Paracoccus sp., Pseudomonas denitrificans

Courtesy: Lentikats Biotechnology

Project	Process	Tonnage	Year
WWTP Baxter	Denitrification (tertiary treatment)	5.4	2009
WWTP Litomerice	Nitrification (reject water)	1.5	2010
Tona	Denitrification (tertiary treatment)	0.5	2010
WWTP Ostrov u M.	Denitrification (tertiary treatment)	0.5	2011
Kyocera	BOD removal	5.5	2012
Coral-shop	Nitrogen removal (inoculation)	0.1	2012
BASF	Nitrogen removal	testing	2014
Dairy production	BOD removal	testing	2014

500 kg LB Volume: 3 m³ Q_d: 130 m³/day c(N-NO₃⁻) influent - 15 mg/l c(N-NO₃⁻) effluent - 2 mg/l

Biocatalyst Usage

- Nitrification
 - Immobilized bacteria strains Nitrosomonas europaea, Nitrobacter and Nitrospira sp.
 - Operation in oxic conditions
- Denitrification
 - Immobilized bacteria strains Paracoccus sp. or Pseudomonas denitrificans
- BOD Removal
 - Immobilized bacteria strains Paracoccus sp., Pseudomonas sp.
 - Operation in oxic conditions
- Selective biodegradation
 - R&D immobilized bacteria strains, fungi or enzymes

Reference – Baxter Bioscience

5400 kg LB V: 40 m³ Q_d: 300 m³/day c(N-NO₃⁻) influent - 30 mg/l c(N-NO₃⁻) effluent - 5 mg/l

Benefits of Lentikats Biotechnology biocatalysts

- Pure cultures = smaller tank volumes
- Lower energy consumption
- Lower carbon need for denitrification
- Lower sludge production
- Better process stability fluctuating influent
- Resistant to toxic conditions (NH4 ~ 4,000 mg/l)
- Industrial WW w/ nutrient deficiencies

Granular Activated Sludge

Granules - dense & compact biomass

- No support media
- Excellent settling properties
 - High MLSS (up to 15,000 mg/l)
 - ~ 75% smaller footprint
 - No bulking sludge
- >25-35% energy savings
 - Efficient aeration
 - Lower pumping
- Lower construction, O&M costs
 - Utilize existing tanks
 - No chemicals for nutrient removal
 - Low sludge production

Activated Sludge

Aerobic Granules

Granular Biomass

> Oxygen gradient in granule

- Diffusion controlled
- Simultaneous BOD, N and P removal

FISH analysis of a sliced granule: NSO: nitrifying organisms; EUB: heterotrophs; PAO: phosphate accumulating organisms

Anoxic / Anaerobic Zone:

- Nitrate reduction to nitrogen gas
- Phosphate level

Aerobic Zone:

- Biological oxidation
- Ammonium oxidation to nitrate

Aerobic Granular Sludge

Aerobic Granules

- Min. diameter 0.212 mm (0.0083 inch) SVI₅ of granular SVI30 of activated sludge sludge
- High setting rates
 - 25 40 ft/hr
 - 1.5 5 ft/hr
- ... granules
- ... activated sludge

Granule Sequencing Batch Reactor (GSBR)

- > Four basins operated in series
- One basin in sedimentation mode
- One basin in fill/decant
- Continuous flow
- No moving decanter
- No mixers

Nereda Installations

Conclusions

- Stricter limits
- Energy neutrality
- Sludge minimization
- Resource recovery
- CAPEX/OPEX reduction
- Beneficial reclaimed water re-use
- Driving technological innovation

References

- "History of Activated Sludge" http://www.iwa100as.org/history.php
- J. L. Barnard and D. H. Stensel, "The Activated Sludge Process in Service of Humanity"
- US EPA "Emerging Technologies for Wastewater Treatment and In-Plant Wet Weather Management"
- Lentikats http://www.lentikats.eu/cs/
- Emefcy http://www.emefcy.com/
- > Arbsource http://www.arbsource.us/

Questions

Nathan Cassity | (920) 803-7370 ncassity@donohue-associates.com

