Applied Math for

Water Treatment

Grades 3-4 Course \# 1101

Fleming Training Center April 22-26, 2013
http://www.tn.gov/environment/fleming/

Table of Contents

Section 1 Basic Math Review 3
Section 2 Area, Volume and Conversions 15
Section 3 Specific Gravity 27
Section 3 Velocity and Flow 35
Section 4 Sedimentation 49
Section 5 Pumps 63
Section 6 Disinfection 87
Section 7 Fluoridation 103
Section 8 Stabilization 115
Section 9 Filtration 123
Section 10 Coagulation 141
Section 11 Feeders 155
Section 12 Pretreatment and Lab 167
Section 13 Softening 183
Section 14Temperature Conversions191

Section 1

Basic Math Review

Solving for the Unknown

Basics

- The unknown is a variable in the equation that we are trying to solve.
- The unknown variable is
 usually represented by a letter such as, \boldsymbol{x}.

Basics

When solving for an unknown variable, \boldsymbol{x}.

1. X must be in the numerator.
2. X must be by itself on one side of the equation

What if x is not in the numerator?

$\frac{2}{4}=x$
$0.5=x$

- If x is in the denominator it can trade places with a number on the other side of the $=$ sign.
- Flip-flop
- This is the only time you can move x.
- If x is in the numerator DO NOT MOVE x.

Practice

$(23)(x)(7.48)=542$

Step 1 yes
Step 2
$(23)(7.48)=172.04$
$(172.04)(x)=542$
Step 3
(172.04) (x) = 542

$$
x=\underline{542}
$$

$$
1 \overline{72.04}
$$

Step 4

$$
x=3.15
$$

Practice

$(8)(x)=21$
(3)(3)

Step 1 yes
Step 2
(8)(x) $=21$

9

Step 1. Determine if x is in the numerator Step 2. Simplify the numbers
Step 3. Get x by itself
Step 4. Solve the equation
Step 3

Practice

Step 1. Determine if x is in the numerator
Step 2. Simplify the numbers
Step 3. Get x by itself
Step 4. Solve the equation
Step 1
No
Step 2
Already simplified

Step 3
Step 4
$80=3700$
x 3700

Solving for x^{2}

- The procedure for solving for x^{2} is the same as solving for x.
- There is one extra step at the end.

Step 1. Determine if x^{2} is in the numerator
Step 2 . Simplify the numbers
Step 3. Get x^{2} by itself
Step 4. Solve the equation
Step 5. Take the square root of both sides of the equation

Solving for x^{2}

$\left(x^{2}\right)(0.785)=2826$
Step 1 Yes
Step 2 already simplified
Step 3
(x^{2}) $(0.785)=2826$
$\left(x^{2}\right)=\underline{2826}$
0.785

Step 4
$\left(x^{2}\right)=3600$
Step 5
Step 1. Determine if x^{2} is in the numerator
Step 2. Simplify the numbers
Step 3. Get x^{2} by itself
Step 4. Solve the equation
Step 5. Take the square root of both sides of the equation
$\sqrt{\mathrm{x}^{2}}=\sqrt{3600}$
$x=60$

Things to remember

- Only move x if it is the denominator.
- If x is in the numerator leave x where it is and move the other numbers away from x.
- It does not matter if x is on the left side or the right side of the equation.
- $x=5$
- $5=x$
- They mean the same thing!

Math Problem Strategies

Use these rules of operation to approach math problems (especially when working with formulas):

1) Work from left to right.
2) Do all the work inside the parentheses first.
3) Do all the multiplication/division above the line (numerator) and below the line (denominator).
4) Then do all the addition and subtraction above and below the line.
5) Perform the division (divide the numerator by the denominator).

Solving for the Unknown

Basics - finding x

1. $8.1=(3)(x)(1.5)$
2. $(0.785)(0.33)(0.33)(x)=0.49$
3. $\underline{233}=44$

X
4. $940=$ \qquad
5. $\mathrm{x}=(165)(3)(8.34)$
0.5
6. $56.5=\underline{3800}$
(x)(8.34)
7. $114=(230)(1.15)(8.34)$ (0.785)(70)(70)(x)
8. $2=\frac{\mathrm{x}}{180}$
9. $46=\frac{(105)(\mathrm{x})(8.34)}{(0.785)(100)(100)(4)}$
(0.785)(100)(100)(4)
10. $2.4=(0.785)(5)(5)(4)(7.48)$
11. $19,747=(20)(12)(x)(7.48)$
12. $(15)(12)(1.25)(7.48)=337$ x
13. $\frac{\mathrm{x}}{(4.5)(8.34)}=213$
14. $\frac{\mathrm{x}}{246}=2.4$
15. $6=(x)(0.18)(8.34)$
(65)(1.3)(8.34)
16. $(3000)(3.6)(8.34)=23.4$ (0.785)(x)
17. $109=$ \qquad
18. $(x)(3.7)(8.34)=3620$
19. $2.5=\frac{1,270,000}{x}$
20. $0.59=(170)(2.42)(8.34)$
(1980)(x)(8.34)

Finding x^{2}

21. $(0.785)\left(\mathrm{D}^{2}\right)=5024$
22. $\left(x^{2}\right)(10)(7.48)=10,771.2$
23. $51=\underline{64,000}$
$(0.785)\left(D^{2}\right)$
24. $(0.785)\left(\mathrm{D}^{2}\right)=0.54$
25. $2.1=(0.785)\left(\mathrm{D}^{2}\right)(15)(7.48)$
(0.785)(80)(80)

Percent Practice Problems

Convert the following fractions to decimals:

1. $3 / 4$
2. $5 / 8$
3. $1 / 4$
4. $1 / 2$

Convert the following percents to decimals:
5. 35%
6. 99%
7. 0.5%
8. 30.6%

Convert the following decimals to percents:
9. 0.65
10. 0.125
11. 1.0
12. 0.05

Calculate the following:
13. 15% of 125
14. 22% of 450
15. 473 is what $\%$ of 2365 ?
16. 1.3 is what $\%$ of 6.5 ?

Answers for Solving for the Unknown

$\underline{\text { Basics - Finding } \mathrm{x}}$

1. 1.8
2. 360
3. 2817
4. 5.73
5. 1649.4
6. 4903.5
7. 5.29
8. 244.7
9. 547,616
10. 5,976,990
11. 10.99
12. 117
13. 8256.6
14. 4.99
15. 508,000
16. 8.06
17. 7993.89
18. 0.35
19. 0.005
20. 590.4

Finding x^{2}
21. 80
22. 12
24. 0.83

Percent Practice Problems

1. 0.75
2. 0.625
3. 0.25
4. 0.5
5. 0.35
6. 100%
7. 0.99
8. 5%
9. $\quad 18.75$
10. 99
11. 20%
12. 20%

Section 2

Area, Volume, and Conversions

Math Problem Strategies

Strategy for solving word problems:

1) Read the problem, disregard the numbers (What type of problem is it? What am I asked to find?)
2) Refer to the diagram, if provided. If there isn't one, draw your own.
3) What information do I need to solve the problem, and how is it given in the statement of the problem?
4) Work it out.
5) Does it make sense?

It might be helpful to write out everything that is known in one column and the unknown (what am I asked to find?) in another column. Identify the correct formula and write it in the middle, plug in the numbers and solve.

Known

Length $=35 \mathrm{ft}$
Width $=49 \mathrm{ft}$

$$
\begin{aligned}
& A=(\mathrm{l})(\mathrm{w}) \\
& \mathrm{A}=(35 \mathrm{ft})(49 \mathrm{ft}) \\
& \mathrm{A}=1715 \mathrm{ft}^{2}
\end{aligned}
$$

Unknown

Area $=$?

**Remember: make sure measurements agree; if diameter of pipe is in inches then change to feet; if flow is in MGD and you need feet or feet/sec then change to $\mathrm{ft}^{3} /$ sec before you plug values into formula.

Tank Volume Calculations: Most tank volumes calculations are for tanks that are either rectangular or cylindrical in shape.

Rectangular Tank

Cylindrical Tank

Portion of a Pipeline

Area, Volume and Conversions

AREA

1. A basin has a length of 45 feet and a width of 12 feet. Calculate the area in ft^{2}.
2. A tank has a length of 90 feet, a width of 25 feet, and a depth of 10 feet. Calculate the surface area in ft^{2}.
3. Calculate the cross-sectional area $\left(\mathrm{in}_{\mathrm{ft}}{ }^{2}\right)$ for a 2 foot main that has just been laid.
4. Calculate the cross-sectional area (in ft^{2}) for a 24 " main that has just been laid.
5. Calculate the cross-sectional area (in ft^{2}) for a 2 inch line that has just been laid.

VOLUME
6. Calculate the volume (in ft^{3}) of a tank that measures 10 feet by 10 feet by 10 feet.
7. Calculate the volume (in gallons) of a basin that measures 22 feet by 11 feet by 5 feet deep.
8. Calculate the volume (in gallons) of water in a tank that is 254 feet long, 62 feet wide, and 10 feet deep if the tank only contains 2 feet of water.
9. Calculate the volume of water in a tank (in gallons) that is 12 feet long by 6 feet wide by 5 feet deep and contains 8 inches of water.
10. Calculate the maximum volume of water (in gallons) for a kids' swimming pool that measures 6 feet across and can hold 18 inches of water.
11. How much water (in gallons) can a barrel hold if it measures 3.5 feet in diameter and can hold water to a depth of 4 feet?
12. A water main has just been laid and needs to be disinfected. The main is 30 " in diameter and has a length of 0.25 miles. How many gallons of water will it hold?
13. A water main is 10 " in diameter and has a length of 5,000 feet. How many million gallons of water will it hold?
14. A 3 million gallon water tank needs to be disinfected. The method you will use requires you to figure 5% of the tank volume. How many gallons will this be?
15. What is 5% of a 1.2 MG tank?

CONVERSIONS
16. How many seconds in 1 minute?
17. How many minutes in 1 hour?
18. How many hours in 1 day?
19. How many minutes in 1 day?
20. The flow through a pipe is 3.6 cfs. What is the flow in gps?
21. The flow through a pipe is 2.4 cfs . What is the flow in gpm?
22. A pump produces 22 gpm . How many cubic feet per hour is that?
23. A treatment plant produces a flow of 6.31 MGD. What is the flow in gpm?
24. A pump produces 700 gpm . How many MGD will the pump flow?
25. A three-eighths mile segment of pipeline is to be repaired. How many feet of pipeline is this?
26. If there is a 2,200 gallon tank full of water, how many pounds of water is in the tank?

ANSWERS:

1. $540 \mathrm{ft}^{2}$
2. $2,250 \mathrm{ft}^{2}$
3. $\quad 3.14 \mathrm{ft}^{2}$
4. $\quad 3.14 \mathrm{ft}^{2}$
5. $\quad 0.0218 \mathrm{ft}^{2}$
6. $\quad 1,000 \mathrm{ft}^{3}$
7. $9,050.8 \mathrm{gal}$
8. $235,590 \mathrm{gal}$
9. $\quad 359 \mathrm{gal}$
10. $\quad 317 \mathrm{gal}$
11. 288 gal
12. $48,442 \mathrm{gal}$
13. 0.02 MG
14. $150,000 \mathrm{gal}$
15. $60,000 \mathrm{gal}$ or 0.06 MG
16. 60
17. 60
18. 24
19. 1440
20. $\quad 26.9 \mathrm{gps}$
21. $1,077 \mathrm{gpm}$
22. $\quad 176.5 \mathrm{ft}^{3} / \mathrm{hr}$
23. $4,382 \mathrm{gpm}$
24. 1.008 MGD
25. $1,980 \mathrm{ft}$
26. $18,348 \mathrm{lbs}$

Section 3

Specific Gravity

APPLIED MATH FOR WATER DENSI TY \& SPECI FIC GRAVITY

Density: Weight per unit volume.
2 ways to express density: \qquad
\qquad

Specific gravity: Density of any substance compared to a "standard density."
Standard density of water: \qquad $\mathrm{lb} / \mathrm{ft}^{3}$

1. Find the specific gravity for rock granite if the density is $162 \mathrm{lbs} / \mathrm{ft}^{3}$.
2. Find the specific gravity for SAE 30 motor oil if the density is $56 \mathrm{lbs} / \mathrm{ft}^{3}$.
3. Find the specific gravity of dry alum if the density is $65 \mathrm{lbs} / \mathrm{ft}^{3}$.
4. Find the specific gravity for liquid alum that weighs $11.07 \mathrm{lbs} / \mathrm{gal}$.
5. Find the specific gravity for fluorosilicic acid that weighs $10.5 \mathrm{lbs} /$ gal.
6. Find the specific gravity for ferric sulfate that weighs $12.34 \mathrm{lbs} / \mathrm{gal}$.
7. Find the density ($\mathrm{lbs} / \mathrm{ft}^{3}$) of a certain oil that has a S.G. of 0.92 .
8. Find the density (lbs/gal) of ferric chloride that has a S.G. of 1.140.
9. Find the density (lbs/gal) of caustic soda that has a S.G. of 1.530 .
10. Find the density $\left(\mathrm{lbs} / \mathrm{ft}^{3}\right)$ of potassium permanganate that has a S.G. of 1.522 .
11. A tank holds 1,240 gallons of a certain liquid. The specific gravity is 0.93 . How many pounds of liquid are in the tank?
12. Pump rate desired: 25 gpm

Liquid weight: $74.9 \mathrm{lbs} / \mathrm{ft}^{3}$
How many pounds of liquid can be pumped per day?
13. A certain pump delivers 23 gallons per minute.
A. How many lbs of water does the pump deliver in 1 minute?
B. How many lbs/min will the pump deliver if the liquid weighs $71.9 \mathrm{lbs} / \mathrm{ft}^{3}$?
14. A certain pump delivers 14 gallons per minute.
A. How many lbs of water does the pump deliver in 24 hours?
B. How many lbs/day will the pump deliver if the liquid weighs $8.1 \mathrm{lbs} / \mathrm{gal}$?
15. Compare the density of chlorine gas with the density of air. Chlorine gas weighs $0.187 \mathrm{lbs} / \mathrm{ft}^{3}$. (standard density of air $=0.075 \mathrm{lb} / \mathrm{ft}^{3}$)

1. 2.6
2. 0.9
3. 1.04
4. 1.33
5. 1.26
6. $\quad 1.48$
7. $\quad 57.4 \mathrm{lbs} / \mathrm{ft}^{3}$
8. $\quad 9.5 \mathrm{lbs} / \mathrm{gal}$
9. $\quad 12.76 \mathrm{lbs} / \mathrm{gal}$
10. $\quad 95 \mathrm{lbs} / \mathrm{ft}^{3}$
11. $9,617.7 \mathrm{lbs}$
12. $360,481 \mathrm{lbs} /$ day
13. a. $191.8 \mathrm{lbs} / \mathrm{min}$
b. $\quad 221.1 \mathrm{lbs} / \mathrm{min}$
14. a. 168,134.4 lbs/day
b. 163,296 lbs/day
15. 2.49

Section 4

Flow and Velocity

$$
\text { Velocity }=\frac{4000 \mathrm{ft}}{6 \mathrm{sec}}=666.67 \mathrm{ft} / \mathrm{sec}
$$

Flow

Flow is symbolized by the letter Q .
Q = (Area) (velocity)

Basically, flow is a volume over time.

Flow through a channel

$\mathrm{Q}, \mathrm{ft}^{3} / \mathrm{sec}=($ width, ft$)($ depth, ft$)($ velocity, $\mathrm{ft} / \mathrm{sec})$
What is the flow in cfs for a channel that is 2 ft wide, 4 ft deep with water moving at $1.5 \mathrm{ft} / \mathrm{sec}$?
$\mathrm{Q}, \mathrm{ft}^{3} / \mathrm{sec}=($ width, ft$)($ depth, ft$)($ velocity $\mathrm{ft} / \mathrm{sec})$
$\mathrm{Q}, \mathrm{ft}^{3} / \mathrm{sec}=(2 \mathrm{ft})(4 \mathrm{ft})(1.5 \mathrm{ft} / \mathrm{sec})=12 \mathrm{ft}^{3} / \mathrm{sec}$

TDEC - Fleming Training Center

Flow through a pipeline

$\mathrm{Q}, \mathrm{ft}^{3} / \mathrm{sec}=(0.785)(\text { Diameter, } \mathrm{ft})^{2}($ velocity $\mathrm{ft} / \mathrm{sec})$

What is the flow in cfs for a 2 ft diameter pipe flowing full at a velocity of $3 \mathrm{ft} / \mathrm{sec}$?
$\mathrm{Q}, \mathrm{ft}^{3} / \mathrm{sec}=(0.785)(\text { Diameter, } \mathrm{ft})^{2}($ velocity, $\mathrm{ft} / \mathrm{sec})$
$\mathrm{Q}, \mathrm{ft}^{3} / \mathrm{sec}=(0.785)(2 \mathrm{ft})(2 \mathrm{ft})(3 \mathrm{ft} / \mathrm{sec})$
$\mathrm{Q}, \mathrm{ft}^{3} / \mathrm{sec}=9.42 \mathrm{ft}^{3} / \mathrm{sec}$
TDEC - Fleming Training Center
${ }^{6}$

Notes

1. Make sure you square the diameter.
2. Make sure you convert inches to ft.
3. Look at the units you are asked to find.
4. The flow formulas come out in $\mathrm{ft}^{3} / \mathrm{sec}$ but you may be asked to find gal/min or MGD.
5. Use the flow conversion box chart on page 3 or use dimensional analysis to convert flows to the units desired.

Velocity and Flow

1. A bobber is placed in a channel and travels 450 feet in $2 \frac{1}{2}$ minutes. What is the velocity of the water flowing in the channel in $\mathrm{ft} / \mathrm{min}$?
2. A channel 30 inches wide has water flowing to a depth of 2 feet. If the velocity of the water is $2.75 \mathrm{ft} / \mathrm{sec}$, what is the flow in the channel in $\mathrm{ft}^{3} / \mathrm{sec}$? And $\mathrm{gal} / \mathrm{min}$?
3. The flow through a 24 inch pipe is moving at a velocity of $5.4 \mathrm{ft} / \mathrm{sec}$. What is the flow rate in $\mathrm{gal} / \mathrm{min}$?

Applied Math for Water Treatment Flow Conversions

1. Express a flow of 5 cfs in terms of gpm.
2. What is 38 gps expressed as gpd?
3. Convert a flow of $4,270,000 \mathrm{gpd}$ to cfm .
4. What is 5.6 MGD expressed as cfs? (round to nearest tenth)
5. Express $423,690 \mathrm{cfd}$ as gpm .
6. Convert 2730 gpm to gpd.

Applied Math for Water Treatment

Flow and Velocity

Velocity

1. A cork is placed in a channel and travels 370 feet in 2 minutes. What is the velocity of the wastewater in the channel, $\mathrm{ft} / \mathrm{min}$?
2. A float travels 300 feet in a channel in 2 minutes and 14 seconds. What is the velocity in the channel, ft/sec?
3. The distance between manhole \#1 and manhole \#2 is 105 feet. A fishing bobber is dropped into manhole \#1 and enters manhole \#2 in 30 seconds. What is the velocity of the wastewater in the sewer in $\mathrm{ft} / \mathrm{min}$?

$$
\begin{aligned}
& \text { Velocity }=\text { Distance Traveled, } \mathrm{ft} \\
& \text { Duration of Test, min } \\
& =\mathrm{ft} / \mathrm{min}
\end{aligned}
$$

Flow in a channel

4. A channel 48 inches wide has water flowing to a depth of 1.5 feet. If the velocity of the water is $2.8 \mathrm{ft} / \mathrm{sec}$, what is the flow in the channel in cu ft/sec?
5. A channel 3 feet wide has water flowing to a depth of 2.5 feet. If the velocity through the channel is 120 feet $/ \mathrm{min}$, what is the flow rate in $\mathrm{cu} \mathrm{ft} / \mathrm{min}$? in MGD?
6. A channel is 3 feet wide and has water flowing at a velocity of $1.5 \mathrm{ft} / \mathrm{sec}$. If the flow through the channel is $8.1 \mathrm{ft}^{3} / \mathrm{sec}$, what is the depth of the water in the channel in feet?

Diameter, ft

$$
\begin{aligned}
& \underset{\mathrm{ft}^{3} / \mathrm{time}}{\mathrm{Q}}=\underset{\mathrm{ft}^{2}}{(\mathrm{~A})} \underset{(\mathrm{ft} / \mathrm{time})}{(\mathrm{V})} \\
& \mathrm{Q}=(0.785)(\mathrm{D})^{2} \text { (vel) } \\
& \mathrm{ft}^{3} / \text { time } \quad(\mathrm{ft})(\mathrm{ft})(\mathrm{ft} / \text { time })
\end{aligned}
$$

Flow through a full pipe
7. The flow through a 2 ft diameter pipeline is moving at a velocity of $3.2 \mathrm{ft} / \mathrm{sec}$. What is the flow rate in $\mathrm{cu} \mathrm{ft} / \mathrm{sec}$?
8. The flow through a 6 inch diameter pipeline is moving at a velocity of $3 \mathrm{ft} / \mathrm{sec}$. What is the flow rate in $\mathrm{ft}^{3} / \mathrm{sec}$?
9. The flow through a pipe is $0.7 \mathrm{ft}^{3} / \mathrm{sec}$. If the velocity of the flow is $3.6 \mathrm{ft} / \mathrm{sec}$, and the pipe is flowing full, what is the diameter of the pipe in inches?
10. An 8 inch diameter pipeline has water flowing at a velocity of $3.4 \mathrm{ft} / \mathrm{sec}$. What is the flow rate in gpm?

APPLIED MATH FOR WATER FLOW RATE

$Q=A V$

1. A channel is 3 feet wide with water flowing to a depth of 2 feet. If the velocity in the channel is found to be 1.8 fps , what is the cubic feet per second flow rate in the channel?
2. A 12 -inch diameter pipe is flowing full. What is the cubic feet per minute flow rate in the pipe if the velocity is 110 feet $/ \mathrm{min}$?
3. A water main with a diameter of 18 inches is determined to have a velocity of 182 feet per minute. What is the flow rate in gpm?
4. A 24 -inch main has a velocity of 212 feet $/ \mathrm{min}$. What is the gpd flow rate for the pipe?
5. What would be the gpd flow rate for a $6^{\prime \prime}$ line flowing at 2 feet/second?
6. A 36 " water main has just been installed. If the main is flushed at 2.5 ft /second, how many gallons/minute of water should be flushed from the hydrant?
7. A $36^{\prime \prime}$ water main has just been installed. If the main is flowing at a velocity of 2 ft /second, how many MGD will the pipe deliver?
8. A certain pipe has a diameter of 18 inches. If the pipe is flowing full, and the water is known to flow a distance of 830 yards in 5 minutes, what is the MGD flow rate for the pipe?
9. A water crew is flushing hydrants on a 12 -inch diameter main. The pitot gage reads 560 gpm being flushed from the hydrant. What is the flushing velocity (in feet/min) through the pipe?

VELOCITY (OPEN CHANNEL)

10. A float is placed in a channel. It takes 2.5 minutes to travel 300 feet. What is the flow velocity in feet per minute in the channel? (Assume that float is traveling at the average velocity of the water.)
11. A cork placed in a channel travels 30 feet in 20 seconds. What is the velocity of the cork in feet per second?
12. A channel is 4 feet wide with water flowing to a depth of 2.3 feet. If a float placed in the channel takes 3 minutes to travel a distance of 500 feet, what is the cubic-feet-per-minute flow rate in the channel?

AQUIFER FLOW

13. Geologic studies show that the water in an aquifer moves 25 feet in 60 days. What is the average velocity of the water in $\mathrm{ft} /$ day?
14. If the water in a water table aquifer moves 2 feet per day, how far will the water travel in 13 days?
15. If the water in a water table aquifer moves 2.25 feet per day, how long will it take the water to move 61 feet?

FLOW
16. The average velocity in a full-flowing pipe is measured and known to be 2.9 fps . The pipe is a 24 " main. Assuming that the pipe flows 18 hours per day and that the month in question contains 31 days, what is the total flow for the pipe in MG for that one month?
17. The flow entering the leg of a tee connection is 9 cfs. If the flow through one branch of the tee is 5 cfs , what is the flow through the other branch?

18. A water line has been run to a new subdivision. The flow through the main line is 468 gpm . The line splits into two lines (each serving half of the subdivision). If one line flows 210 gpm , what should be the flow from the other line?

19. Determine the velocity in $\mathrm{ft} / \mathrm{sec}$ at points $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$.

ANSWERS:

1. $\quad 10.8 \mathrm{ft}^{3} / \mathrm{sec}$
2. $\quad 86.4 \mathrm{ft}^{3} / \mathrm{min}$
3. $2,404.5 \mathrm{gpm}$
4. $7,170,172$ gpd
5. 253,662 gpd
6. $\quad 7,926.93 \mathrm{gpm}$
7. 9.13 MGD
8. 9.5 MGD
9. $\quad 95.4 \mathrm{ft} / \mathrm{min}$
10. $\quad 120 \mathrm{ft} / \mathrm{min}$
11. $\quad 1.5 \mathrm{ft} / \mathrm{sec}$
12. $1,533.3 \mathrm{ft}^{3} / \mathrm{min}$
13. $\quad 0.42 \mathrm{ft} /$ day
14. 26 ft
15. 27.1 days
16. 136.8 MG
17. $4 \mathrm{ft}^{3} / \mathrm{sec}$
18. 258 gpm
19. A. $\quad 10.33 \mathrm{ft} / \mathrm{sec}$
B. $\quad 15.84 \mathrm{ft} / \mathrm{sec}$
C. $\quad 13.17 \mathrm{ft} / \mathrm{sec}$

Section 5

Sedimentation

Surface Overflow Rate	
\square measured in $\mathrm{gpd} / \mathrm{ft}^{2}$	
$\square \mathrm{SOR}=\frac{\text { flow, } \mathrm{gpd}}{\text { area, } \mathrm{ft}^{2}}$	
$\begin{aligned} \square \text { Area, rectangle } & =(\text { length, } \mathrm{ft})(\text { width, } \mathrm{ft}) \\ \text { Area, circle } & =(0.785)(\text { Diameter, } \mathrm{ft})^{2} \end{aligned}$	

Weir Overflow Rate

- measured in gpd/ft
- $\mathrm{WOR}=\frac{\text { flow, } \mathrm{gpd}}{\text { length of weir, } \mathrm{ft}}$
- Length of Weir
- Rectangular $=2($ length, ft$)+2($ width, ft$)$
- Circular $=(3.14)($ Diameter, ft$)$

Sedimentation

1. The flow to a sedimentation tank is $200,000 \mathrm{gpd}$. If the tank is 50 feet long and 30 feet wide, what is the surface overflow rate in $\mathrm{gpd} / \mathrm{ft}^{2}$?
2. A tank has a length of 75 ft and 25 ft wide. What is the weir length around the basin in feet?
3. A clarifier has a diameter of 90 feet. What is the length of the weir around the clarifier in feet?
4. The diameter of weir in a circular clarifier is 105 feet. What is the weir overflow rate in gpd/ft if the flow over the weir is 1.83 MGD?
5. A clarifier is 45 feet long, 30 feet long and 10 feet deep. If the daily flow is 3.5 MGD, what is the detention time (in minutes) in the basin?

Applied Math for Water

Sedimentation and Detention Time

Surface Overflow Rates (SOR)

1. A tank has a length of 100 feet, a width of 25 feet and a depth of 15 feet. What is the surface area in ft^{2} ?
2. A clarifier has a diameter of 82 feet and a depth of 12 feet. What is the surface area of the clarifier in ft^{2} ?
3. The flow to a sedimentation tank is 3.05 MGD. If the tank is 80 feet long and 20 feet wide, what is the surface overflow rate in gallons per day per square foot?
4. The flow to a sedimentation tank is $50,000 \mathrm{gpd}$. If the tank is 55 feet long and 15 feet wide, what is the surface overflow rate $\left(\mathrm{gpd} / \mathrm{ft}^{2}\right)$?
5. A sedimentation tank is 90 feet long and 40 feet wide and receives a flow of 5.04 MGD. Calculate the SOR in $\mathrm{gpd} / \mathrm{ft}^{2}$.
6. A circular clarifier has a diameter of 80 feet. If the flow to the clarifier is 3.8 MGD , what is the surface overflow rate $\left(\mathrm{gpd} / \mathrm{ft}^{2}\right)$?
7. A clarifier has a flow rate of $4,600 \mathrm{gpm}$ and a diameter of 75 feet. What is the surface overflow rate in $\mathrm{gpd} / \mathrm{ft}^{2}$?
8. A clarifier with a diameter of 55 feet receives a flow of 2.075 MGD. What is the surface overflow rate (gpd/ft ${ }^{2}$)?
9. What is the $\mathrm{gpd} / \mathrm{ft}^{2}$ overflow to a circular clarifier that has the following:

Diameter: 70 feet
Flow: 1,950 gpm
10. A rectangular clarifier receives a flow of 5.4 MGD. The length of the clarifier is 99 feet 7 inches and the width is 78 feet 6 inches. What is the SOR in $\mathrm{gpd} / \mathrm{ft}^{2}$?

Weir Overflow Rates (WOR)

11. A tank has a length of 100 feet, a width of 25 feet, and a depth of 15 feet. What is the weir length around the basin in feet?
12. A clarifier has a diameter of 82 feet and a depth of 12 feet. What is the length of the weir around the clarifier in ft?
13. A sedimentation tank has a total of 150 feet of weir over which the water flows. What is the weir overflow rate in gallons per day per foot of weir when the flow is 1.7 MGD?
14. The diameter of the weir in a circular clarifier is 85 feet. What is the weir overflow rate (gpd/ft) if the flow over the weir is 2.24 MGD?
15. A sedimentation tank has a total of 200 feet of weir which the water flows over. What is the weir overflow rate (gpd/ft) when the flow is 2.2 MGD?
16. The diameter of the weir in a circular clarifier is 125 feet. The flow is 6.33 MGD. What is the weir overflow rate (gpd/ft)?
17. A tank has a diameter of 49.4 feet. What is the gallons/day per foot of weir overflow when the tank receives $1,953,000$ gpd?
18. The flow rate to a particular clarifier is 528 gpm and the tank has a length of 30 feet and a width of 17.5 feet. What is the gpd/ft of weir?
19. The weir in a basin measures 30 feet by 15 feet. What is the weir overflow rate (gpd/ft) when the flow is $1,098,000$ gpd?
20. What is the weir overflow rate of a clarifier that is 50 feet 4 inches by 44 feet 3 inches and has an influent flow of 1.87 MGD?

Detention Time

21. A tank has a length of 100 feet, a width of 25 feet and a depth of 15 feet. What is the volume in gallons?
22. A clarifier has a diameter of 82 feet and a depth of 12 feet. What is the volume of the clarifier in gallons?
23. A circular clarifier handles a flow of 0.9 MGD. The clarifier is 50 feet in diameter and 8 feet deep. What is the detention time in hours?
24. A clarifier is 70 feet long, 25 feet wide and 10 feet deep. If the daily flow is $2,780,000 \mathrm{gpd}$, what is the detention time (in hours) in the basin?
25. What is the detention time in hours of a circular clarifier that receives a flow of $3,300 \mathrm{gpm}$ and the clarifier is 65 feet in diameter and 12 feet deep?
26. A sedimentation tank is 60 feet long, 12 feet wide and has water to a depth of 12 feet. If the flow to the tank is $21,600 \mathrm{gph}$, what is the detention time in hours?
27. A circular clarifier receives a flow of 920 gpm . If it has a diameter of 55 feet and a water depth of 7 feet, what is the detention time in hours?
28. A clear well is 70 feet long, 20 feet wide and has a water to a depth of 8 feet. If the daily flow is 698 gpm , what is the detention time in minutes?

Answers:

1. $2,500 \mathrm{ft}^{2}$
2. $5,278.34 \mathrm{ft}^{2}$
3. $1,906.25 \mathrm{gpd} / \mathrm{ft}^{2}$
4. $60.61 \mathrm{gpd} / \mathrm{ft}^{2}$
5. $1,400 \mathrm{gpd} / \mathrm{ft}^{2}$
6. $\quad 756.37 \mathrm{gpd} / \mathrm{ft}^{2}$
7. $1,500.13 \mathrm{gpd} / \mathrm{ft}^{2}$
8. $\quad 873.82 \mathrm{gpd} / \mathrm{ft}^{2}$
9. $730.01 \mathrm{gpd} / \mathrm{ft}^{2}$
10. $690.78 \mathrm{gpd} / \mathrm{ft}^{2}$
11. 250 ft
12. 257.48 ft
13. $11,333.33 \mathrm{gpd} / \mathrm{ft}$
14. $8,392.66 \mathrm{gpd} / \mathrm{ft}$
15. $11,000 \mathrm{gpd} / \mathrm{ft}$
16. $16,127.39 \mathrm{gpd} / \mathrm{ft}$
17. $12,590.58 \mathrm{gpd} / \mathrm{ft}$
18. $8003.37 \mathrm{gpd} / \mathrm{ft}$
19. $12,200 \mathrm{gpd} / \mathrm{ft}$
20. $9,885.47 \mathrm{gpd} / \mathrm{ft}$
21. $280,500 \mathrm{gal}$
22. $473,783.80 \mathrm{gal}$
23. 3.13 hr
24. 1.13 hr
25. 1.5 hr
26. 2.99 hrs
27. 2.25 hrs
28. 120 min

Applied Math for Water Sedimentation Practice Quiz

1. The flow to a sedimentation tank is 3.85 MGD. If the tank is 70 feet long and 35 feet wide, what is the surface overflow rate ($\mathrm{gpd} / \mathrm{ft}{ }^{2}$)?
2. The diameter of the weir in a circular clarifier is 110 feet. The flow is 5.75 MGD. What is the weir overflow rate (gpd/ft)?
3. A rectangular clarifier handles a flow of 3.28 MGD. The clarifier is 60 feet long, 40 feet wide and 25 feet deep. What is the detention time in minutes?
4. A circular clarifier receives a flow of $3,472.2 \mathrm{gpm}$. What is the detention time in the clarifier (in hours)? The clarifier has a diameter of 62.5 feet and a depth of 21 feet.

Answers:

1. $1571.43 \mathrm{gpd} / \mathrm{ft}^{2}$
2. $16,647.37 \mathrm{gpd} / \mathrm{ft}$
3. 197.03 min
4. 2.31 hours

Section 6

Pumps

Understanding Work \& Horsepower

- Work: The exertion of force over a specific distance. Example: Lifting a one-pound object one foot.
- Amount of work done would be measured in footpounds
- (feet) (pounds) = foot-pounds
- $(1$ pound object $)($ moved 20 ft$)=20 \mathrm{ft}-\mathrm{lbs}$ of work

TDEC - Fleming Training Center

Types of Horsepower

- Motor Horsepower is related to the watts of electric power supplied to a motor
- Brake Horsepower is the power supplied to a pump by a motor
- Water Horsepower is the portion of power delivered to a pump that is actually used to lift the water
- Water horsepower is affected by elevation and location of the pump.

Computing Water Horsepower

- It is the amount of horsepower required to lift the water
- Formula for water horsepower (WHP)

WHP = (flow gpm) (total head feet)

$8.34 \mathrm{lbs} /$ gal
TDEC - Fleming Training Center

A Few Electrical Terms...

- Power (Watts) - amount of work done

Motor Ratings, Volts, Amps, Single and Multiple Phases

- Power in reference to motors is in watts
- determined by multiplying the volts and ampere spec for the particular motor used
- For example, a 220 volt motor that pulls 100 amps would have a power wattage of 22,000 watts. What would be the horsepower of this motor?
- $\mathrm{HP}=\underline{(\text { volts })(\mathrm{amps})}=\underline{(220)(100)}=29 \mathrm{hp}$ 746 watts/horsepower 746

23
TDEC - Fleming Training Center

Wattage Power Factor of Motors

- There are two type of motors that we usually use. They are:
- Single-Phase Motors
- Three-Phase Motors (usually any motor over 2 hp)
- kW , Single Phase $=\frac{(\text { volts })(\mathrm{amps})(\text { power factor })}{1,000 \mathrm{watts} /}$
- kW, Three Phase $=($ volts) $)(\mathrm{amps})($ power factor)(1.732) 1,000 Watts/kilowatt
Remember, if you are asked to find watts, don't divide by 1,000

Amperes Single and Three Phase

- amps, Single Phase $=(746)$ (horsepower) (volts)(\%eff.)(power factor)
- amps, Three Phase $=$ (746)(horsepower)
(1.732)(volts)(\%eff.)(power factor)

TDEC - Fleming Training Center

Pumps

1. A pump must pump $4,500 \mathrm{gpm}$ against a total head of 75 feet. What horsepower will be required to do the work?
2. If a pump is to deliver 325 gpm of water against a total head of 75 feet, and the pump has an efficiency of 87%, what horsepower must be supplied to the pump?
3. The manual indicates that the output of a certain motor is 40 hp . How much horsepower must be supplied to the motor if the motor is 95% efficient?
4. The water horsepower was calculated to be 20 hp . If the motor supplies the pump with 23 hp , what must be the efficiency of the pump?
5. What is the overall efficiency if 40 hp is supplied to the motor and 26 hp of work is accomplished?
6. Given that 30 kilowatts (kW) power is supplied to a motor and the brake horsepower is 31 hp , what is the efficiency of the motor?
7. A pump is discharging 1200 gpm against a head of 55 feet. The wire-waterefficiency is 75 percent. If the cost of power is $\$ 0.038 / \mathrm{kW} \mathrm{hr}$, what is the cost of the power consumed during a run of 105 hours?
8. What is the horsepower for a motor that is rated at 55 amps and 440 volts?
9. Determine the power factor for a system that uses 4971 watts and pulls 12 amps at 440 volts.
10. If a single-phase motor pulls 15 amps at 220 volts and has a power factor of 1.2, how many kilowatts of power does it use?
11. How many watts of power does a three-phase motor use if it pulls 30 amps at 440 volts and has a power factor of 0.93 ?

APPLIED MATH FOR WATER TREATMENT PUMP HORSEPOWER/EFFICIENCY/COST/MOTORS

HORSEPOWER

1. A pump must pump $3,000 \mathrm{gpm}$ against a total head of 25 feet. What horsepower (water horsepower) will be required to do the work?
2. A flow of 555 gpm must be pumped against a head of 40 feet. What is the horsepower required?
3. Suppose a pump is pumping a total head of 76.2 feet. If 900 gpm is to be pumped, what is the water horsepower requirement?
4. Suppose a pump is pumping against a total head of 46 feet. If 850 gpm is to be pumped, what is the horsepower requirement?
5. A pump is delivering a flow of 835 gpm against a total head of 35.6 feet. What is the water horsepower?
6. What is the water horsepower of a pump that is producing $1,523 \mathrm{gpm}$ against a head of 65 feet?

EFFICIENCY

7. If a pump is to deliver 360 gpm of water against a total head of 95 feet, and the pump has an efficiency of 85 percent, what horsepower must be supplied to the pump?
8. If a pump is to deliver 450 gpm of water against a total head of 90 feet, and the pump has an efficiency of 70 percent, what horsepower must be supplied to the pump?
9. The motor nameplate indicated that the output of a certain motor is 35 hp . How much horsepower must be supplied to the motor, if the motor is 90% efficient?
10. The motor nameplate indicated that the output of a certain motor is 20 hp . How much horsepower must be supplied to the motor if the motor is 90 percent efficient?
11. You have calculated that a certain pumping job will require 9 whp . If the pump is 80 percent efficient and the motor is 72 percent efficient, what motor horsepower will be required?
12. You have calculated that a certain pumping job will require 6 whp. If the pump is 80 percent efficient and the motor is 90 percent efficient, what motor horsepower will be required?
13. Based on the gallons per minute to be pumped and the total head the pump must pump against, the water horsepower requirement was calculated to be 18.5 whp . If the motor supplies the pump with 21 hp , what must be the efficiency of the pump?
14. What is the overall efficiency if an electric power equivalent to 35 hp is supplied to the motor and 18.5 hp of work is accomplished?
15. Suppose that 31 kilowatts (kW) power is supplied to a motor. If the brake horsepower is 19 bhp , what is the efficiency of the motor?
16. Suppose that 10 kilowatts (kW) power is supplied to a motor. If the brake horsepower is 12 bhp , what is the efficiency of the motor?

PUMPING COST

17. The motor horsepower required for a particular pumping job is 39 hp . If your power cost is $\$ 0.08 / \mathrm{kW} \mathrm{hr}$, what is the cost of operating the motor for one hour?
18. The motor horsepower required for a particular pumping job is 30 hp . If your power cost is $\$ 0.05 / \mathrm{kW} \mathrm{hr}$, what is the cost of operating the motor for one hour?
19. You have calculated that the minimum motor horsepower requirement for a particular pumping problem is 25 mhp . If the cost of power is $\$ 0.025 / \mathrm{kW}$ hr , what is the power cost in operating the pump for 14 hours?
20. A pump is discharging 1100 gpm against a head of 65 feet. The wire-towater efficiency is 70 percent. If the cost of power is $\$ 0.025 / \mathrm{kW} \mathrm{hr}$, what is the cost of the power consumed during a week in which the pump runs 80 hours?
21. Given a brake horsepower of 18.5, a motor efficiency of 88 percent and a cost of $\$ 0.015 / \mathrm{kW} h r$, determine the daily power cost for operating a pump.
22. A pump is discharging 1500 gpm against a head of 80 feet. The wire-towater efficiency is 68 percent. If the cost of power is $\$ 0.035 / \mathrm{kW} \mathrm{hr}$, what is the cost of the power consumed during a week in which the pump runs 90 hours?

MOTORS

23. What would be the horsepower on a motor that is rated at 36 amps and 440 volts?
24. What would be the horsepower on a motor that is rated at 12 amps and 440 volts?
25. What would be the horsepower on a motor that is rated at 16 amps and 440 volts?
26. How many watts of power does a single-phase motor use if it pulls 12 amps at 110 volts and has a power factor of 1 ?
27. How many watts of power does a single-phase motor use if it pulls 12 amps at 220 volts and has a power factor of 0.8 ?
28. How many watts of power does a single-phase motor use if it pulls 12 amps at 110 volts and has a power factor of 0.3 ?
29. How many watts of power does a three-phase motor use if it pulls 20 amps at 440 volts and has a power factor of 0.85 ?
30. How many watts of power does a three-phase motor use if it pulls 40 amps at 440 volts and has a power factor of 0.9 ?
31. How many kilowatts of power does a three-phase motor use if it pulls 20 amps at 440 volts and has a power factor of 0.85 ?
32. What is the power factor on a system that uses 3872 watts and pulls 11 amps at 440 volts?
33. What is the power factor on a system that uses 3960 watts and pulls 10 amps at 440 volts?

ANSWERS

HORSEPOWER

1. 18.9 hp
2. 5.6 hp
3. $\quad 17.3 \mathrm{hp}$
4. 9.9 hp
5. 7.5 hp
6. 25 hp

EFFICIENCY

7. 10.2 hp
8. $\quad 14.6 \mathrm{hp}$
9. 38.9 hp
10. 22.2 hp
11. 15.6 hp
12. 8.3 hp
13. 88%
14. 53\%
15. 45.7%
16. 89.5\%

PUMPING COST

17. $\$ 2.33 / \mathrm{hr}$
18. $\$ 1.12 / \mathrm{hr}$
19. $\$ 6.53$
20. $\$ 38.48$
21. $\$ 5.65$
22. $\$ 104.72$

MOTORS

23. 21.2 hp
24. 7.1 hp
25. 9.4 hp
26. 1,320 watts
27. 2,112 watts
28. 396 watts
29. 12,955.4 watts
30. 27,434.9 watts
31. 13 kW
32. 0.8
33. 0.9

APPLIED MATH FOR WATER TREATMENT PUMP RATES PROBLEMS

1. During a 60 -minute pumping test, 9,456 gallons are pumped into a tank that has a length of 10 feet, width of 8 feet, and depth of 6 feet. The tank was empty before the pumping test was started. What is the GPM rate?
2. During a 30 -minute pumping test, 3680 gallons are pumped into a tank, which has a diameter of 10 ft . The water level before the pumping test was 3 ft . What is the GPM rate?
3. A 50-ft diameter tank has water to a depth of 6 feet. The inlet valve is closed and a 2 -hour pumping test is begun. If the water level in the tank at the end of the test is 2.3 feet, what is the pumping rate in gallons per minute?

4. A tank has a length of 12 feet, a depth of 12 feet, a width of 12 feet, and has water to a depth of 10 feet. If the tank can be emptied in 1 hour 37 minutes, what is the pumping rate in gallons per minute?
5. During a pumping test, water was pumped into an empty tank 10 feet by 10 feet by 5 feet deep. The tank completely filled with water in 10 minutes 30 seconds. Calculate the pumping rate in GPM.
6. During a 60 minute pumping test, 11,321 gallons are pumped into a tank that has a length of 15 feet, a width of 10 feet and a depth of 8 feet. The tank was empty before the pumping test was started. What is the GPM rate?
7. A wet well is 15 feet long and 12 feet wide. The influent valve to the wet well is closed. If a pump lowers the water level 1.25 feet during a 5 -minute pumping test, what is the gpm pumping rate?
8. A pump is discharged into a 55-gallon barrel. If it takes 35 seconds to fill the barrel, what is the pumping rate in GPM?
9. A pump is rated at 300 gpm . A pump test is conducted for 3 minutes. What is the actual gpm pumping rate if the wet well is 10 feet long and 8 feet wide and the water level drops 1.33 feet during the pump test?
10. During a pumping test, 12,600 gallons are pumped into a tank. If the pump is rated at 210 gpm , how many minutes did it take to fill the tank?
11. If a tank 12 feet long, 12 feet wide, 12 feet deep, and holding water to a depth of 8 feet can be emptied at a pumping rate of 575 gpm , how many minutes will it take to remove all the water?

ANSWERS

7. 336.6 gpm
8. 122.7 gpm
9. 452.6 gpm
10. 111 gpm
11. 356.2 gpm
12. $\quad 188.7 \mathrm{gpm}$
13. $\quad 94.3 \mathrm{gpm}$
14. 265.3 gpm
15. 60 minutes
16. 15 minutes

Applied Math for Water Treatment Pump Math
 Extra Problems

1. The brake horsepower of a pump is 22 hp . If the water horsepower is 17 hp , what is the efficiency of the pump?
2. If the motor horsepower is 50 hp and the brake horsepower is 43 hp , what is the percent efficiency of the motor?
3. The motor horsepower is 25 hp . If the motor is 89% efficient, what is the brake horsepower?
4. A total of 50 hp is supplied to a motor. If the wire-to-water efficiency of the pump and motor is 62%, what will the Whp be?
5. The brake horsepower is 34.4 hp . If the motor is 86% efficient, what is the motor horsepower?
6. A pump must pump 1500 gpm against a total head of 40 ft . What horsepower is required for this work?
7. If 20 hp is supplied to a motor (Mhp), what is the Bhp and Whp if the motor is 85% efficient and the pump is 80% efficient?
8. A total of 35 hp is required for a particular pumping application. If the pump efficiency is 85%, what is the brake horsepower required?
9. The motor horsepower requirement has been calculated to be 45 hp . How many kilowatts electric power does this represent? (Remember, 1 $\mathrm{hp}=746$ watts)
10. The motor horsepower requirement has been calculated to be 75 hp . During the week, the pump is in operation a total of 144 hours. If the electricity cost is $\$ 0.06125$ per kW-hr, what would be the power cost that week for the pumping?
11. 77%
12. 40 Mhp
13. 33.57 kW
14. 86%
15. 15 Whp
16. $\$ 493.48$
17. 22.25 Bhp
18. $17 \mathrm{Bhp}, 13.6 \mathrm{Whp}$
19. 31 Whp
20. 41.2 Bhp

Section 7

Disinfection

Chlorine Demand

oIf the chlorine dosage is $4.5 \mathrm{mg} / \mathrm{L}$ and

Chlorine Dosage

oA water plant treats 12 MGD and wants the residual is $1.2 \mathrm{mg} / \mathrm{L}$, what is the to treat the water with $4.2 \mathrm{mg} / \mathrm{L} \mathrm{Cl}_{2}$. demand? How many pounds per day will the plant use?

$$
\begin{aligned}
\mathrm{Cl}_{2} \text { demand } & =\mathrm{Cl}_{2} \text { dose, } \mathrm{mg} / \mathrm{L}-\mathrm{Cl}_{2} \text { residual, } \mathrm{mg} / \mathrm{L} \\
& =4.5 \mathrm{mg} / \mathrm{L}-1.2 \mathrm{mg} / \mathrm{L} \\
& =3.3 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Cl}_{2}, \mathrm{lb} / \text { day } & =(\text { dosage, } \mathrm{mg} / \mathrm{L})(\text { flow,MGD })(8.34 \mathrm{lb} / \text { gal }) \\
& =(4.2 \mathrm{mg} / \mathrm{L})(12 \mathrm{MGD})(8.34 \mathrm{lb} / \text { gal }) \\
& =420.3 \mathrm{lb} / \text { day }
\end{aligned}
$$

Chlorine Dosage

oDetermine the dosage in mg / L for a plant
Chlorine Dosage
treating 15 MGD using 440 lbs of Cl_{2} gas
oDetermine the dosage in mg / L for a plant treating 650,000 gpd with 21 gallons 15% hypochlorite
$\mathrm{mg} / \mathrm{L}=$ (lbs/day)(\% available chlorine, as decimal) (MGD)(8.34 lbs/gal)
$=\quad(440 \mathrm{lbs} /$ day $)(1)$ (15 MGD)(8.34 lbs/gal)
$=3.52 \mathrm{mg} / \mathrm{L}$
$\mathrm{mg} / \mathrm{L}=($ gallons hypochlorite $/$ day $)(\%$ conc. as decimal $)$ MGD
$=(21$ gallons $)(0.15)$
0.65 MGD
$=4.85 \mathrm{mg} / \mathrm{L}$

Disinfection

1. A treatment plant wants to have $1.4 \mathrm{mg} / \mathrm{L}$ residual chlorine in the distribution system. Due to a main break the demand has climbed to $0.8 \mathrm{mg} / \mathrm{L}$. What is the required dose?
2. A city has a combined residual of $0.5 \mathrm{mg} / \mathrm{L}$ and a free residual of $1.8 \mathrm{mg} / \mathrm{L}$. What is the total residual in mg / L ?
3. A water plant treats 4.3 MGD. If the chlorine dose needs to be $4.5 \mathrm{mg} / \mathrm{L}$, what is the chlorine feed requirement in $\mathrm{lb} /$ day?
4. Determine the chlorine dose in mg / L if 17 lbs of chlorine are fed while treating 1.3 MGD of water.
5. How many pounds of 65% available HTH is needed to make 4 gallons of a 7% solution?
6. How many gallons of bleach (12.5% available chlorine) will it take to make a 5% solution when added to enough water to make 50 gallons of hypochlorite?
7. A water plant has just switched from sodium hypochlorite to chlorine gas. If they used an average of $32 \mathrm{gal} /$ day of 15% sodium hypochlorite, how many pounds per day will they use of Cl_{2} ?
8. A chlorine cylinder weighs 150 pounds. Twenty four hours later the same cylinder weighs 103 pounds. What is the chlorinator feed rate in lb/day?
a. Estimate the chlorine dose in mg / L for the chlorinator. The flow totalizer reads 13, 597,405 gallons and 15, 078,687 gallons 24 hrs later.
b. If the setting on chlorinator does not change, how many pounds of chlorine will be left in the cylinder 2 days later?
c. How many 150 lb cylinders will this plant need in a month (with 30 days)?

APPLI ED MATH FOR WATER DI SI NFECTI ON MATH

DOSE \& DEMAND

1. A water system has a chlorine demand of $4.1 \mathrm{mg} / \mathrm{L}$ and wants to have a 1.1 mg / L residual. What would be the dose?
2. A city wants to have $1.4 \mathrm{mg} / \mathrm{L}$ chlorine in the distribution system. Due to a main break the demand has climbed to $1.0 \mathrm{mg} / \mathrm{L}$. What is the residual?
3. A system just had a main break. The chlorine level of $3.3 \mathrm{mg} / \mathrm{L}$ has dropped to $0.3 \mathrm{mg} / \mathrm{L}$. What is the chlorine demand?
4. A city doses the water to have a residual of $1.9 \mathrm{mg} / \mathrm{L}$. The demand has risen because of a main break to $1.8 \mathrm{mg} / \mathrm{L}$. What is the free residual?
5. A city has a combined residual of $0.2 \mathrm{mg} / \mathrm{L}$ and a free residual of $1.7 \mathrm{mg} / \mathrm{L}$. What is the total residual in mg / L ?
6. The total residual in a clearwell is $2.7 \mathrm{mg} / \mathrm{L}$. If the free residual is $2.5 \mathrm{mg} / \mathrm{L}$, what is the combined residual?
7. The total residual in the clearwell is $2.5 \mathrm{mg} / \mathrm{L}$. If the free residual is $2.2 \mathrm{mg} / \mathrm{L}$, what is the combined residual?

DOSAGE

8. A water plant treats 7.5 MGD. If the chlorine dose needs to be $3 \mathrm{mg} / \mathrm{L}$, what is the chlorine requirement in pounds per day?
9. If the water plant treats 1.8 MGD and wants to dose the water with $2.8 \mathrm{mg} / \mathrm{L}$ of chlorine, what would be the lbs/day feed rate?
10. How many pounds per day of chlorine are required to treat 14 million gallons of water with $3.3 \mathrm{mg} / \mathrm{L}$ of chlorine gas?
11. Determine the chlorine dose in mg / L if 13 pounds of chlorine are fed while treating 968,000 gallons of water.
12. Determine the chlorine dose in mg / L if $28 \mathrm{lbs} /$ day is fed for a flow of $1,750,000$ gpd.
13. A water plant has a flow of $2,570 \mathrm{gpm}$. If the chlorinator is feeding 93 pounds per day, what is the dose in mg / L ?
14. What should the setting be on a chlorinator in lbs/24 hours if a pump usually delivers 600 gpm and the desired chlorine dosage is $4 \mathrm{mg} / \mathrm{L}$?
15. The chlorinator is set to feed 31.5 lbs of chlorine per 24 hours for a plant flow of 1.6 MGD. Calculate the chlorine residual for a chlorine demand of $1.85 \mathrm{mg} / \mathrm{L}$.

USE THE FOLLOWI NG I NFORMATI ON FOR PROBLEMS 16-19:

At 8:00 a.m. on Monday morning a chlorine cylinder weighs 83 pounds. At 8:00 a.m. on Tuesday morning the same cylinder weighs 69 pounds.
16. What is the chlorinator feed rate in pounds per day?
17. Estimate the chlorine dose in mg / L for the chlorinator. The flow totalizer reads $12,982,083$ gallons at 8:00AM on Monday morning and 13,528,924 at 8:00AM on Tuesday morning. (Note: This totalizer does not zero out each morning.)
18. If the setting on the chlorinator does not change, how many pounds of chlorine will be left in the cylinder on Friday morning at 8:00 a.m.?
19. How many $150-\mathrm{lb}$ chlorine cylinders will this water plant need in a month (with 30 days) if the chlorinator setting remains the same?

USE THE FOLLOWI NG I NFORMATI ON FOR PROBLEMS 20-22:
At 8:00 a.m. on Friday morning a chlorine cylinder weighs 298 pounds. That afternoon at 4:00 p.m. the same cylinder weighs 216 pounds.
20. What is the chlorinator feed rate in pounds per day?
21. How many pounds of chlorine will be in the cylinder at 8:00 a.m. on Saturday morning if the feed rate does not change?
22. What is the minimum number of ton cylinders the operator will need in a month with 31 days (at this feed rate)?

HYPOCHLORI NATI ON

23. How many pounds of 65% available chlorine HTH is needed to make 1 gallon of 10% solution?
24. How many pounds of 65% available HTH is needed to make 5 gallons of 18% solution?
25. How many pounds of 65% HTH are used to make 1 gallon of 3% solution?
26. How many gallons of bleach (15% available chlorine) will it take to make a 4\% solution when added to enough water to make 50 gallons of hypochlorite?
27. How many pounds of HTH (65% available chlorine) will it take to make a 2% solution when dissolved in enough water to make 15 gallons of hypochlorite?
28. How many gallons of bleach (5.25\% available chlorine) will it take to make a 2% solution when added to enough water to make 8 gallons of hypochlorite?
29. Water from a well is being treated by a hypochlorinator. If the hypochlorinator is set at a pumping rate of 25 gallons per day and uses a 2% available chlorine solution, what is the chlorine dose in mg / L if the pump delivers 140 gpm ?
30. A water plant has just switched from sodium hypochlorite to chlorine gas. If they used an average of $26 \mathrm{gal} /$ day of 15% sodium hypochlorite, how many pounds per day will they use of Cl_{2} ?
31. A water plant has run out of calcium hypochlorite for disinfecting a storage tank. If they needed 55 pounds of HTH, how many gallons of 15% sodium hypochlorite will they need?

USE THE FOLLOWI NG INFORMATI ON TO ANSWER \#32-34:

A section of pipe 250 feet long and 10 inches in diameter is filled with water. You need to disinfect it with a chlorine dose of $50 \mathrm{mg} / \mathrm{L}$.
32. How many pounds of chlorine gas will be required?
33. How many pounds of 65% available HTH will be required?
34. How many gallons of 5.25% available bleach will be required?
35. You need to disinfect a water storage tank that has just been repaired. You have decided to use AWWA Chlorination Method 3 to disinfect the tank. This method requires you to make up a $50 \mathrm{mg} / \mathrm{L}$ available chlorine solution that will fill approximately 5% of the tank volume. The tank holds 3 MG. How many gallons of water and lbs of HTH 65% available chlorine will have to be added to meet the above mentioned requirements?
36. How many gallons of water and lbs of HTH 65\% available chlorine will have to be added to disinfect a tank that holds 100,000 gallons using the above mentioned requirements?

Answers:

1. $\quad 5.2 \mathrm{mg} / \mathrm{L}$
2. $\quad 0.4 \mathrm{mg} / \mathrm{L}$
3. $\quad 3.0 \mathrm{mg} / \mathrm{L}$
4. $\quad 0.1 \mathrm{mg} / \mathrm{L}$
5. $\quad 1.9 \mathrm{mg} / \mathrm{L}$
6. $\quad 0.2 \mathrm{mg} / \mathrm{L}$
7. $\quad 0.3 \mathrm{mg} / \mathrm{L}$
8. $\quad 187.65 \mathrm{lbs} /$ day
9. $42.03 \mathrm{lbs} /$ day
10. $385.31 \mathrm{lbs} /$ day
11. $\quad 1.61 \mathrm{mg} / \mathrm{L}$
12. $\quad 1.92 \mathrm{mg} / \mathrm{L}$
13. $\quad 3.01 \mathrm{mg} / \mathrm{L}$
14. $28.82 \mathrm{lbs} / 24 \mathrm{hr}$
15. $\quad 0.51 \mathrm{mg} / \mathrm{L}$
16. $\quad 14 \mathrm{lbs} /$ day
17. $3.07 \mathrm{mg} / \mathrm{L}$
18. 27 lbs
19. 3 cylinders
20. $246 \mathrm{lbs} /$ day
21. 52 lbs
22. 4 cylinders
23. 1.28 lbs
24. 11.55 lbs
25. $\quad 0.38 \mathrm{lbs}$
26. $\quad 13.3$ gallons bleach
27. 3.85 lbs
28. 3.05 gallons
29. $2.48 \mathrm{mg} / \mathrm{L}$
30. 32.53 lbs
31. $\quad 28.58$ gal
32. $\quad 0.43 \mathrm{lbs}$
33. 0.65 lbs
34. 0.97 gallons
35. 150,000 gallons, 96.23 lbs
36. 5000 gallons, 3.21 lbs

Section 8

Fluoridation

TDEC - Fleming Training Center
 Determining Feed Rate

- Fluoride is not in pure form when purchased
- It is combined with other elements for stability and ease of handling
- To calculate the correct dosage, you must know the following:
- Ion concentration
- Percent purity

TDEC - Fleming Training Center

Fluoride Chemicals Purity

- Sodium Fluoride $=98 \%$ purity $\square \mathrm{NaF}$
- Sodium Fluorosilicate $=98.5 \%$ purity $\square \mathrm{Na}_{2} \mathrm{SiF}_{6}$
\square AKA Sodium Silicofluoride
- Fluorosilicic Acid $=18-23 \%$ purity $\square \mathrm{H}_{2} \mathrm{SiF}_{6}$ \square AKA Hydrofluosilicic Acid

Optimal Dosage

- The optimal dosage for fluoride in drinking water in Tennessee is $0.7 \mathrm{mg} / \mathrm{L}$
- To determine fluoride dosage, subtract the naturally occurring fluoride concentration from the desired concentration

TDEC - Fleming Training Center

Fluoride Dose

- A water plant wants a fluoride concentration of $1.00 \mathrm{mg} / \mathrm{L}$ in the finished water. If the raw fluoride content is $0.25 \mathrm{mg} / \mathrm{L}$, how much fluoride needs to be added?

Fluoride dose $=$ Total fluoride, $\mathrm{mg} / \mathrm{L}-$ raw fluoride, mg / L
$=1.00 \mathrm{mg} / \mathrm{L}-0.25 \mathrm{mg} / \mathrm{L}$
$=0.75 \mathrm{mg} / \mathrm{L}$
TDEC - Fleming Training Center

$$
=0.75 \mathrm{mg} / \mathrm{L}
$$

\section*{TDEC - Fleming Training Center
 Calculating Feed Rate
 - A water plant treats 200,000 gpd and wants to add $0.82 \mathrm{mg} / \mathrm{L}$ of fluoride to the water using sodium fluorosilicate. How many pounds per day will they use?
 ```

lbs/day = (dosage, mg/L)(flow, MGD)(8.34 lbs/gal)
 (AFI, as decimal)(purity, as decimal)
 = (0.82 mg/L)(0.20 MGD)(8.34 lbs/gal)
 (0.607)(.985)
 = 2.29 lbs/day

TDEC - Fleming Training Center	
Calculating Feed Rate	
A water plant treats 12.0 MGD and wants to add $0.75 \mathrm{mg} / \mathrm{L}$ of fluoride using fluorosilicic acid to the water. How many pounds per day will be used?	
$\mathrm{lbs} /$ day $\quad=$ (dosage, mg/L)(flow, MGD)(8.34 lbs/gal)	
(AFI, as decimal)(purity, as decimal)	
$=(0.75 \mathrm{mg} / \mathrm{L})(12 \mathrm{MGD})(8.34 \mathrm{lbs} / \mathrm{gal})$	
(0.792)(.230)	
$=412 \mathrm{lbs} /$ day	9

Fluoridation

1. A water plant produces $1,750 \mathrm{gpm}$ and the town wants to have a $0.8 \mathrm{mg} / \mathrm{L}$ of fluoride in the finished water. If fluorosilicic acid is used, what would be the fluoride feed rate in lb/day?
2. A water plant produces $275,000 \mathrm{gpd}$. What would be the fluoride feed rate from a saturator in gpd to obtain $0.7 \mathrm{mg} / \mathrm{L}$ in the water?
3. A plant uses 90 lb of sodium fluorosilicate in treating 9.6 MGD. What is the calculated dosage in mg / L ?
4. The fluoride for a plant's raw water source was measured to be $0.2 \mathrm{mg} / \mathrm{L}$. If the city wants the finished water to contain the recommended amount of $0.7 \mathrm{mg} / \mathrm{L}$, what mg / L of fluoride should the water plant dose?

Applied Math for Water Fluoride

Feed Rates

1.a. A water plant produces $2,000 \mathrm{gpm}$, and the city wants to have $1.1 \mathrm{mg} / \mathrm{L}$ of fluoride in the finished water. If sodium fluorosilicate were used, what would the fluoride feed rate be in lbs/day?
1.b. Give that there are 453.6 grams in a pound, what would the fluoride feed rate for the previous problem be in gram/min?
2. A water plant has a daily average production of 695 gpm , and the city wants to have a $1.0 \mathrm{mg} / \mathrm{L}$ fluoride in the finished water. The natural fluoride level is less than $0.1 \mathrm{mg} / \mathrm{L}$. Find the fluoride feed rate in lbs/day using sodium fluorosilicate.
3. If it is known that the plant rate is $4,000 \mathrm{gpm}$ and the dosage needed is 0.8 mg / L, what is the fluoride feed rate in $\mathrm{lbs} / \mathrm{min}$ using fluorosilicic acid?
4. What is the fluoride feed rate in lbs/day using fluorosilicic acid if the plant rate is 1.0 MGD , the natural fluoride content is $0.2 \mathrm{mg} / \mathrm{L}$, and the desired fluoride content is $1.2 \mathrm{mg} / \mathrm{L}$?
5. If a small water plant wishes to use sodium fluorosilicate in a dry feeder and the water plant has a flow of 180 gpm , what would the fluoride feed rate be in lbs $/ \mathrm{min}$? Assume $0.1 \mathrm{mg} / \mathrm{L}$ natural fluoride and $1.0 \mathrm{mg} / \mathrm{L}$ is the desired concentration in the finished water.

Sodium Fluoride Feed Rates for Saturator

6. A water plant produces 1.0 MGD. What would the fluoride feed rate be from a saturator in gpd to obtain $1.0 \mathrm{mg} / \mathrm{L}$ in the water?
7. A small water plant has a daily production rate of 180 gpm and the natural fluoride level is $0.1 \mathrm{mg} / \mathrm{L}$. If $1.0 \mathrm{mg} / \mathrm{L}$ fluoride is desired in the water, what feed rate in $\mathrm{mL} / \mathrm{min}$ of sodium fluoride from a saturator must be maintained?

Calculated Dosages

8. A plant uses 65 lbs of sodium fluorosilicate in treating 5,540,000 gallons of water in one day. What is the calculated dosage in mg / L ?
9. A plant uses 26 lbs of sodium fluorosilicate to treat $1,756,000$ gallons of water. What is the calculated dosage for this plant in mg / L ?
10. A water plant has an actual production rate of 0.8 MGD . If 10 lbs of sodium fluorosilicate was fed in one day, what is the calculated dosage in mg / L ?
11. A plant uses 43 lbs of fluorosilicic acid in treating 1,226,000 gallons of water. What is the calculated dosage in mg / L ?
12. A plant uses 898 lbs of fluorosilicic acid in treatment of $17,058,000$ gallons of water. What is the calculated dosage in mg / L ?
13. A water plant uses a total of $2,800 \mathrm{lbs}$ of fluorosilicic acid at 28% purity during 4 days to fluoridate 52 million gallons of water. What would be the calculated dosage in mg / L ?
14. A water plant feeds sodium fluoride in a dry feeder. They use 5.5 lbs of the chemical to fluoridate 240,000 gallons of water. What is the calculated dosage in mg / L ?
15. A plant uses 10 gallons of sodium fluoride from a saturator in treating 200,000 gallons of water. What is the calculated dosage in mg / L ?
16. A plant uses 19 gallons of solution from its saturator in treating 360,000 gallons of water. What is the calculated dosage in mg / L ?
17. A small water plant uses sodium fluoride from a saturator at a rate of 1.0 gpd and the plant treats 4500 gpd. What is the calculated dosage in mg / L ?

Answers:

1.a. $\quad 44.19 \mathrm{lbs} /$ day
1.b. $\quad 13.9$ grams $/ \mathrm{min}$
2. $\quad 13.96 \mathrm{lbs} /$ day
3. $\quad 0.15 \mathrm{lbs} / \mathrm{min}$
4. $\quad 45.78 \mathrm{lbs} /$ day
5. $\quad 0.002 \mathrm{lbs} / \mathrm{min}$
6. $\quad 55.56 \mathrm{gpd}$
7. $\quad 34.07 \mathrm{~mL} / \mathrm{min}$
8. $\quad 0.84 \mathrm{mg} / \mathrm{L}$
9. $\quad 1.06 \mathrm{mg} / \mathrm{L}$
10. $\quad 0.90 \mathrm{mg} / \mathrm{L}$
11. $\quad 0.77 \mathrm{mg} / \mathrm{L}$
12. $\quad 1.15 \mathrm{mg} / \mathrm{L}$
13. $1.43 \mathrm{mg} / \mathrm{L}$
14. $\quad 1.22 \mathrm{mg} / \mathrm{L}$
15. $\quad 0.9 \mathrm{mg} / \mathrm{L}$
16. $\quad 0.95 \mathrm{mg} / \mathrm{L}$
17. $\quad 4.0 \mathrm{mg} / \mathrm{L}$

Applied Math for Water Fluoride Practice Quiz

1. A water plant has a daily average production of $1,736 \mathrm{gpm}$ and the city wants to have a 1.0 mg / L fluoride level in the finished water. How many lbs/day of sodium fluorosilicate would be required to reach this dosage?
2. What is the fluoride feed rate in $\mathrm{lbs} /$ day using fluorosilic acid if the plant rate is 1.0 MGD , the natural fluoride level is $0.3 \mathrm{mg} / \mathrm{L}$, and the desired fluoride level is $1.2 \mathrm{mg} / \mathrm{L}$?
3. A small water plant wishes to use sodium fluoride in a dry feeder and the water plant has a capacity (flow) of 220 gpm , what would the fluoride feed rate be in grams/min? Assume a $0.1 \mathrm{mg} / \mathrm{L}$ natural fluoride and $1.0 \mathrm{mg} / \mathrm{L}$ is desired in the drinking water.
4. A plant uses 69 lbs of sodium fluorosilicate in treating 4,950,000 gallons of water in one day. What is the calculated dosage in mg / L ?
5. A water plant produces 0.75 MGD . What would the fluoride feed rate from a sodium fluoride saturator be, in gph, to obtain $1.0 \mathrm{mg} / \mathrm{L}$ in the water?

Answers:

1. $34.9 \mathrm{lbs} /$ day
2. $41.2 \mathrm{lbs} /$ day
3. 1.7 grams/min
4. $\quad 1.0 \mathrm{mg} / \mathrm{L}$
5. 1.7 gph

Section 9

Stabilization

Langelier Index

- Calculate the Langelier Index using the following lab results:
- $\mathrm{pH} \quad=\quad 7.4$
- Temperature $=20^{\circ} \mathrm{C}$
- TDS $=200 \mathrm{mg} / \mathrm{L}$
- Total Alkalinity $=120 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
- Ca Hardness $\quad=\quad 90 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}

Langelier Index

© There isn't a 120 in the chart for Total Alkalinity :

- Use your calculator
- Take the log of 120
- Equals 2.07918...
- Round up to 2.08

Langelier Index

- Now determine how aggressive your water is

Corrosivity Characteristics as Addressed by Indices		
Corrosive Characteristics	Langelier Index (LI)	Aggressive Index (AI)
Highly Aggressive	<-2.0	<10.0
Moderately Aggressive	-2.0 to <0.0	10.0 to <12.0
Non-aggressive	>0.0	>12.0

Aggressive Index

○ Calculate the Aggressive Index using the following lab results:

- pH
$=7.8$
- Total Alkalinity $=100 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
- Ca Hardness $=200 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
$\odot \mathrm{AI}=\mathrm{pH}+\log \mathrm{Ca}$ Hard $+\log$ Total Alk

Aggressive Index

$\bigcirc \mathrm{Al}=\mathrm{pH}+\log \mathrm{Ca}$ Hard $+\log$ Total Alk
$=7.8+2.00+2.30$
$=12.10$

Aggressive Index

© Now determine how aggressive your water is

Corrosivity Characteristics as Addressed by Indices			
Corrosive Characteristics	Langelier Index (LI)	Aggressive Index (AI)	
Highly Aggressive	<-2.0	<10.0	
Moderately Aggressive	-2.0 to <0.0	10.0 to <12.0	
Non-aggressive	>0.0	>12.0	

Stabilization

1. Calculate the Langlier Index for a water sample based on the following information:
```
pH = 7.8
temperature = 20 C
TDS = 100 mg/L
calcium = 90 mg/L as CaCO 
alkalinity = 170 mg/L as CaCO 
```

2. Calculate the Aggressive Index for a water sample based on the following information:

total alkalinity	$=100 \mathrm{mg} /{\mathrm{L} \mathrm{as} \mathrm{CaCO}_{3}}$
calcium	$=65 \mathrm{mg} / \mathrm{L}$ as CaCO
pH	$=7.2$

Applied Math for Water Stabilization Math

Langelier Index - Determine the LI and the corrosive characteristics:

1. Calculate the Langelier Index for the following information:
$\mathrm{pH} \quad=\quad 7.65$
temperature $=15^{\circ} \mathrm{C}$
TDS $\quad=\quad 200 \mathrm{mg} / \mathrm{L}$
Calcium $=80 \mathrm{mg} / \mathrm{L}^{\text {as } \mathrm{CaCO}_{3}}$
Alkalinity $=100 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
2. Calculate the Langelier Index for the following information:

pH	$=7.4$
temperature	$=20^{\circ} \mathrm{C}$
TDS	$=$
Calcium	$=200 \mathrm{mg} / \mathrm{L}$
Alkalinity	$=80 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
	$=100 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}

3. Calculate the Langelier Index for the following information:
$\mathrm{pH}=7.4$
temperature $=20^{\circ} \mathrm{C}$
TDS $\quad=\quad 400 \mathrm{mg} / \mathrm{L}$
Calcium $\quad=\quad 100 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Alkalinity $=100 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
4. Calculate the Langelier Index for the following information:

pH	$=7.0$
temperature	$=15^{\circ} \mathrm{C}$
TDS	$=200 \mathrm{mg} / \mathrm{L}$
Calcium CaCO_{3}	
Alkalinity	$=10 \mathrm{mg} / \mathrm{L}$ as CaCOO_{3}

5. Calculate the Langelier Index for the following information:

pH	$=7.6$
temperature	$=25^{\circ} \mathrm{C}$
TDS	$=400 \mathrm{mg} / \mathrm{L}$
Calcium	$=150 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Alkalinity	$=170 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}

6. Calculate the Langelier Index for the following information:

pH	$=8.6$
temperature	$=15^{\circ} \mathrm{C}$
TDS	$=200 \mathrm{mg} / \mathrm{L}$
Calcium	$=50 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Alkalinity	$=100 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}

Aggressive Index - Determine the AI and the corrosive characteristics:
7. Calculate the aggressive index for the following information:

Total alkalinity $\quad=\quad 100 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Calcium $\quad=\quad 70 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
$\mathrm{pH} \quad=\quad 7.6$
8. Calculate the aggressive index for the following information:

Total alkalinity	$=$	$270 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Calcium	$=$	$200 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
pH	$=$	7.3

9. Calculate the aggressive index for the following information:

Total alkalinity $\quad=\quad 100 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Calcium $\quad=\quad 50 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
$\mathrm{pH} \quad=\quad 7.2$
10. Calculate the aggressive index for the following information:

Total alkalinity $\quad=\quad 100 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Calcium $\quad=\quad 70 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
$\mathrm{pH} \quad=\quad 7.2$
11. Calculate the aggressive index for the following information:

Total alkalinity	$=$	$100 \mathrm{mg} / \mathrm{L}^{2} \mathrm{CaCO}_{3}$
Calcium	$=$	$80 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
pH	$=$	7.1

12. Calculate the aggressive index for the following information:

Total alkalinity	$=$
Calcium	$=20 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
pH	$=15 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
	$=7.0$

Answers:

1. -0.37 MA
2. 11.45 MA
3. -0.55 MA
4. -0.51 MA
5. -2.92 HA
6. 0.17 NA
7. $\quad 0.38 \mathrm{NA}$
8. $\quad 12.03 \mathrm{NA}$
9. 10.9 MA
10. 11.05 MA
11. 11.0 MA
12. 9.48 HA

Section 10

Filtration

Filter Rate

(Hook Gauge)

- A filter measures 22 ft by 14 ft . The influent is closed and the effluent is opened. The water level drops 6 inches in $120 \mathrm{sec}, 124 \mathrm{sec}$ and 128 sec during three tests. What is the filter rate in gpm?

Filter Rate Steps
 (Hook Gauge)

- Find volume in gallons
- Find average time in minutes
- Find sand bed area in ft²

Volume, gal

$$
V=(\mathrm{l}, \mathrm{ft})(\mathrm{w}, \mathrm{ft})(\mathrm{d}, \mathrm{ft})\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right)
$$

$$
V=(22 \mathrm{ft})(14 \mathrm{ft})(0.5 \mathrm{ft})\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right)
$$

$$
\mathrm{V}=1151.9 \mathrm{gal}
$$

TDEC - Fleming Training Center

Average Time, min	
120 sec, 124 sec and 128 sec	
Avg time, $\min =\frac{\mathrm{sec}_{1}}{(3)}+\mathrm{s}$	
Avg Time, $\min =\frac{120+12}{(3)(60 ~ s}$	
Avg Time, $\min =2.0667$	
ToEC. Ferenigg Taining Cener	5

Filter Rate, gpm

(Hook Gauge)
Filter rate, gpm= volume, gal (Hook Gauge) average time, min

Filter rate, $\mathrm{gpm}=1151.9 \mathrm{gal}$ 2.0667 min

Filter rate, gpm = 557.4 gpm

Filter Efficiency

- During a filter run of 95 hours, a total of 3.78 MG was filtered. If 35,000 gallons were used to backwash, calculate the \% of the filtered water used for backwashing.
$\%$ water used $=\frac{(\text { water used, gal)(100) }}{\text { water produced, gal }}$
$=\frac{(35,000 \mathrm{gal})(100)}{3,780,000 \mathrm{gal}}$
$=0.9 \%$

Drop Tests and Rise Tests

Filtration

1. The Cartersville WTP treats and average of 2.97 MGD. The water is split equally to each of 6 filters. Each filter basin measures 10 feet wide by 20 feet long and 22 feet deep. Each filter bed measures 8 ft by 17 ft by 15 ft deep.
a. Determine the daily flow to each of the filters in gallons per minute.
b. The influent line to filter 5 is closed while the effluent remains open. Using a hook gauge and a stop watch, it is noted that the water level in the filter drops 6 inches in 70 seconds. What is the filtration rate in gallons per minute?
c. What is the filtration rate in gallon per minute per filter per square foot of surface area?
d. A hook gauge was used to determine the rate of rise in the filter basin during the backwash cycle. The water rose 6 inches in 20 seconds. What is the backwash rate in gallons per minute?
e. Calculate the filter backwash rate in gallons per minute per square foot.
f. Calculate the gallons of water used to backwash the filter if it was backwashed for 15 minutes.
g. During a filter run of 75 hours, the total volume of water filtered was 2.8 million gallons. Calculate the percent of the product water used for backwashing.

APPLIED MATH FOR WATER FI LTER MATH

BASICS

1. A filter basin and its sand bed measure 28 feet by 16 feet. Calculate its sand bed area in ft^{2}.
2. The same filter basin that measures 28 feet by 16 feet has the water drop 6 inches, what was volume in gallons of the drop test?
3. The filter drop test was timed. The test times were 68 seconds, 72 seconds and 71 seconds. What was the average time in minutes?
4. A filter measures 28 feet by 20 feet. The influent is closed and the effluent is opened and the water drops 6 inches in 2 minutes. What is the filter rate in gallons per minute?
5. A filter measures 28 feet by 20 feet. The influent is closed and the effluent is opened and the water drains down 6 " in 2 minutes. What is the filter loading rate in gallons per minute per square foot?
6. A filter measures 26 feet by 15 feet. The influent line is shut and the water drops 2.6 inches per minute. Calculate the rate of filtration in MGD.
7. A filter measures 26 feet by 15 feet and has a filter media depth of 36 inches. Assuming a backwash rate of $15 \mathrm{gpm} / \mathrm{ft}^{2}$ and 11 minutes of backwash required, how many gallons of water are required for each backwash?
8. The filter in Problem \#7 filtered 13.95 MG during the last filter run. Based on the gallons produced and the gallons required to backwash the filter, calculate the percent of the product water used for backwashing.

USE THE FOLLOWING INFORMATION FOR PROBLEMS 9a-g.

9. The Randyville Water Plant treats an average of 5.18 MGD. The water is split equally to each of the 8 filters. Each filter basin measures 12 feet wide by 16 feet long and by 24 feet deep. Each filter bed measures 12 feet by 14 feet by 11 feet deep.
a. Determine the daily flow to each of the filters in gallons per minute.
b. The influent line to Filter 6 is closed while the effluent remains open. Using a hook gauge and a stopwatch, it is noted that the water level in the filter drops 7 inches in 80 seconds. What is the filtration rate in gallons per minute?
c. What is the filtration rate in gallons per minute per filter per square foot of surface area?
d. A hook gauge was used to determine the rate of rise in the filter basin during the backwash cycle. The water rose 7 inches in 15 seconds. What is the backwash rate in gallons per minute?
e. Calculate the filter backwash rate in gallons per minute per square foot.
f. Calculate the gallons of water used to backwash the filter if it was backwashed for 15 minutes.
g. During a filter run of 95 hours the total volume of water filtered was 3.80 million gallons. Calculate the percent of the product water used for backwashing.

USE THE FOLLOWING INFORMATION FOR PROBLEMS 10a-g.
10. The Chrisburg Water Plant treats an average of 7.2 MGD. The water is split equally to each of 8 filters. Each filter basin measures 12.5 feet wide by 16.5 feet long by 24 feet deep. Each filter bed measures 12.5 feet by 14 feet by 10 feet deep.
a. Determine the daily flow to each of the filters.
b. The influent line to Filter 6 is closed while the effluent remains open. Using a hook gauge and a stopwatch, it is noted that the water level in the filter drops 6 inches in 69 seconds on test 1,6 inches in 67 seconds on test 2 and 6 inches in 70 seconds on test 3 . What is the filtration rate in gallons per minute?
c. What is the filtration rate in gallons per minute per square foot of surface area?
d. A hook gauge was used to determine the rate of rise in the filter basin during the backwash cycle. The water rose 6 inches in 13 seconds. What is the backwash rate in gallons per minute?
e. Calculate the filter backwash rate in gallons per minute per square foot.
f. Calculate the gallons of water used to backwash the filter if it was backwashed for 20 minutes.
g. During a filter run of 95 hours the total volume of water filtered was 3.74 million gallons. Calculate the percent of the product water used for backwashing.
11. Calculate the filtration rate in $\mathrm{gpm} / \mathrm{ft}^{2}$ for a filter with a sand area of 26 feet by 22 feet when the applied flow is 2.36 MGD.
12. Determine the filtration rate in $\mathrm{gpm} / \mathrm{ft}^{2}$ for a filter with a surface of 28 feet by 20 feet. With the influent valve closed, the water above the filter dropped 12 inches in 4 minutes.
13. A filter measures 26 feet by 15 feet. The influent line is shut and the water drops 2.6 inches per minute, calculate the rate of filtration in MGD.
14. The filter in Problem \#13 has a filter media depth of 36 inches. Assuming a backwash rate of $15 \mathrm{gpm} / \mathrm{ft}^{2}$ and 6 minutes of backwash, how many gallons of water is required for each backwash?
15. A filter plant has 6 filters, each measuring 20 feet $X 15$ feet. One filter is out of service. The other five filters are capable of filtering 500 GPM each. How many gallons per minute per square foot will each filter?
16. A filter is 30 feet $X 20$ feet. If, when the influent valve is closed, the water above the filter drops 3.7 inches per minute, what is the rate of filtration in MGD?
17. Determine the backwash pumping rate in gallonsper minute for a filter 33 feet by 21 feet if the desired backwash rate is $17 \mathrm{GPM} / \mathrm{ft}^{2}$.
18. Determine the volume of water in gallons required to backwash the filter in the previous problem if the filter is backwashed for 6 minutes.
19. During a filter run the total volume of water filtered was 14.65 million gallons. When the filter was backwashed, 72,560 gallons of water were used. Calculate the percent of the filtered water used for backwashing.

USE THE FOLLOWING INFORMATION FOR PROBLEMS 21a - 21g
(put your thinking cap on)
20. The Billyville Water Treatment Plant treats an average of 8.0 MGD. The water is split equally to each of four filters. Each filter basin measures 35 feet long by 19 feet wide and has a divider wall jutting out into the middle measuring 1 foot by 16 feet. Each filter basin contains two filter beds, each measuring 17 feet by 16 feet. The filter basins are 12 feet deep.

a. Determine the daily flow to each of the filters.
b. The influent line to Filter 1 is closed while the effluent remains open. Using a hook gauge and a stopwatch, it is noted that the water level in the filter drops 6 inches in 93 seconds. What is the filtration rate in gallons per minute?
c. What is the filtration rate in gallons per minute per square foot of surface area?
d. A hook gauge was used to determine the rate of rise in the filter basin during the backwash cycle. The water rose 6 inches in 19.5 seconds. What is the backwash rate in gallons per minute?
e. Calculate the filter backwash rate in gallons per minute per square foot.
f. Calculate the gallons of water used to backwash the filter if it was backwashed for 11 minutes.
g. During a filter run of 117 hours the total volume of water filtered was 8.78 million gallons. Calculate the percent of the product water used for backwashing.

Answers:

1. $448 \mathrm{ft}^{2}$
2. 1675.5 gal
3. 1.17 min
4. 1047.2 gpm
5. $1.87 \mathrm{gpm} / \mathrm{ft}^{2}$
6. 0.91 MGD
7. 64,350 gallons
8. 0.46%
9. a. $450 \mathrm{gpm} / \mathrm{filter}$
b. $\quad 628 \mathrm{gpm}$
c. $\quad 3.74 \mathrm{gpm} / \mathrm{ft}^{2}$
d. $\quad 2932 \mathrm{gpm}$
e. $\quad 17.5 \mathrm{gpm} / \mathrm{ft}^{2}$
f. 43,980 gallons
g. 1.2%
10. a. $0.9 \mathrm{MGD} / \mathrm{filter}$
b. $\quad 674 \mathrm{gpm}$
c. $\quad 3.85 \mathrm{gpm} / \mathrm{ft}^{2}$
d. $3,020 \mathrm{gpm}$
e. $\quad 17.3 \mathrm{gpm} / \mathrm{ft}^{2}$
f. 60,400 gallons
g. 1.6%
11. $2.87 \mathrm{gpm} / \mathrm{ft}^{2}$
12. $1.87 \mathrm{gpm} / \mathrm{ft}^{2}$
13. 0.91 MGD
14. 35,100 gallons
15. $1.67 \mathrm{gpm} / \mathrm{ft}^{2}$
16. 2.0 MGD
17. $11,781 \mathrm{gpm}$
18. 70,686 gallons
19. 0.5%
20. a. $2.0 \mathrm{MGD} / \mathrm{filter}$
b. $\quad 1565.97 \mathrm{gpm}$
c. $\quad 2.9 \mathrm{gpm} / \mathrm{ft}^{2}$
d. 6260 gpm
e. $\quad 11.5 \mathrm{gpm} / \mathrm{ft}^{2}$
f. $68,860 \mathrm{gal}$
g. 0.78%

Section 11

Coagulation / Flocculation

Coagulation and Flocculation
 Calculating dosages, conversions and feeder settings

TDEC - Fleming Training Center

Calculating Pounds/ Day

- A water plant treats 5.8 MGD. If the alum dose is $19 \mathrm{mg} / \mathrm{L}$, how many pounds per day of alum will the operator feed?
$\mathrm{lbs}=($ dose, $\mathrm{mg} / \mathrm{L})($ volume, MG$)(8.34 \mathrm{lb} / \mathrm{gal})$
$=(19 \mathrm{mg} / \mathrm{L})(5.8 \mathrm{MG})(8.34 \mathrm{lb} / \mathrm{gal})$
$=919 \mathrm{lbs} /$ day alum

TDEC - Fleming Training Center

Liquid Feeder Setting

- An operator wants to feed $11 \mathrm{mg} / \mathrm{L}$ of alum for a flow of 1.2 MGD. The alum contains 643 mg of dry chemical per milliliter of liquid. What would be the setting on the liquid alum feeder in $\mathrm{mL} / \mathrm{min}$?
$\mathrm{mL} / \mathrm{min}=($ dose, $\mathrm{mg} / \mathrm{L})($ flow, gpd $)(3.785 \mathrm{~L} /$ gal $)$
(chem. conc., $\mathrm{mg} / \mathrm{mL}$)($1440 \mathrm{~min} /$ day)
$=(11 \mathrm{mg} / \mathrm{L})(1,200,000 \mathrm{gpd})(3.785 \mathrm{~L} / \mathrm{gal})$
$(643 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} /$ day $)$
$=54 \mathrm{~mL} / \mathrm{min}$
TDEC - Fleming Training Center

Liquid Feeder Setting

- A water plant treats 10 MGD with $25 \mathrm{mg} / \mathrm{L}$ liquid alum. How many gallons per day will be used? The alum contains 5.35 lbs dry alum per gallon.
gpd $=($ chem. dose, $\mathrm{mg} / \mathrm{L})($ flow, MGD$)(8.34 \mathrm{lbs} / \mathrm{gal})$ chem. conc., lbs/gal
$=(25 \mathrm{mg} / \mathrm{L})(10 \mathrm{MGD})(8.34 \mathrm{lbs} / \mathrm{gal})$
$5.35 \mathrm{lbs} / \mathrm{gal}$
$=390 \mathrm{gal} /$ day
TDEC - Fleming Training Center

Ferric Chloride

- A plant has just switched from alum to ferric chloride. Jar tests indicate that $9.3 \mathrm{mg} / \mathrm{L}$ should be fed to treat 5.0 MGD . How many $\mathrm{mL} / \mathrm{min}$ should be fed if each mL of solution contains 594 mg dry chemical?
$\mathrm{mL} / \mathrm{min}=($ dose, $\mathrm{mg} / \mathrm{L})($ flow, gpd $)(3.785 \mathrm{~L} /$ gal $)$ (chem. conc., $\mathrm{mg} / \mathrm{mL}$)($1440 \mathrm{~min} /$ day $)$
$=(9.3 \mathrm{mg} / \mathrm{L})(5,000,000 \mathrm{gpd})(3.785 \mathrm{~L} / \mathrm{gal})$
$(594 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} /$ day $)$
$=206 \mathrm{~mL} / \mathrm{min}$
TDEC - Fleming Training Center

Coagulation/Flocculation

1. The average flow for a water plant is 5.2 MGD. A jar test indicates that the best alum dosage is $3.5 \mathrm{mg} / \mathrm{L}$. How many pounds per day will the operator feed?
2. The average flow for a water plant 1,200,000 gallons per day. A jar test indicates that the best alum dosage is $1.8 \mathrm{mg} / \mathrm{L}$. How many grams per minute should the feeder deliver?
3. A plant used 39 pounds of alum treating 3.7 MGD. Calculate the dose in mg / L.
4. Liquid polymer is supplied to a water treatment plant as a 9% solution. How many gallons of this liquid is required to make 150 gallons of 1.5% polymer solution?
5. Liquid alum delivered to a water treatment plant contains 795.4 milligrams of alum per milliliter of liquid solution. Jar test indicate that the best alum dose is 5 mg / L. Determine the setting on the liquid alum feeder in milliliters per minute if the flow is 2.8 MGD .
6. An operator has decided to switch from dry alum to liquid alum. If he feeds an average of 150 lbs of dry alum a day, how many gallons of liquid alum will he need to feed on average given the following information?

Alum, liquid: $\quad 49 \%$ concentration
$10.7 \mathrm{lbs} /$ gallon
5.4 lbs dry alum/gallon
1.335 specific gravity

APPLIED MATH FOR WATER COAGULATI ON \& FLOCCULATI ON

1. The average flow for a water plant is 3.25 MGD. A jar test indicates that the best alum dosage is $2.5 \mathrm{mg} / \mathrm{L}$. How many pounds per day will the operator feed?
2. The average flow for a water plant is 13.5 MGD. The jar test indicates that the best alum dose is $1.8 \mathrm{mg} / \mathrm{L}$. How many pounds per day will the operator feed?
3. Determine the setting on a dry alum feeder in pounds per day when the flow is 1.3 MGD. Jar tests indicate that the best alum dose is $12 \mathrm{mg} / \mathrm{L}$.
4. The average flow for a water plant is 8.3 MGD. A jar test indicates that the best alum dosage is $2.2 \mathrm{mg} / \mathrm{L}$. How many grams per minute should the feeder deliver?
5. The average daily flow for a water plant is 0.75 MGD. If the polymer dosage is kept at $1.8 \mathrm{mg} / \mathrm{L}$, how many pounds of polymer will be used in 30 days?
6. The average flow for a water plant is $8,890 \mathrm{gpm}$. A jar test indicates that the best polymer dose is $3.1 \mathrm{mg} / \mathrm{L}$. How many pounds will the plant feed in one week? (Assume the plant runs 24 hour/day, 7 days/week.)
7. A water treatment plant used 27 pounds of cationic polymer to treat 1.6 million gallons of water during a 24 -hour period. What is the polymer dosage in mg / L ?
8. A water plant fed 130 lbs of alum treating 1.3 MGD. Calculate the dose $\mathrm{in} \mathrm{mg} / \mathrm{L}$.
9. A water plant fed 52 grams per minute of dry alum while treating 2.6 MGD. Calculate the mg / L dose.
10. Liquid polymer is supplied to a water treatment plant as an 8% solution. How many gallons of this liquid polymer should be used to make 200 gallons of a 0.7% polymer solution?
11. Liquid polymer is supplied to a water treatment plant as an 8% solution. How many gallons of this liquid polymer should be used to make 5 gallons of a 5% polymer solution?
12. Liquid polymer is supplied to a water treatment plant as an 8% solution. How many gallons of liquid polymer should be used to make 55 gallons of a 0.5% polymer solution?
13. Liquid alum delivered to a water treatment plant contains 642.3 milligrams of alum per milliliter of liquid solution. Jar tests indicate that the best alum dose is $8 \mathrm{mg} / \mathrm{L}$. Determine the setting on the liquid alum chemical feeder in milliliters per minute if the flow is 2.2 MGD.
14. You collect three 2-minute samples from an Alum dry feeder. What is the feed rate in mg / L when the flow rate is 2 MGD ?

Sample $1=25$ grams
Sample $2=22$ grams
Sample $3=24$ grams
15. A water plant is treating 8.2 MGD with $2.0 \mathrm{mg} / \mathrm{L}$ liquid alum. How many gpd of liquid alum will be required? The liquid alum contains 5.36 lbs dry alum/gallon.
16. A jar test indicates the $3.4 \mathrm{mg} / \mathrm{L}$ of liquid alum is required in treating 7.6 MGD. How many $\mathrm{mL} / \mathrm{min}$ should the metering pump deliver? The liquid alum delivered to the plant contains 645 mg alum per mL of liquid solution.
17. A jar test indicates that $1.8 \mathrm{mg} / \mathrm{L}$ of liquid ferric chloride should be fed to treat 2,778 gpm of water. How many mL/min should be fed by a metering pump? Ferric chloride contains 4.59 lbs dry chemical per gallon of liquid solution.
18. An operator has decided to switch from dry alum to liquid alum. If he feeds an average of 100 lbs of dry alum a day, how many gallons of liquid alum will he need to feed on average given the following information:

Alum, liquid:
48.5\% concentration
$11.13 \mathrm{lbs} /$ gallon
5.40 lbs dry alum/gallon
1.335 Specific Gravity
19. If an operator wants to switch from dry ferric chloride to liquid ferric chloride, how many gallons per day would he have to feed if he normally feeds 200 lbs of dry ferric daily? Plant flow rate is 4 MGD. What would be the feed rate in milliliters per minute?

Ferric Chloride: 39\% concentration
$11.76 \mathrm{lbs} /$ gallon
4.59 dry lbs of $\mathrm{FeCl}_{2} /$ gallon
1.41 Specific Gravity
20. Based on the information provided below calculate the milligrams of alum per milliliter of solution. If jar test results indicate that the best dosage is $25 \mathrm{mg} / \mathrm{L}$, what is the feed rate in $\mathrm{mL} / \mathrm{min}$? The plant flow rate is 6 MGD .

Alum, liquid
48.5\% concentration
$11.13 \mathrm{lbs} /$ gallon
5.40 lbs dry alum/gallon
1.335 Specific Gravity
21. Based on the information provided below calculate the milligrams of ferric chloride per milliliter of solution. If jar test results indicate that the best dosage is $7 \mathrm{mg} / \mathrm{L}$, what is the feed rate in $\mathrm{mL} / \mathrm{min}$? The plant flow rate is 6 MGD.

Ferric Chloride: 39% concentration
$11.76 \mathrm{lbs} /$ gallon
4.59 dry lbs of $\mathrm{FeCl}_{2} /$ gallon
1.41 Specific Gravity

ANSWERS:

1. $\quad 67.8 \mathrm{lbs} /$ day
2. $\quad 202.7 \mathrm{lbs} /$ day
3. $130 \mathrm{lbs} /$ day
4. $\quad 48 \mathrm{grams} / \mathrm{min}$
5. $\quad 337.8 \mathrm{lbs}$
6. $2,316.5 \mathrm{lbs}$
7. $2 \mathrm{mg} / \mathrm{L}$
8. $\quad 12 \mathrm{mg} / \mathrm{L}$
9. $\quad 7.6 \mathrm{mg} / \mathrm{L}$
10. $\quad 17.5$ gallons
11. $\quad 3.1$ gal
12. $\quad 3.4 \mathrm{gal}$
13. $\quad 72 \mathrm{~mL} / \mathrm{min}$
14. $\quad 2.25 \mathrm{mg} / \mathrm{L}$
15. $\quad 25.5 \mathrm{gal} /$ day
16. $\quad 105.3 \mathrm{~mL} / \mathrm{min}$
17. $\quad 34.4 \mathrm{~mL} / \mathrm{min}$
18. $\quad 18.5$ gallons
19. $43.6 \mathrm{gal} /$ day
$114.5 \mathrm{~mL} / \mathrm{min}$
20. $\quad 647.14 \mathrm{mg} / \mathrm{mL}$
$609.3 \mathrm{~mL} / \mathrm{min}$
21. $\quad 550.07 \mathrm{mg} / \mathrm{mL}$
$200.7 \mathrm{~mL} / \mathrm{min}$

APPLI ED MATH FOR WATER COAGULATI ON \& FLOCCULATI ON PRACTI CE QUIZ

1. The average flow for a water plant is 6.3 MGD. A jar test indicates that the best alum dosage is $19 \mathrm{mg} / \mathrm{L}$. How many pounds per day will the operator feed?
2. Determine the setting on a dry alum feeder when the flow is 5.4 MGD. J ar tests indicate that the best alum dose is $8 \mathrm{mg} / \mathrm{L}$. What would be the setting in grams per minute?
3. The average daily flow for a water plant is 7.5 MGD. Jar test results indicate the best polymer dosage is $1.8 \mathrm{mg} / \mathrm{L}$. How many pounds of polymer will be used in 90 days?
4. A water treatment plant used 14 pounds of cationic polymer to treat 2.0 million gallons of water during a 24 -hour period. What is the polymer dosage in mg / L ?
5. A water plant fed 48.5 grams per minute while treating 2.2 MGD. Calculate the mg / L dose.
6. Liquid polymer is supplied to a water treatment plant as an 8% solution. How many gallons of liquid polymer should be used to make 200 gallons of a 1.0\% polymer solution?
7. Liquid alum delivered to a water treatment plant contains 642.3 milligrams of alum per milliliter of liquid solution. J ar tests indicate that the best alum dose is $15 \mathrm{mg} / \mathrm{L}$. Determine the setting on the liquid alum chemical feeder in milliliters per minute when the flow is 7.2 MGD. There are 3.785 liters in one gallon.
8. A water plant is treating 1.8 MGD with $2.0 \mathrm{mg} / \mathrm{L}$ liquid alum. How many gpd of liquid alum will be required? The liquid alum contains 5.36 lbs dry alum/gallon.
9. A jar test indicates the $4.3 \mathrm{mg} / \mathrm{L}$ of liquid alum is required in treating 6.7 MGD. How many $\mathrm{mL} / \mathrm{min}$ should the metering pump deliver? The liquid alum delivered to the plant contains 645 mg alum per mL of liquid solution.
10. An operator has decided to switch from dry alum to liquid alum. If he feeds 114 lbs of dry alum on average a day, how many gallons of liquid alum will he need to feed on average given the following information:

Alum, liquid	48.5% concentration
	$11.13 \mathrm{lbs} /$ gallon
	5.40 lbs dry alum/gallon
	1.335 Specific Gravity

11. Based on the information provided below calculate the milligrams of ferric chloride per milliliter of solution. If jar test results indicate that the best dosage is $21 \mathrm{mg} / \mathrm{L}$, what is the feed rate in $\mathrm{mL} / \mathrm{min}$? The plant flow rate is 7.5 MGD .

Ferric Chloride 39% concentration
$11.76 \mathrm{lbs} /$ gallon
$4.59 \mathrm{dry} \mathrm{lbs} /$ gallon
1.41 Specific Gravity

ANSWERS:

1. $998.3 \mathrm{lbs} /$ day
2. $\quad 113.5$ grams $/ \mathrm{min}$
3. $10,133.1 \mathrm{lbs}$
4. $\quad 0.84 \mathrm{mg} / \mathrm{L}$
5. $\quad 8.39 \mathrm{mg} / \mathrm{L}$
6. 25 gal
7. $\quad 442 \mathrm{~mL} / \mathrm{min}$
8. $\quad 5.6$ gpd
9. $\quad 117.4 \mathrm{~mL} / \mathrm{min}$
10. $\quad 21.1$ gpd
11. $\quad 550.07 \mathrm{mg} / \mathrm{mL} ; 752.6 \mathrm{~mL} / \mathrm{min}$

Section 12

Feeders

Dry Feeder Calibration

- To check the feed rate of a dry feeder, an operator collects 4 samples. Each sample is collected for I minute. What is the average feed rate?
$\begin{array}{ll}\text { Sample I: I7.6 grams } & \text { Sample } 3: \text { I } 7.5 \text { grams } \\ \text { Sample } 2: \text { I7.I grams } & \text { Sample } 4: \text { I } 7.8 \text { grams }\end{array}$

Average $=\frac{17.6 \mathrm{~g}+17.1 \mathrm{~g}+17.5 \mathrm{~g}+17.8 \mathrm{~g}}{4}$
Average $=\frac{70 \mathrm{~g}}{4}=17.5 \mathrm{~g}$

6 TDEC - Fleming Training Center

Liquid Feeder Calibration

- A chemical feeder delivers 620 milliliters of liquid alum in

3 minutes. What is the average feed rate in $\mathrm{mL} / \mathrm{min}$?

620 mL
 3 min

Converting Feed Rate to Total Usage

$\frac{620 \mathrm{~mL}}{3 \mathrm{~min}}=206.7 \mathrm{~mL} / \mathrm{min}$
TDEC - Fleming Training Center
7

| Converting Feed Rate to Total Usage |
| :---: | :---: |
| , When converting from |
| one unit to another you |
| must know: |
| , Conversion factor |
| - Whether to multipl or |
| divide |

Conversions

- Convert 206.7 mL/min to gallons per hour.
$\frac{206.7 \mathrm{~mL}}{\min } \times \frac{1 \mathrm{gal}}{3785 \mathrm{~mL}} \times \frac{60 \mathrm{~min}}{1 \text { hour }}=3.3 \mathrm{gal} / \mathrm{hr}$ 10 TDEC - Fleming Training Center

Conversions
$\frac{165 \text { gat }}{\text { day }} \times \frac{3785 \mathrm{~mL}}{1 \text { gat }} \times \frac{1 \text { day }}{1440 \text { min }}=433.7 \mathrm{~mL} / \mathrm{min}$
11

Feeders

1. An operator collections 5 three-minute samples from a dry feeder. Based on the information given, determine the average grams per min.

Sample $1=37.8$ grams
Sample $2=38.3$ grams
Sample $3=35.6$ grams
2. What is the average dose in mg / L for the feeder in the previous question if the plant treats 3.9 MGD?

APPLI ED MATH FOR WATER FEEDER MATH

1.a. An operator is checking the calibration on a chemical feeder. The feeder delivers 102 grams in 5 minutes. How many grams per minute does the feeder deliver?
1.b. How many pounds per day does the feeder deliver?
2.a. An operator checks the calibration of a dry feeder by catching samples and weighing them on a balance. Each catch lasts 1 minute. Calculate the average feed rate in grams per minute based on the following data:

Sample 1 weighs 37.0 grams
Sample 2 weighs 36.2 grams
Sample 3 weighs 39.4 grams
Sample 4 weighs 38.6 grams
2.b. How many pounds per hour is being fed?
3.a. An operator collects 3 two-minute samples from a dry feeder:

Sample 1 weighs 22.2 grams
Sample 2 weighs 24.0 grams
Sample 3 weighs 21.9 grams
What is the average grams per minute?
3.b. What is the average dose in mg / L for the feeder in question 3.a. if the plant treats 420,000 gpd?
4.a. An operator collects 5 two-minute samples from a dry feeder:

Sample 1 weighs 49.2 grams
Sample 2 weighs 44.0 grams
Sample 3 weighs 41.9 grams
Sample 4 weighs 48.3 grams
Sample 5 weighs 47.6 grams
What is the average grams per minute?
4.b. What is the average dose in mg / L if the plant treats $1,200,000 \mathrm{gpd}$?
5.a. A chemical feeder calibration is tested using a $1,000 \mathrm{ml}$ graduated cylinder. The cylinder filled to 850 ml in a 3 minute test. What is the chemical feed rate in milliliters per minute?
5.b. What is the chemical feed rate in gallons per minute?
5.c. What is the chemical feed rate in gallons per day?
6.a. A chemical feeder draws a liquid chemical from a one-liter ($1,000 \mathrm{ml}$) graduated cylinder for 30 seconds. At the end of 30 seconds, the graduated cylinder has 400 ml remaining. What is the chemical feed rate in milliliters per minute?
6.b. What is the chemical feed rate in gallons per minute?
6.c. What is the chemical feed rate in gallons per day?
7. A water plant treats 3.5 MGD with a dose of $2.2 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$. If the water plant uses 257 gallons of permanganate per day, how many $\mathrm{ml} / \mathrm{min}$ must be pumped?
8.a. A water plant treats 8.5 MGD with a dose of $1.7 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$. How many gpd of permanganate must be used? $\left(\mathrm{KMnO}_{4}\right.$ was made up at 0.25 lbs per 1 gallon of water)
8.b. How many $\mathrm{ml} / \mathrm{min}$ must be pumped?
8.c. If the water plant uses 3 potassium permanganate pumps, how many $\mathrm{ml} / \mathrm{min}$ must be pumped by each?
9. KMnO_{4} has been made according to the manufacturer recommendations (30 $\mathrm{mg} / \mathrm{mL}$). The water plant operators wants to dose 3.6 MGD with $2.0 \mathrm{mg} / \mathrm{L}$ $\mathrm{KMnO4}$. How many $\mathrm{ml} / \mathrm{min}$ must be delivered by the metering pump?

Answers:

1.a. $\quad 20.4$ grams/min
1.b. $\quad 64.76 \mathrm{lbs} /$ day
2.a. $\quad 37.8$ grams/min
2.b. $5 \mathrm{lbs} /$ hour
3.a. $\quad 11.35 \mathrm{grams} / \mathrm{min}$
3.b. $\quad 10.3 \mathrm{mg} / \mathrm{L}$
4.a. $\quad 23.1 \mathrm{grams} / \mathrm{min}$
4.b. $\quad 7.3 \mathrm{mg} / \mathrm{L}$
5.a. $\quad 283.3 \mathrm{ml} / \mathrm{min}$
5.b. $\quad 0.0748 \mathrm{gal} / \mathrm{min}$
5.c. $\quad 107.7 \mathrm{gpd}$
6.a. $\quad 1200 \mathrm{ml} / \mathrm{min}$
6.b. $\quad 0.32 \mathrm{gal} / \mathrm{min}$
6.c. $\quad 456.5 \mathrm{gpd}$
7. $\quad 675.5 \mathrm{ml} / \mathrm{min}$
8.a. $\quad 482.052 \mathrm{gpd}$
8.b. $\quad 1267 \mathrm{ml} / \mathrm{min}$
8.c. $\quad 422.3 \mathrm{ml} / \mathrm{min}$
9. $\quad 630.83 \mathrm{ml} / \mathrm{min}$

APPLIED MATH FOR WATER FEEDER MATH PRACTI CE QUIZ

1. An operator collects 3 two-minute samples from a dry feeder:

Sample 1 weighs 47.3 grams
Sample 2 weighs 44.8 grams
Sample 3 weighs 42.4 grams
The water plant is treating 4.5 MGD. What is the average dose in mg/L?
2. A chemical feeder feeds a liquid chemical to a 1000 mL graduated cylinder for 48 seconds. At the end of the 48 seconds, the graduated cylinder is completely full. What is the chemical feed rate for the metering pump in gallons per day?
3. A water plant used 167 gallons of a liquid chemical in one day. How many $\mathrm{mL} / \mathrm{min}$ was pumped?
4. The operator measured the amount of dry chemical fed in one day as 114.5 lbs . How many grams/min should the dry feeder have delivered?
5. How many grams in one pound?
6. How many milliliters in one gallon?
7. How many milligrams in one pound?
8. How many liters in one gallon?

ANSWERS:

1. $\quad 1.9 \mathrm{mg} / \mathrm{L}$
2. $\quad 475.6 \mathrm{gpd}$
3. $439 \mathrm{~mL} / \mathrm{min}$
4. $\quad 36.1 \mathrm{~g} / \mathrm{min}$
5. 453.6
6. 3,785
7. 453,600
8. 3.785

Section 13

Pre-treatment and Lab

Copper Sulfate

- Dosage depends on alkalinity and pH .
- If methyl-orange alkalinity is $<50 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}, a dosage of $0.3 \mathrm{mg} / \mathrm{L}$ is recommended, based on total lake volume.
- If methyl-orange alkalinity is $>50 \mathrm{mg} / \mathrm{L}$ as $\mathrm{CaCO}_{3}, 1 \mathrm{mg} / \mathrm{L}$ for the upper 2 ft of the volume of the lake is recommended.

Copper Sulfate Problem

- If the methyl-orange alkalinity is $40 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat a pond with a volume of 32 acre-ft?

Copper sulfate $=(0.9 \mathrm{lbs} /$ acre- ft$)($ volume, acre-ft $)$

$$
=(0.9 \mathrm{lbs} / \mathrm{acre-ft})(32 \text { acre-ft) }
$$

$=28.8 \mathrm{lbs}$ copper sulfate

Potassium Permanganate

- Potassium permanganate oxidizes iron and manganese, and may be helpful in controlling algae in reservoirs.

KMnO_{4} Solutions

- I want to make a 3% solution of KMnO_{4}. What \% by weight would 15 lbs. KMnO_{4} in 55 gallons of water give me?

Permanganate Dosage

- It takes $1.92 \mathrm{mg} / \mathrm{L}$ of KMnO_{4} to oxidize 1 mg of manganese. How much KMnO_{4} will be needed to treat $1.65 \mathrm{mg} / \mathrm{L}$ of manganese?

$$
\begin{aligned}
\begin{aligned}
\% \text { by } \\
\text { weight }
\end{aligned} & =\frac{\text { Weight of chemical, lbs }}{\text { Weight of water, lbs + Weight of chemical, lbs }} \\
& =\frac{15 \mathrm{lbs}}{(55 \mathrm{gal})(8.34 \mathrm{lbs} / \mathrm{gal})+15 \mathrm{lbs}} \\
& =\frac{15 \mathrm{lbs} .}{458.7 \mathrm{lbs}+15 \mathrm{lbs}}=\underline{15 \mathrm{bs}} 473.7 \mathrm{lbs}
\end{aligned}
$$

Laboratory Solutions

- You want to make up a standard solution of KMnO_{4} for a jar test. How would you make a $.01 \%$ solution from 10 mL of a 3.0% solution?
$\left(\right.$ Concentration $\left._{1}\right)\left(\right.$ Volume $\left._{1}\right)=\left(\right.$ Concentration $\left._{2}\right)\left(\right.$ Volume $\left._{2}\right)$
$(.03)(10 \mathrm{~mL})=(.0001)(\mathrm{x} \mathrm{mL})$
$(.03)(10 \mathrm{~mL})=(\mathrm{x} \mathrm{mL})$
(.0001)
$3000 \mathrm{~mL}=\mathrm{x}$
TDEC - Fleming Training Center \bigcirc

Laboratory Solutions

- How many mL of water should be added to 20 mL of a 5.0 N solution to make a .8 N solution?
$\left(\right.$ Normality $\left._{1}\right)\left(\right.$ Volume $\left._{1}\right)=\left(\right.$ Normality $\left._{2}\right)\left(\right.$ Volume $\left._{2}\right)$
$(5 \mathrm{~N})(20 \mathrm{~mL})=(.8 \mathrm{~N})(\mathrm{x} \mathrm{mL})$
$x \mathrm{~mL}=(5 \mathrm{~N})(20 \mathrm{~mL})=100 \mathrm{~mL}=125 \mathrm{~mL}$ (.8N)
$125 \mathrm{~mL}-20 \mathrm{~mL}=105 \mathrm{~mL}$
TDEC- Fleming Training Center ○○○ \bigcirc

Pre-treatment and Lab

1. A holding pond measures 550 feet by 1075 feet and has an average depth of 12 feet.
a. What is the volume of the pond in acre-feet?
b. What is the volume of the pond in million gallons?
c. If the Methyl Orange alkalinity is $21 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat the water for algal problems?
d. If the Methyl Orange alkalinity is $72 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat the water for algal problems?
2.a. Carus Chemicals recommends a 5% permanganate solution. If $2.0 \mathrm{lbs} \mathrm{KMnO}_{4}$ is dissolved in 10 gallons of water, what is the $\%$ by weight?
b. To produce a 5% solution, how many pounds of KMnO_{4} should be dissolved in a tank 4.0 feet in diameter and filled to a depth 4.5 feet?
c. Your raw water has $1.6 \mathrm{mg} / \mathrm{L}$ of iron. How much KMnO_{4} should be used to treat the iron? Each 1.0 ppm requires $0.91 \mathrm{mg} / \mathrm{L}$ of KMnO_{4}.
d. Your raw water has $6.2 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used to treat manganese? Each 1.0 ppm of manganese requires $1.92 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$.
e. Your raw water has $0.4 \mathrm{mg} / \mathrm{L}$ of iron and $3.4 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used? (Each 1.0 ppm requires $0.91 \mathrm{mg} / \mathrm{L}$ of KMnO_{4}; each 1.0 ppm of manganese requires $1.92 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$)
f. Carus Chemicals recommends a 5\% permanganate solution mixed at a ratio of 0.25 lbs per 1 gallons of water. How many mg of KMnO_{4} is there per mL of solution?
g. The water plant is treating 3.0 MGD and the operator has determined that the KMnO_{4} dose should be $3.9 \mathrm{mg} / \mathrm{L}$. How many $\mathrm{mL} / \mathrm{min}$ must be pumped to obtain this dose? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lb} / \mathrm{gal}$)

Applied Math for Water Laboratory Solutions

1. A laboratory solution is made using 52 milligrams of Sodium Chloride (NaCl) dissolved in a 1 liter volumetric flask filled to the mark. What is the mg / L concentration of the solution?
2. If 33 lbs of a chemical is added to 148 lbs of water, what is the $\%$ strength by weight?
3. You need 1 liter of 0.1 N HCl and you have 10 N on hand. How many mL's of the 10 N do you need to make 1 liter?
4. $\quad 250 \mathrm{~mL}$ of 3 N NaOH is diluted to 1000 mL . What is the new normality of the solution?
5. 500 mL of 10 N NaOH is diluted to 1 liter. What is the new normality of the solution?
6. You are given 20 mL of 30 NHCl . How many mL's of water should be added to make 1.1N HCl?
7. An operator needs a 0.1 N solution in order to conduct an analysis. The operator has 1.5 N solution on hand. How much (mL) of the 1.5 N solution is needed to make 1 liter of 0.1 N solution?
8. An operator needs a 0.1 N solution in order to conduct an analysis. The operator has 2.0 N solution on hand. How many milliliters of the 2.0 N solution is needed to make 1 liter of 0.1 N solution?
9. $\quad 450 \mathrm{~mL}$ of 5 N NaOH is diluted to 1 liter. What is the new normality of the solution?
10. You are given 8 mL of $15 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. How much water (in mL) should be added to make $0.4 \mathrm{NH}_{2} \mathrm{SO}_{4}$?
11. An operator needs a 0.2 N solution and has 2.5 N on hand. How much (in mL) of the 2.5 N solution is needed to make one-half liter of 0.2 N solution?

Answers:

1. $52 \mathrm{mg} / \mathrm{L}$
2. 18.2%
3. $\quad 10 \mathrm{~mL}$
4. 0.75 N
5. 5 N
6. $\quad 525.45 \mathrm{~mL}$
7. $\quad 66.7 \mathrm{~mL}$
8. $\quad 50 \mathrm{~mL}$
9. 2.25 N
10. 292 mL
11. 40 mL

Applied Math for Water
 Pretreatment

Copper Sulfate

1.a. A holding pond measures 400 feet by 1213 feet and has an average depth of 10.5 feet. What is the volume of the pond in acre-ft?
b. What is the volume of the pond in million gallons?
c. If the Methyl Orange alkalinity is $28 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat the water for algal problems?
d. If the Methyl Orange alkalinity is $61 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat the water for algal problems?
2.a. A holding pond measures 2400 feet by 576 feet and has an average depth of 8.75 feet. What is the volume of the pond in acre-ft?
b. What is the volume of the pond in million gallons?
c. If the Methyl Orange alkalinity is $44 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat the water for algal problems?
d. If the Methyl Orange alkalinity is $82 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat the water for algal problems?
3. For algae control of a reservoir, a dosage of $0.5 \mathrm{mg} / \mathrm{L}$ copper is desired. The reservoir has a volume of 20 MG . How many pounds of copper sulfate (25% available copper) will be required?
4. The desired copper sulfate dose in a reservoir is $5 \mathrm{mg} / \mathrm{L}$. The reservoir has a volume of 62 acre-ft. How many lbs of copper sulfate (25% available copper) will be required?
5. A pond has an average length of 250 ft , an average width of 75 ft and an average depth of 10 ft . If the desired dose of copper sulfate is $0.8 \mathrm{lbs} /$ acre ft , how many pounds of copper Sulfate will be required?

Potassium Permanganate

1.a. Carus Chemicals recommends a 3% permanganate solution. If $2.5 \mathrm{lbs} \mathrm{KMnO}_{4}$ is dissolved in 10 gallons of water, what is the $\%$ by weight?
b. To produce a 3% solution, how many pounds KMnO_{4} should be dissolved in a tank 3.5 feet in diameter and filled to a depth of 4.25 feet?
c. Your raw water has $1.8 \mathrm{mg} / \mathrm{L}$ of iron. How much KMnO_{4} should be used to treat the iron? (Each 1.0 ppm of Iron requires $0.91 \mathrm{mg} / \mathrm{L}$ of KMnO_{4})
d. Your raw water has $6.6 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used to treat manganese? (Each 1.0 ppm of Manganese requires $1.92 \mathrm{mg} / \mathrm{L}$ of KMnO_{4})
e. Your raw water has $0.2 \mathrm{mg} / \mathrm{L}$ of iron and $2.9 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used? ($0.91 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$ per 1.0 ppm Fe ; $1.92 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$ per 1.0 ppm Mn)
f. Carus Chemicals recommends a 3\% permanganate solution mixed at a ratio of 0.25 lbs per 1 gallon of water. How many $\mathrm{mg} \mathrm{KMnO}_{4}$ is there per mL of solution?
g. Carus Chemicals recommends a 3\% permanganate solution mixed at a ratio of 0.25 lbs per 1 gallon of water. If 55 gallons of KMnO_{4} is made at this ratio, how many pounds of chemical are required?
h. The water plant is treating 2.0 MGD and the operator has determined that the KMnO_{4} dose should be $4.6 \mathrm{mg} / \mathrm{L}$. How many $\mathrm{mL} / \mathrm{min}$ must be pumped to obtain this dose? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lbs} / \mathrm{gal}$)
i. The water plant is treating 11.2 MGD and the operator has determined that the KMnO_{4} dose should be $2.3 \mathrm{mg} / \mathrm{L}$. How many $\mathrm{mL} / \mathrm{min}$ must be pumped to obtain this dose? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lbs} / \mathrm{gal}$)
j. Your raw water contains $0.7 \mathrm{mg} / \mathrm{L}$ iron and $1.2 \mathrm{mg} / \mathrm{L}$ manganese. You have determined to feed $0.4 \mathrm{mg} / \mathrm{L} \mathrm{KMnO} 44$ to overcome a taste and odor problem caused by an algal bloom in addition to the amounts required to oxidize the iron and manganese. How many $\mathrm{mL} / \mathrm{min}$ should the liquid feeder be set to feed in order to treat 9.1 MGD ? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lbs} / \mathrm{gal} ; 0.91 \mathrm{mg} / \mathrm{L}^{\mathrm{KMnO}} 44$ per $1.0 \mathrm{ppm} \mathrm{Fe} ; 1.92 \mathrm{mg} / \mathrm{L}$ KMnO_{4} per 1.0 ppm Mn)
2.a. Carus Chemicals recommends a 3% permanganate solution. If 25 lbs of KMnO_{4} are dissolved in 100 gallons of water, what is the \% by weight?
b. To produce a 3% solution, how many pounds KMnO_{4} should be dissolved in a tank 3.5 feet in diameter and filled to a depth of 3.5 feet?
c. Your raw water has $2.8 \mathrm{mg} / \mathrm{L}$ of iron. How much KMnO_{4} should be used to treat the iron? (Each 1.0 ppm of Iron requires $0.91 \mathrm{mg} / \mathrm{L}$ of KMnO_{4})
d. Your raw water has $2.0 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used to treat the manganese? (Each 1.0 ppm of Manganese requires $1.92 \mathrm{mg} / \mathrm{L}$ of KMnO_{4})
e. Your raw water has $0.2 \mathrm{mg} / \mathrm{L}$ of iron and $3.1 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used? ($0.91 \mathrm{mg} / \mathrm{L}_{\mathrm{KMnO}}^{4}$ per 1.0 ppm Fe ; $1.92 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$ per 1.0 ppm Mn)
f. Carus Chemicals recommends a 3% permanganate solution mixed at a ratio of 0.25 lbs per 1 gallon of water. How many $\mathrm{mg} \mathrm{KMnO}_{4}$ are there per 100 mL of solution?
g. Carus Chemicals recommends a 3\% permanganate solution mixed at a ratio of 0.25 lbs per 1 gallon of water. If 67 gallons of KMnO_{4} are made at this ratio, how many pounds of chemical are required?
h. The water plant is treating 14.5 MGD and the operator has determined that the KMnO_{4} dose should be $3.9 \mathrm{mg} / \mathrm{L}$. How many $\mathrm{mL} / \mathrm{min}$ must be pumped to obtain this dose? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lbs} / \mathrm{gal}$.)
i. The water plant is treating 6.5 MGD and the operator has determined that the KMnO_{4} dose should be $3.2 \mathrm{mg} / \mathrm{L}$. How many $\mathrm{mL} / \mathrm{min}$ must be pumped to obtain this dose? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lbs} / \mathrm{gal}$.)
j. Your raw water contains $2.2 \mathrm{mg} / \mathrm{L}$ of iron and $0.7 \mathrm{mg} / \mathrm{L}$ of manganese. You have determined to feed $0.5 \mathrm{mg} / \mathrm{L}_{\mathrm{KMnO}}^{4}$ to overcome a taste and odor problem caused by an algal bloom in addition to the amounts required to oxidize the iron and manganese. How many $\mathrm{mL} / \mathrm{min}$ should the liquid feeders be set to feed in order to treat 5.4 MGD? The plant flow is split evenly between two separate flash mixers. The KMnO_{4} is being introduced into each rapid mix by its own metering pump. ? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lbs} / \mathrm{gal} ; 0.91 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$ per $1.0 \mathrm{ppm} \mathrm{Fe} ; 1.92 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$ per 1.0 ppm Mn)

Answers:

Copper sulfate

1.a. $\quad 117 \mathrm{ac}-\mathrm{ft}$
b. $\quad 38.1 \mathrm{MG}$
c. $\quad 105.3 \mathrm{lbs}$
d. $\quad 60.1 \mathrm{lbs}$
2.a. $\quad 277.7 \mathrm{ac}-\mathrm{ft}$
b. 90.5 MG
c. $\quad 250 \mathrm{lbs}$
d. $\quad 171.4 \mathrm{lbs}$
e.
3. $\quad 334 \mathrm{lbs}$
4. 3370 lbs
5. $\quad 3.44 \mathrm{lbs}$

Potassium permanganate

1.a. 2.91%
b. $\quad 78.9 \mathrm{lbs}$
c. $\quad 1.64 \mathrm{mg} / \mathrm{L}$
d. $\quad 12.67 \mathrm{mg} / \mathrm{L}$
e. $\quad 5.75 \mathrm{mg} / \mathrm{L}$
f. $29.96 \mathrm{mg} / \mathrm{mL}$
g. $\quad 13.75 \mathrm{lbs}$
h. $\quad 807 \mathrm{~mL} / \mathrm{min}$
i. $\quad 2260 \mathrm{~mL} / \mathrm{min}$
j. $\quad 2667 \mathrm{~mL} / \mathrm{min}$
2.a. 2.9%
b. $\quad 64.9 \mathrm{lbs}$
c. $2.55 \mathrm{mg} / \mathrm{L}$
d. $\quad 3.84 \mathrm{mg} / \mathrm{L}$
e. $\quad 6.13 \mathrm{mg} / \mathrm{L}$
f. $\quad 2996 \mathrm{mg}$
g. $\quad 16.76 \mathrm{lbs}$
h. $\quad 4961 \mathrm{~mL} / \mathrm{min}$
i. $\quad 1823 \mathrm{~mL} / \mathrm{min}$
j. $\quad 911 \mathrm{~mL} / \mathrm{min}$

Section 14

Softening

Water Hardness

- Some textbooks define hard water as water with a hardness greater than 100 mg/L
- High hardness can cause excessive scaling in hot water heaters, inhibit the cleaning action of soaps, and cause problems for industries

3

Total Hardness

- Total hardness = calcium hardness + magnesium hardness
- Total hardness = carbonate hardness + noncarbonate hardness

Alkalinity

- The capacity of water to neutralize acids
- Expressed as mg/L CaCO_{3}
- Composed of the carbonate, bicarbonate, and hydroxide content of the water

5

Alkalinity Calculations

- The phenolphthalein alkalinity on a water sample is $62 \mathrm{mg} / \mathrm{L}$ and the total alkalinity is 94 mg / L. What is the carbonate alkalinity?
$P=62 \mathrm{mg} / \mathrm{L} \quad \mathrm{T}=94 \mathrm{mg} / \mathrm{L}$
P is greater than $1 / 2 \mathrm{~T}$
Carbonate alkalinity $=2 \mathrm{~T}-2 \mathrm{P}$

$$
\begin{aligned}
& =2(94 \mathrm{mg} / \mathrm{L})-2(62 \mathrm{mg} / \mathrm{L}) \\
& =188 \mathrm{mg} / \mathrm{L}-124 \mathrm{mg} / \mathrm{L} \\
& =64 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

6

Alkalinity Calculations

- A water sample was determined to have a phenolphthalein alkalinity of $42 \mathrm{mg} / \mathrm{L}$ and a total alkalinity of $105 \mathrm{mg} / \mathrm{L}$. What is the bicarbonate alkalinity?
$P=42 \mathrm{mg} / \mathrm{L} \quad \mathrm{T}=105 \mathrm{mg} / \mathrm{L}$
P is less than $1 / 2 T$
bicarbonate alkalinity $=\mathrm{T}-2 \mathrm{P}$
$=105 \mathrm{mg} / \mathrm{L}-2(42 \mathrm{mg} / \mathrm{L})$
$=105 \mathrm{mg} / \mathrm{L}-84 \mathrm{mg} / \mathrm{L}$
$=21 \mathrm{mg} / \mathrm{L}$

Alkalinity Calculations

- A water sample was determined to have a phenolphthalein alkalinity of $42 \mathrm{mg} / \mathrm{L}$ and a total alkalinity of $105 \mathrm{mg} / \mathrm{L}$. What is the carbonate alkalinity?
$P=42 \mathrm{mg} / \mathrm{L} \quad \mathrm{T}=105 \mathrm{mg} / \mathrm{L}$
P is less than $1 / 2 T$
carbonate alkalinity $=2 \mathrm{P}$

$$
\begin{aligned}
& =2(42 \mathrm{mg} / \mathrm{L}) \\
& =84 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

8

Hardness Calculations

- If the total alkalinity on a sample is $78 \mathrm{mg} / \mathrm{L}$ and the total hardness is $86 \mathrm{mg} / \mathrm{L}$, what is the noncarbonate hardness?
$\mathrm{TA}=78 \mathrm{mg} / \mathrm{L} \quad \mathrm{TH}=86 \mathrm{mg} / \mathrm{L}$
TH is greater than TA
noncarbonate hardness $=\mathrm{TH}-\mathrm{TA}$

$$
=86 \mathrm{mg} / \mathrm{L}-78 \mathrm{mg} / \mathrm{L}
$$

$$
=8 \mathrm{mg} / \mathrm{L}
$$

10

Alkalinity Titrations

- Use the following titration results to calculate the carbonate, bicarbonate, and hydroxide alkalinity:
- 3.0 mL of 0.02 N H 2 SO 4 was used to reach a pH of 8.3, and a total of 12.5 mL was used to reach the Methyl-Orange endpoint in a 100 mL sample.
$T A=\underline{B \times N \times 50,000}$
mL of sample
$=(12.5 \mathrm{~mL})(0.02 \mathrm{~N})(50,000)=125 \mathrm{mg} / \mathrm{L}$

12
DEC - Fleming Training Center

Alkalinity Titrations

```
\(\mathrm{PA}=30 \mathrm{mg} / \mathrm{L}\)
\(\mathrm{TA}=125 \mathrm{mg} / \mathrm{L}\)
```

P is less than $1 / 2 T$
bicarbonate alkalinity $=T-2 P$

$$
=125 \mathrm{mg} / \mathrm{L}-2(30 \mathrm{mg} / \mathrm{L})
$$

Alkalinity Titrations

$$
=65 \mathrm{mg} / \mathrm{L}
$$

$\mathrm{PA}=30 \mathrm{mg} / \mathrm{L}$
$\mathrm{TA}=125 \mathrm{mg} / \mathrm{L}$
P is less than $1 / 2 T$
carbonate alkalinity $=2 \mathrm{P}$

$$
=125 \mathrm{mg} / \mathrm{L}-60 \mathrm{mg} / \mathrm{L}
$$

$$
\begin{aligned}
& =2(30 \mathrm{mg} / \mathrm{L}) \\
& =60 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

hydroxide alkalinity $=0$
14

Softening

- How many pounds of soda ash are required to treat 8.4 MGD with a dose of $53 \mathrm{mg} / \mathrm{L}$? The soda ash is 100% pure.
$\mathrm{lbs} / \mathrm{day}=(\underline{(\text { dose }, \mathrm{mg} / \mathrm{L})(f l o w, ~ M G D)(8.34 \mathrm{lbs} / \text { gal })}$
$\%$ purity, as decimal
$=(53 \mathrm{mg} / \mathrm{L})(8.4 \mathrm{MGD})(8.34 \mathrm{lbs} / \mathrm{gal})$
$=3713 \mathrm{lbs} / \mathrm{day}$
16

Softening

1. On a water sample the total alkalinity was $75 \mathrm{mg} / \mathrm{L}$ and the total hardness was $99 \mathrm{mg} / \mathrm{L}$. What are the carbonate and noncarbonate hardness concentrations in mg / L ?
2. It takes 5.4 mL of $0.02 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ to reach a pH of 8.3 and a total of 11.7 mL to reach the Methyl Orange end-point in a 100 mL sample. What is the carbonate, bicarbonate, and hydroxyl alkalinity in mg / L as CaCO_{3} ?
3. How many pounds per day of quicklime are required to treat 4.2 MGD with a dose of $175 \mathrm{mg} / \mathrm{L}$? The quicklime is 85% pure.

Applied Math for Water
 Softening

1. On a water sample the total alkalinity was $98 \mathrm{mg} / \mathrm{L}$ and the total hardness was $112 \mathrm{mg} / \mathrm{L}$. What is the carbonate and noncarbonate hardness concentrations in mg / L ?
2. It takes 3.2 mL of $0.02 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ to reach a pH of 8.3 and a total of 10.1 mL to reach the Methyl Orange end-point in a 100 mL sample. What is the carbonate, bicarbonate and hydroxyl alkalinity in mg / L as CaCO_{3} ?
3. It takes 4.3 mL of $0.02 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ to reach a pH of 8.3 and a total of 8.2 mL to reach the Methyl Orange end-point in a 100 mL sample. What is the carbonate, bicarbonate and hydroxyl alkalinity in mg / L as CaCO_{3} ?
4. How many pounds/day of quicklime (CaO) is required to treat 6.4 MGD with a dose of 148 mg / L. The quicklime is 85% pure.
5. How many pounds/day of soda ash $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ would be required to treat 7.3 MGD with a dose of $29.8 \mathrm{mg} / \mathrm{L}$?
6. It has been calculated that $112.5 \mathrm{mg} / \mathrm{L}$ quicklime (CaO) and $38.6 \mathrm{mg} / \mathrm{L}$ soda ash $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ are required in treating a certain water. The quicklime to be used is 92% pure; the soda ash is 100% pure, and the plant flow is 1.6 MGD. How many pounds per day of quicklime and soda ash should be used?

Answers:

1. $98 \mathrm{mg} / \mathrm{L}$ Carbonate hardness
$14 \mathrm{mg} / \mathrm{L}$ Noncarbonate hardness
2. Carbonate $=64 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}

Bicarbonate $=37 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Hydroxyl $=0 \mathrm{mg} / \mathrm{L}^{\text {as }} \mathrm{CaCO}_{3}$
3. Carbonate $=78 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}

Bicarbonate $=0 \mathrm{mg} / \mathrm{L}^{\text {as } \mathrm{CaCO}_{3}}$
Hydroxyl $=4 \mathrm{mg} / \mathrm{L} \mathrm{as}_{\mathrm{CaCO}}^{3}$
4. 9,294 lbs/day
5. $1,814 \mathrm{lbs} /$ day
6. $1,632 \mathrm{lbs} /$ day quicklime
$515 \mathrm{lbs} /$ day soda ash

Section 15

'Temperature Conversions

Temperature Conversions

1. $215^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$
2. $34^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$

Temperature Conversions

Convert these temperatures:
Remember formulas on page 1 in your formula book
${ }^{\circ} \mathrm{C}=0.556\left({ }^{\circ} \mathrm{F}-32\right)$
${ }^{\circ} \mathrm{F}=1.8\left({ }^{\circ} \mathrm{C}\right)+32$

1. $160^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$
2. $70^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$
3. $35^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$
4. $45.5^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$

Answers:

1. $71.1^{\circ} \mathrm{C}$
2. $21.1^{\circ} \mathrm{C}$
3. $95^{\circ} \mathrm{F}$
4. $113.9^{\circ} \mathrm{F}$

Section 16

Answers

Solving for the Unknown

Basics - finding x

1. $8.1=(3)(\mathrm{x})(1.5)$

$$
\begin{aligned}
& 8.1=(4.5)(x) \\
& \frac{8.1}{4.5}=x \\
& 1.8=x
\end{aligned}
$$

2.

$$
\begin{aligned}
& (0.785)(0.33)(0.33)(x)=0.49 \\
& (0.0854865)(x)=0.49 \\
& x=\frac{0.49}{0.0854865} \\
& x=5.73
\end{aligned}
$$

3. $\frac{233}{\mathrm{x}}=44$

$$
\begin{aligned}
& 233=(44)(x) \\
& \frac{233}{44}=x \\
& 5.29=x
\end{aligned}
$$

4. $\quad 940=\frac{\mathrm{x}}{(0.785)(90)(90)}$

$$
\begin{aligned}
& 940=\frac{x}{6358.5} \\
& (940)(6358.5)=x \\
& 5,976,990=x
\end{aligned}
$$

5.

$$
\begin{aligned}
& x=\frac{(165)(3)(8.34)}{0.5} \\
& x=\frac{4128.3}{0.5} \\
& x=8256.6
\end{aligned}
$$

6.

$$
\begin{aligned}
56.5 & =\frac{3800}{(\mathrm{x})(8.34)} \\
x & =\frac{3800}{(56.5)(8.34)}
\end{aligned}
$$

$$
x=8.06
$$

7.

$$
\begin{aligned}
& 114=\frac{(230)(1.15)(8.34)}{(0.785)(70)(70)(x)} \\
& x=\frac{(230)(1.15)(8.34)}{(0.785)(70)(70)(114)} \\
& x=0.005
\end{aligned}
$$

8.

$$
\begin{aligned}
& 2^{\circ}=\frac{x}{180} \\
& (2)(180)=x \\
& 360=x
\end{aligned}
$$

9.

$$
\begin{aligned}
& 46=\frac{(105)(x)(8.34)}{(0.785)(100)(100)(4)} \\
& 46=\frac{(875.7)(x)}{31400} \\
& (46)(31400)=(875.7)(x) \\
& \frac{(46)(3) 400)}{875.7}=x \\
& 1649.4=x
\end{aligned}
$$

10. $2.4=\frac{(0.785)(5)(5)(4)(7.48)}{x}$

$$
\begin{aligned}
& (2.4)(x)=(0.785)(5)(5)(4)(7.48) \\
& x=\frac{(0.785)(5)(5)(4)(7.48)}{2.4} \\
& x=245
\end{aligned}
$$

11. $19,747=(20)(12)(x)(7.48)$

$$
\begin{aligned}
& 19.747=(1795.2)(x) \\
& \frac{19747}{1795.2}=x \\
& 10.99=x
\end{aligned}
$$

12. $(15)(12)(1.25)(7.48)=337$

$$
4.99=x
$$

13. $\frac{\mathrm{x}}{(4.5)(8.34)}=213$

$$
\begin{aligned}
& x=(213)(4.5)(8.34) \\
& x=7993.89
\end{aligned}
$$

14.

$$
\begin{aligned}
& \frac{x}{246}=2.4 \\
& x=(2.4)(246) \\
& x=590.4
\end{aligned}
$$

15. $6=\frac{(\mathrm{x})(0.18)(8.34)}{(65)(1.3)(8.34)}$

$$
\begin{gathered}
\frac{(6)(65)(1.3)(8.34)}{(0.18)(8.34)}=x \\
2817=x
\end{gathered}
$$

16. $\frac{(3000)(3.6)(8.34)}{(0.785)(x)}=23.4$

$$
\begin{gathered}
\frac{(3000)(3.6)(8.34)}{(0.785)(23.4)}=x \\
4903.5=x
\end{gathered}
$$

17. $109=$ \qquad
$(109)(0.785)(80)(80)=x$

$$
547616=x
$$

18. $(x)(3.7)(8.34)=3620$

$$
\begin{aligned}
& x=\frac{3620}{(3.7)(8.34)} \\
& x=117
\end{aligned}
$$

19. $2.5=\frac{1,270,000}{\mathrm{x}}$

$$
\begin{aligned}
& x=\frac{1270000}{2.5} \\
& x=508,000
\end{aligned}
$$

20.

$$
\begin{aligned}
& 0.59=\frac{(170)(2.42)(8.34)}{(1980)(x)(8.34)} \ldots \\
& x=\frac{(170)(2.42)(8.34)}{(1980)(0.59)(8.34)} \\
& x=\frac{3431.076}{9742.788} \\
& x=0.35
\end{aligned}
$$

Finding x^{2}
21. $(0.785)\left(\mathrm{D}^{2}\right)=5024$

$$
\begin{aligned}
D^{2} & =\frac{5024}{0.785} \\
\sqrt{D^{2}} & =\sqrt{6400} \\
D & =80
\end{aligned}
$$

22.

$$
\begin{aligned}
& \left(x^{2}\right)(10)(7.48)=10,771.2 \\
& \left(x^{2}\right)(74.8)=10771.2 \\
& \left(x^{2}\right)=\frac{10771.2}{74.8} \\
& \sqrt{x^{2}}=\sqrt{144} \\
& x=12
\end{aligned}
$$

23. $51=\frac{64,000}{(0.785)\left(\mathrm{D}^{2}\right)}$

$$
\begin{aligned}
D^{2} & =\frac{64000}{(51)(0.785)} \\
\sqrt{D^{2}} & =\sqrt{1598.6} \\
D & =39.98
\end{aligned}
$$

24. $(0.785)\left(\mathrm{D}^{2}\right)=0.54$

$$
\begin{aligned}
D^{2} & =\frac{0.54}{0.785} \\
\sqrt{D^{2}} & =\sqrt{0.6879} \\
D & =0.829
\end{aligned}
$$

25. $2.1=\frac{(0.785)\left(\mathrm{D}^{2}\right)(15)(7.48)}{(0.785)(80)(80)}$

$$
\begin{aligned}
& 2.1=\frac{(88.077)\left(D^{2}\right)}{5024} \\
& (2.1)(5024)=(88.077)\left(D^{2}\right) \\
& \frac{(2.1)(5024)}{88.077}=D^{2} \\
& \sqrt{119.786}=\sqrt{D^{2}} \\
& 10.94=D
\end{aligned}
$$

Percent Practice Problems
Convert the following fractions to decimals:

1. $3 / 4 \quad 0.75$
2. $5 / 8 \quad 0.625$
3. $1 / 4 \quad 0.25$
4. $1 / 20.5$

Convert the following percents to decimals:
5. $35 \% \frac{35}{100}=0.35$
6. $99 \% \frac{99}{100}=0.99$
7. $0.5 \% \frac{0.5}{100}=0.005$
8. $30.6 \% \frac{30.6}{100}=0.306$

Convert the following decimals to percents:
9. $0.65(0.65)(100)=65 \%$
10. $0.125(0.125)(100)=12.5 \%$
11. $1.0(1.0)(100)=100 \%$
12. $0.05(0.05)(100)=5 \%$

Calculate the following: "of " means multiply; "is "means equal to
13. 15% of $125(0.15)(125)=18.75$
14. 22% of $450 \quad(0.22)(450)=99$
15. 473 is what $\%$ of 2365 ? $473=\left(\mathcal{Q}_{0}\right)(2365) \rightarrow \frac{473}{2365}=x$
16. 1.3 is what $\%$ of $6.5 ? \quad 1.3=(x)(6.5)$
$0.2=x$

$$
\begin{aligned}
& \frac{1.3}{6.5}=x \\
& 0.2=x \\
& 20 \%=x
\end{aligned}
$$

$$
\begin{gathered}
(0.2)(100)=x \\
20 \%=x
\end{gathered}
$$

APPLIED MATH FOR WATER AREA, VOLUME, AND CONVERSIONS

Area

1. A basin has a length of 45 feet and a width of 12 feet. Calculate the area in ft^{2}.

$$
\begin{aligned}
& A=\text { length * width } \\
& A=(45 \mathrm{ft})(12 \mathrm{ft})=540 \mathrm{ft}^{2}
\end{aligned}
$$

2. Calculate the surface area of a basin which is 90 feet long, 25 feet wide, and 10 feet deep.

$$
\begin{aligned}
& A=(90 \mathrm{ft})(25 \mathrm{ft}) \\
& A=2250 \mathrm{ft}^{2}
\end{aligned}
$$

3. Calculate the cross-sectional area in ft^{2} for a 2 ft diameter main that has just been laid.

$$
\begin{aligned}
& A=(0.785)(D)^{2} \\
& A=(0.785)(2 \mathrm{ft})(2 \mathrm{ft}) \\
& A=3.14 \mathrm{ft}^{2}
\end{aligned}
$$

4. Calculate the cross-sectional area in ft^{2} for a 24 inch diameter main that has just been laid. $\frac{24 \mathrm{in}}{} \left\lvert\, \frac{1 \mathrm{ft}}{12 \mathrm{in}}=2 \mathrm{ft}\right.$

$$
\begin{aligned}
& A=(0.785)(2 f t)(2 f t) \\
& A=3.14 f t^{2}
\end{aligned}
$$

5. Calculate the area (in ft^{2}) for an $18^{\prime \prime}$ main that has just been laid.

$$
\begin{aligned}
18 / 12 & =1.5 \mathrm{ft} \\
A & =(0.785)(1.5 \mathrm{ft})(1.5 \mathrm{ft}) \\
A & =1.77 \mathrm{ft}^{2}
\end{aligned}
$$

6. Calculate the cross-sectional area (in ft^{2}) for a 2 inch line that has just been laid.

$$
\begin{aligned}
2 / 12 & =0.1667 \mathrm{ft} \\
A & =(0.785)(0.1667 \mathrm{ft})(0.1667 \mathrm{ft}) \\
A & =0.02 \mathrm{ft}
\end{aligned}
$$

Volume
7. Calculate the volume (in ft^{3}) of a tank that measures 10 ft by 10 ft by 10 ft .

$$
\begin{aligned}
& \mathrm{Vol}=(L)(W)(\mathrm{d}) \\
& \text { vol }=(10 \mathrm{ft})(10 \mathrm{ft})(10 \mathrm{ft})=1000 \mathrm{ft}^{3}
\end{aligned}
$$

8. Calculate the volume (in gallons) for a basin that measures 22 feet by 11 feet by 5 feet.

$$
\begin{aligned}
& \mathrm{vol}=(22 \mathrm{ft})(11 \mathrm{ft})(5 \mathrm{ft}) \\
& \mathrm{vol}=\left(1210 \mathrm{ft}^{3}\right)(7.48 \mathrm{ft3} / \mathrm{gal}) \\
& \mathrm{vol}, \mathrm{gal}=9050.8 \mathrm{gal}
\end{aligned}
$$

9. Calculate the volume (in gallons) of water in a tank that is 254 feet long, 62 feet wide and 10 feet deep if the tank only contains 2 feet of water.

$$
\begin{aligned}
\text { vol, gal } & =(254 \mathrm{ft})(62 \mathrm{ft})(2 \mathrm{ft})\left(7,48 \mathrm{ft}^{3} / \mathrm{gal}\right) \\
& =235,590.08 \mathrm{gal}
\end{aligned}
$$

10. Calculate the volume of water in a tank (in gallons), which measures 12 feet long, 6 feet wide, 5 feet deep, and contains 8 inches of water. $8 / 12=0.6667 \mathrm{ft}$

$$
\begin{aligned}
\text { vol, gal } & =(12 \mathrm{ft})(5 \mathrm{ft})(0.6667 \mathrm{ft})(7.48 \mathrm{ft} 3 / \mathrm{gal}) \\
& =299.2 \mathrm{gal}
\end{aligned}
$$

11. Calculate the maximum volume of water in gallons for a kid's swimming pool that measures 6 feet across and can hold 18 inches of water. $18 / 12=1.5 \mathrm{ft}$

$$
\begin{aligned}
& \text { vol }=(0.785)(D)^{2}(\text { depth }) \\
& \text { vol }=(0.785)(6 \mathrm{ft})(6 \mathrm{ft})(1.5 \mathrm{ft}) \\
& \text { vol }=(42.39 \mathrm{ft} 3)(7.48 \mathrm{ft} / \mathrm{gal})=317.08 \mathrm{gal}
\end{aligned}
$$

12. How many gallons of water can a barrel hold if it measures 3.5 feet in diameter and can hold water to a depth of 4 feet?

$$
\begin{aligned}
\text { vol, gal } & =(0.785)(3.5 \mathrm{ft})(3.5 \mathrm{ft})(4 \mathrm{ft})(7.48 \mathrm{ft} 3 / \mathrm{gai}) \\
& =287.72 \mathrm{gal}
\end{aligned}
$$

13. A new water main needs to be disinfected. The main is $30^{\prime \prime}$ in diameter and has a length of 0.25 miles. How many gallons of water will it hold? $30 / 12=2.5 \mathrm{ft}$

$$
(0.25 \mathrm{mi})(5280 \mathrm{ft} / \mathrm{mi})=1320 \mathrm{ft}
$$

$$
\begin{aligned}
\text { vol, gal } & =(0.785)(2.5 \mathrm{ft})(2.5 \mathrm{ft})(1320 \mathrm{ft})(7.48 \mathrm{ft} 3 / \mathrm{gal}) \\
& =48442.35 \mathrm{gal}
\end{aligned}
$$

14. A 3 million gallon water tank needs to be disinfected. The method you will use requires you to calculate 5% of the tank volume. How many gallons will this be?

$$
(3,000,000 \mathrm{gal})(0.05)=150,000 \mathrm{gal}
$$

15. What is 5% of a 1.2 million gallon tank?

$$
(1.2 m G)(0.05)=0.06 m G
$$

Conversions

16. How many seconds in one minute?

$$
60 \text { sec onds }
$$

17. How many minutes in one hour?

$$
60 \text { minutes }
$$

18. How many minutes in one day?

$$
\begin{array}{l|l|l}
& \text { day } & 24 \mathrm{hr} \\
\hline & 60 \mathrm{~min} \\
& =1440 \mathrm{~min}
\end{array}
$$

19. Convert $3.6 \mathrm{ft}^{3} / \mathrm{sec}$ to gps .

$$
\begin{array}{c|c}
3.6 \mathrm{ft}^{3} & \mid \mathrm{gal} \\
\hline \mathrm{sec} & 7.48 \mathrm{ft}^{3}
\end{array}=0.48 \mathrm{gal}
$$

20. Convert $2.4 \mathrm{ft}^{3} / \mathrm{sec}$ to gpm .

$$
\begin{array}{c|c|c}
2.4 \mathrm{ft}^{3} & 60 \mathrm{sec} & \mid \mathrm{gal} \\
\hline \mathrm{sec} & 1 \mathrm{~min} & 7.48 \mathrm{ft}^{3}
\end{array}=19.25 \mathrm{gal} / \mathrm{min}
$$

21. A treatment plant produces 6.31 MGD. How many gpm is that?

$$
\begin{array}{c|c|c|c}
6.31 \mathrm{met} & 1 \text { dag } & 1 \text { he } & 1000000 \mathrm{gal} \\
\hline \text { day } & 24 \mathrm{hr} & 60 \mathrm{~min} & 1 \mathrm{mAG}
\end{array}=4381.94 \mathrm{gal} / \mathrm{min}
$$

22. A pump delivers 695 gpm . How many MGD will that be?

$$
\begin{array}{c|c|c|c}
695 \mathrm{gat} & 60 \mathrm{~min} & 24 \mathrm{bar} & 1 \mathrm{mG} \\
\hline \text { man } & 1 \mathrm{hr} & 1 \text { day } & 1000000 \mathrm{gal}
\end{array}=1.0008 \mathrm{mGD}
$$

23. How many pounds of water are in a tank containing 800 gallons of water?

$$
\begin{array}{l|l}
8009 a l & 8.341 b \\
19 a \mid
\end{array}=66721 b
$$

DUNT THINK TOO HARD ON THIS ONE...
24. If you double the size of a pipe, does it double the volume that can be carried? For example, if you have 1000 feet of 12 inch line and you replace it with a 24 inch line, does your volume double?

12 inch

$$
\begin{aligned}
\text { vol, gal } & =(0.785)(1 \mathrm{ft})(1 \mathrm{ft})(1000 \mathrm{ft})(7.48) \\
& =5871.8 \mathrm{gal}
\end{aligned}
$$

24 inch

$$
\begin{aligned}
\text { vol, gal } & =(0.785)(2 \mathrm{ft})(2 \mathrm{ft})(1000 \mathrm{ft})(7.48) \\
& =23487.2 \mathrm{gal}
\end{aligned}
$$

difference

$$
\frac{23487.2 \mathrm{gal}}{5871.8 \mathrm{gal}}=4 \rightarrow \text { no, it quadruples it! }
$$

APPLIED MATH FOR WATER DENSITY \& SPECIFIC GRAVITY

Density: Weight per unit volume.
2 ways to express density: $\frac{|b / g a|}{1 b / f t^{3}}$

Specific gravity: Density of any substance compared to a "standard density."
Standard density of water: \qquad 8.34 $\mathrm{lb} / \mathrm{gal}$

$$
62.4 \quad \mathrm{lb} / \mathrm{ft}^{3}
$$

1. Find the specific gravity for rock granite if the density is $162 \mathrm{lbs} / \mathrm{ft}^{3}$.

$$
\text { s.g. }=\frac{\text { density }}{102.4 \mathrm{lb} / \mathrm{ft}^{3}}=\frac{1102 \mathrm{lb} / \mathrm{ft}^{3}}{62.4 \mathrm{~b} / \mathrm{ft}^{3}}=2.6
$$

2. Find the specific gravity for SAE 30 motor oil if the density is $56 \mathrm{lbs} / \mathrm{ft}^{3}$.

$$
\text { s.g. }=\frac{56 \mathrm{lb} / \mathrm{ft}}{}{ }^{3} \frac{62.4 \mathrm{lb} / \mathrm{ft}}{}{ }^{3}=0.9
$$

3. Find the specific gravity of dry alum if the density is $65 \mathrm{lbs} / \mathrm{ft}^{3}$.

$$
\text { S.g. }=\frac{65 \mathrm{lb} / \mathrm{ft}^{3}}{62.4 \mathrm{lb} / \mathrm{ft}^{3}}=1.04
$$

4. Find the specific gravity for liquid alum that weighs $11.07 \mathrm{lbs} / \mathrm{gal}$.

$$
\text { s.g. }=\frac{11.07^{\mathrm{lb} / g a l}}{8.34 \mathrm{~b} / \mathrm{gal}}=1.3
$$

5. Find the specific gravity for fluorosilicic acid that weighs $10.5 \mathrm{lbs} / \mathrm{gal}$.

$$
\text { S.g. }=\frac{10.5 \mathrm{lb} / \mathrm{gal}}{8.34 \mathrm{~b} / \mathrm{gal}}=1.3
$$

6. Find the specific gravity for ferric sulfate that weighs $12.34 \mathrm{lbs} / \mathrm{gal}$.

$$
s . y=\frac{12.34 \mathrm{lb} / \mathrm{gal}}{8.34 \mathrm{~b} / \mathrm{gal}}=1.5
$$

7. Find the density ($\mathrm{lbs} / \mathrm{ft}^{3}$) of a certain oil that has a S.G. of 0.92 .

$$
\begin{aligned}
\text { density } & =(\text { specific gravity })\left(62.4 \mathrm{lb} / \mathrm{ft}^{3}\right) \\
& =(0.92)\left(62.4 \mathrm{lb} / \mathrm{ft}^{3}\right. \\
& =57.4 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

8. Find the density (lbs/gal) of ferric chloride that has a S.G. of 1.140.

$$
\begin{aligned}
\text { density } & =(\text { specific gravity })(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =(1.140)(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =9.5 \mathrm{bb} / \mathrm{gal}
\end{aligned}
$$

9. Find the density (lbs/gal) of caustic soda that has a S.G. of 1.530.

$$
\begin{aligned}
\text { density } & =(1.530)(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =12.8 \mathrm{lb} / \mathrm{gal}
\end{aligned}
$$

10. Find the density ($\mathrm{lbs} / \mathrm{ft}^{3}$) of potassium permanganate that has a S.G. of 1.522 .

$$
\begin{aligned}
\text { density } & =(1.522)(62.4 \mathrm{lb} / \mathrm{ft}) \\
& =95.0 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

11. A tank holds 1,240 gallons of a certain liquid. The specific gravity is 0.93 . How many pounds of liquid are in the tank?

$$
\begin{aligned}
& \text { density }=(0.93)(8.34 \mathrm{lb} / \mathrm{gal})=7.7562 \mathrm{lb} / \mathrm{gal} \\
& \begin{aligned}
\mathrm{bb} & =(7.7562 \mathrm{lb} / \mathrm{gal})(1240 \mathrm{gal}) \\
& =9617.69 \mathrm{lb}
\end{aligned}
\end{aligned}
$$

12. Pump rate desired: 25 gpm

Liquid weight: $74.9 \mathrm{lbs} / \mathrm{ft}^{3}$
How many pounds of liquid can be pumped per day?

$$
\frac{74.9 \mathrm{lb}}{\mathrm{ft}} \frac{1 \mathrm{ft}}{} \mathrm{ft}^{3} \mathrm{7} .48 \mathrm{gal}=10.013 \mathrm{lb} / \mathrm{gal}
$$

$25 \mathrm{ga} / 1440 \mathrm{~min}$	10.013 lb	
min	day	gal

13. A certain pump delivers 23 gallons per minute.
A. How many lbs of water does the pump deliver in 1 minute?
B. How many $\mathrm{lbs} / \mathrm{min}$ will the pump deliver if the liquid weighs $71.9 \mathrm{lbs} / \mathrm{ft}^{3}$?

A) | 23 gal | 8.34 16 |
| :--- | :--- |
| min | 1 gal |$=191.82 \mathrm{lb}$

B) $\frac{71.9 \mathrm{lb}}{\mathrm{ft}^{3}} \left\lvert\, \frac{1 \mathrm{ft}^{3}}{7.48 \mathrm{gal}}=9.6123 \mathrm{lb} / \mathrm{gal}\right.$

23 gal	9.6123 lb
\min	gal

14. A certain pump delivers 14 gallons per minute.
A. How many lbs of water does the pump deliver in 24 hours?
B. How many lbs/day will the pump deliver if the liquid weighs $8.1 \mathrm{lbs} / \mathrm{gal}$?

B) $\frac{14 \mathrm{gal}}{\min } / \frac{1440 \mathrm{~min}}{\text { day }} / 8.1 \mathrm{gal} \mathrm{b}=163,296 \mathrm{lb} / \mathrm{day}$
15. Compare the density of chlorine gas with the density of air. Chlorine gas weighs $0.187 \mathrm{lbs} / \mathrm{ft}^{3}$. (standard density of air $=0.075 \mathrm{lb} / \mathrm{ft}^{3}$)
$\frac{0.187 \mathrm{lb} / \mathrm{ft}^{3}}{0.075 \mathrm{lb} / \mathrm{ft}^{3}}=2.49$
Chlorine gas is 2.5 times heavier than air

ANSWERS:

1. 2.6
2. 0.9
3. 1.04
4. 1.33
5. 1.26
6. 1.48
7. $\quad 57.4 \mathrm{lbs} / \mathrm{ft}^{3}$
8. $\quad 9.5 \mathrm{lbs} / \mathrm{gal}$
9. $\quad 12.76 \mathrm{lbs} / \mathrm{gal}$
10. $\quad 95 \mathrm{lbs} / \mathrm{ft}^{3}$
11. $9,617.7 \mathrm{lbs}$
12. $360,481 \mathrm{lbs} /$ day
13. a. $\quad 191.8 \mathrm{lbs} / \mathrm{min}$
b. $\quad 221 \mathrm{lbs} / \mathrm{min}$
14. a. 168,134 lbs/day
b. $163,296 \mathrm{lbs} /$ day
15. 2.49

Velocity and Flow

1. A bobber is placed in a channel and travels 450 feet in $2 \frac{1}{2}$ minutes. What is the velocity of the water flowing in the channel in $\mathrm{ft} / \mathrm{min}$?

$$
\begin{aligned}
& \text { vel }=\frac{\text { distance }}{\text { time }} \\
& \text { vel }=\frac{450 \mathrm{ft}}{2.5 \mathrm{~min}}=180 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

2. A channel 30 inches wide has water flowing to a depth of 2 feet. If the velocity of the water is $2.75 \mathrm{ft} / \mathrm{sec}$, what is the flow in the channel in $\mathrm{ft}^{3} / \mathrm{sec}$? And $\mathrm{gal} / \mathrm{min}$?

$$
\begin{aligned}
& 30 \mathrm{in} / 12 \mathrm{~m} / \mathrm{ft}=2.5 \mathrm{ft} \\
& Q=(\text { width })(\text { depth })(\text { velocity }) \\
&=(2.5 \mathrm{ft})(2 \mathrm{ft})(2.7 \mathrm{ft} / \mathrm{sec}) \\
&=(13.75 \mathrm{ft} 3 / \mathrm{sec})(60)(7.48) \\
&=6170 \mathrm{gpm}
\end{aligned}
$$

3. The flow through a 24 inch pipe is moving at a velocity of $5.4 \mathrm{ft} / \mathrm{sec}$. What is the flow rate in gal $/ \mathrm{min}$? $24 / 12=2 \mathrm{ft}$

$$
\begin{aligned}
Q= & (0.785)(\mathrm{d}, \mathrm{ft})^{2}(\text { vel }) \\
Q= & (0.785)(2 \mathrm{ft})(2 \mathrm{ft})(5.4 \mathrm{ft} / \mathrm{sec}) \\
Q= & 16.956 \mathrm{ft3} / \mathrm{sec} \\
& \frac{16.956 \mathrm{ft}^{3}}{\mathrm{sec}} \left\lvert\, \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \frac{7.48 \mathrm{gal}}{1 \mathrm{ft}^{3}}=7609.85 \mathrm{gal} / \mathrm{min}\right.
\end{aligned}
$$

Applied Math for Distribution
 Flow and Velocity

Velocity

1. A cork is placed in a channel and travels 370 feet in 2 minutes. What is the velocity of the wastewater in the channel, $\mathrm{ft} / \mathrm{min}$?

$$
V=\frac{\text { distance }}{\text { time }} \quad V=\frac{370 \mathrm{ft}}{2 \mathrm{~min}}=185 \mathrm{ft} / \mathrm{min}
$$

2. A float travels 300 feet in a channel in 2 minutes and 14 seconds. What is the velocity in the channel, $\mathrm{ft} / \mathrm{sec}$? $\quad 2 \mathrm{~min} 14 \mathrm{sec}=2(60)+14=134 \mathrm{sec}$

$$
V=\frac{300 \mathrm{ft}}{134 \mathrm{sec}}=2.24 \mathrm{ft} / \mathrm{sec}
$$

3. The distance between manhole \#1 and manhole \#2 is 105 feet. A fishing bobber is dropped into manhole \#1 and enters manhole \#2 in 30 seconds. What is the velocity of the wastewater in the sewer in $\mathrm{ft} / \mathrm{min}$? $\quad 30 \mathrm{sec}=0.5 \mathrm{~min}$

$$
V=\frac{105 \mathrm{ft}}{0.5 \mathrm{~min}}=210 \mathrm{ft} / \mathrm{min}
$$

$$
\begin{aligned}
\text { Velocity } & =\frac{\text { Distance Traveled, } \mathrm{ft}}{\text { Duration of Test, min }} \\
& =\mathrm{ft} / \mathrm{min}
\end{aligned}
$$

Flow in a channel
4. A channel 48 inches wide has water flowing to a depth of 1.5 feet. If the velocity of the water is $2.8 \mathrm{ft} / \mathrm{sec}$, what is the flow in the channel in cu ft/ sec? $48 \mathrm{in}=4 \mathrm{ft}$

$$
\begin{aligned}
& Q=(4 \mathrm{ft})(1.5 \mathrm{ft})(2.8 \mathrm{ft} / \mathrm{sec}) \\
& Q=16.8 \mathrm{ft}^{3} / \mathrm{sec}
\end{aligned}
$$

5. A channel 3 feet wide has water flowing to a depth of 2.5 feet. If the velocity through the channel is 120 feet $/ \mathrm{min}$, what is the flow rate in $\mathrm{cu} \mathrm{ft} / \mathrm{min}$? in MGD?

$$
\begin{aligned}
& Q=(3 \mathrm{ft})(2.5 \mathrm{ft})\left(120^{\mathrm{ft} / \mathrm{min})}\right. \\
& Q=900^{\mathrm{ft}} \mathrm{3} / \mathrm{min} \longrightarrow \text { use flow chart to convert } \\
& Q=9.69 \mathrm{mGD}
\end{aligned}
$$

6. A channel is 3 feet wide and has water flowing at a velocity of $1.5 \mathrm{ft} / \mathrm{sec}$. If the flow through the channel is $8.1 \mathrm{ft}^{3} / \mathrm{sec}$, what is the depth of the water in the channel in feet?

$$
\begin{gathered}
8.1^{\mathrm{ft3} / \mathrm{sec}=(3 \mathrm{ft})(\text { depth })\left(1.5^{\mathrm{ft}} / \mathrm{sec}\right)} \\
\frac{8.1 \mathrm{ft}{ }^{3} / \mathrm{sec}}{(3 \mathrm{ft})\left(1.5^{\mathrm{ft}} \mathrm{sec}\right)}=\text { depth } \\
1.8 \mathrm{ft}=\text { depth }
\end{gathered}
$$

Diameter, ft

$$
\begin{array}{cc}
\begin{array}{c}
\mathrm{Q} \\
\mathrm{ft}^{3} / \text { time }
\end{array} & \begin{array}{c}
(\mathrm{A}) \\
\mathrm{ft}^{2}
\end{array} \begin{array}{c}
(\mathrm{V}) \\
(\mathrm{ft} / \text { time })
\end{array} \\
\mathrm{Q} & =(0.785)(\mathrm{D})^{2}(\text { vel }) \\
\mathrm{ft}^{3} / \text { time } & (\mathrm{ft})(\mathrm{ft})(\mathrm{ft} / \text { time })
\end{array}
$$

Flow through a full pipe
7. The flow through a 2 ft diameter pipeline is moving at a velocity of $3.2 \mathrm{ft} / \mathrm{sec}$. What is the flow rate in cu ft/sec?

$$
\begin{aligned}
& Q=(0.785)(2 \mathrm{ft})^{2}(3.2 \mathrm{ft} / \mathrm{sec}) \\
& Q=(0.785)(4 \mathrm{ft})(3.2 \mathrm{ft} / \mathrm{sec}) \\
& Q=10.05 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

8. The flow through a 6 inch diameter pipeline is moving at a velocity of $3 \mathrm{ft} / \mathrm{sec}$. What is the flow rate in $\mathrm{ft}^{3} / \mathrm{sec}$? $6 \mathrm{in}=0.5 \mathrm{ft}$

$$
\begin{aligned}
& Q=(0.785)(0.5)(0.5)\left(3^{f t / s e c}\right) \\
& Q=0.59^{f+3} / \mathrm{sec}
\end{aligned}
$$

9. The flow through a pipe is $0.7 \mathrm{ft}^{3} / \mathrm{sec}$. If the velocity of the flow is $3.6 \mathrm{ft} / \mathrm{sec}$, and the pipe is flowing full, what is the diameter of the pipe in inches?

$$
\begin{aligned}
& 0.7^{\mathrm{ft3} / \mathrm{sec}=(0.785)(D)^{2}\left(3.6^{\mathrm{ft}} / \mathrm{sec}\right)} \\
& 0.7 \mathrm{ft} / \mathrm{sec}) \\
& \sqrt{0.785)\left(3.6^{2+5 e c} / \mathrm{sec}\right.}=D^{2} \\
& \sqrt{0.2477 \mathrm{ft}^{2}}=\sqrt{D^{2}} \longrightarrow D=0.50 \mathrm{ft}=6 \mathrm{in}
\end{aligned}
$$

10. An 8 inch diameter pipeline has water flowing at a velocity of $3.4 \mathrm{ft} / \mathrm{sec}$. What is the flow rate in gm?

$$
\begin{aligned}
& Q=(0.785)(0.6667 \mathrm{ft})^{2}(3.4 \mathrm{ft} / \mathrm{sec}) \\
& Q=1.1862^{\mathrm{fs}} / \mathrm{sec} \rightarrow \text { use flow chart } \\
& Q=532.4 \mathrm{gal} / \mathrm{min}
\end{aligned}
$$

$$
\begin{array}{r|l}
8 \mathrm{in} & 1 \mathrm{ft} \\
& 12 \mathrm{in}
\end{array}=0.667
$$

APPLIED MATH FOR WATER
FLOW RATE

$$
\mathrm{Q}=\mathrm{AV}
$$

1. A channel is 3 feet wide with water flowing to a depth of 2 feet. If the velocity in the channel is found to be 1.8 fps , what is the cubic feet per second flow rate in the channel?

$$
A=(L)(W)
$$

$$
\begin{aligned}
& Q=(3 \mathrm{ft})(2 \mathrm{ft})(1.8 \mathrm{ft} / \mathrm{sec}) \\
& Q=10.8^{\mathrm{ft}} \mathrm{3} / \mathrm{sec}
\end{aligned}
$$

2. A 12-inch diameter pipe is flowing full. What is the cubic feet per minute flow rate in the pipe if the velocity is 110 feet $/ \mathrm{min}$? $12 \mathrm{in}=1 \mathrm{ft}$

$$
A=(0.785)\left(D^{2}\right)
$$

$$
\begin{aligned}
& Q=(1 \mathrm{ft})(1 \mathrm{ft})(0.785)\left(110^{\mathrm{ft}} / \mathrm{min}\right) \\
& Q=86.35 \mathrm{ft}^{3} / \mathrm{min}
\end{aligned}
$$

3. A water main with a diameter of 18 inches is determined to have a velocity of 182 feet per minute. What is the flow rate in gam?

$$
18 / 12=1.5 \mathrm{ft}
$$

$$
Q=(0.785)(1.5 \mathrm{ft})(1.5 \mathrm{ft})(182 \mathrm{ft} / \mathrm{min})
$$

$$
=321.46 \mathrm{ft}^{3} / \mathrm{min}
$$

$$
\begin{array}{l|l}
321.46 \mathrm{ft}^{3} & 7.48 \mathrm{gal} \\
\mathrm{fyin}
\end{array}=2404.50 \mathrm{gal} / \mathrm{min}
$$

4. A 24 -inch main has a velocity of 212 feet $/ \mathrm{min}$. What is the gid flow rate for the pipe? $24 / 12=2 \mathrm{ft}$

$$
\begin{aligned}
& Q=(0.785)(2 \mathrm{ft})(2 \mathrm{ft})(212 \mathrm{ft} / \mathrm{min})=665.68 \mathrm{ft}^{3} / \mathrm{min} \\
& \begin{array}{c|c|c|}
665.68 \mathrm{ft}^{3} & 1440 \mathrm{~min} & 7.48 \mathrm{gal} \\
\min & 1 \text { day } & \mathrm{ft}^{3}
\end{array}=7,170,172.42 \mathrm{gpd}
\end{aligned}
$$

5. What would be the gid flow rate for a $6^{\prime \prime}$ line flowing at 2 feet/second?

$$
\begin{aligned}
& 6 / 12=0.5 \mathrm{ft} \\
& Q=(0.785)(0.5)(0.5)(2 \mathrm{ft} / \mathrm{sec})=0.3925 \mathrm{ft3} / \mathrm{sec} \\
& \begin{array}{c|c|c|c|c|}
0.3925 \mathrm{ft}^{3} & 60 \mathrm{sec} & 1440 \mathrm{~min} & 7.48 \mathrm{gal} & =253661.76 \\
\mathrm{sec} & \mathrm{~min} & \text { day } & \mathrm{ft3}
\end{array}
\end{aligned}
$$

6. A $36^{\prime \prime}$ water main has just been installed. If the main is flushed at $2.5 \mathrm{ft} /$ second, how many gallons/minute of water should be flushed from the hydrant?
$36 / 12=3 \mathrm{ft}$

$$
\begin{aligned}
& Q=(0.785)(3 \mathrm{ft})(3 \mathrm{ft})(2.5 \mathrm{ft} / \mathrm{sec})=17.6625 \mathrm{ft} / \mathrm{sec} \\
& \begin{array}{c|c|c|}
\hline 17.62025 \mathrm{ft}^{3} & 60 \mathrm{sec} \\
\hline \mathrm{sec} & \min & \mathrm{ft}^{3} \mathrm{gal}=7926.93 \mathrm{gal} / \mathrm{min}
\end{array}
\end{aligned}
$$

7. A $36^{\prime \prime}$ water main has just been installed. If the main is flowing at a velocity of 2 $\mathrm{ft} /$ second, how many MGD will the pipe deliver? $36 / 12=3 \mathrm{ft}$

$$
\begin{aligned}
& Q=(0.785)(3 \mathrm{ft})(3 \mathrm{ft})(2 \mathrm{ft} / \mathrm{sec})=14.13 \mathrm{ft}^{3} / \mathrm{sec} \\
& \begin{array}{c|c|c|c|c|c|}
\hline 14.13 \mathrm{ft}^{3} & 60 \mathrm{sec} & 1440 \mathrm{~min} & 7.48 \mathrm{gal} \mid & 1 \mathrm{MG} \\
\hline \mathrm{sec} & \mathrm{~min} & \text { day } & \mathrm{ft}^{3} & 1000000 \mathrm{gal}
\end{array} \mathrm{MG}
\end{aligned}
$$

8. A certain pipe has a diameter of 18 inches. If the pipe is flowing full, and the water is known to flow a distance of 830 yards in 5 minutes, what is the MGD

$$
\begin{array}{c|c|c|c|}
879.5925 f^{3} & 1440 \mathrm{~min} & 7.48 \mathrm{gal} & -\mathrm{mG} \\
\mathrm{~min}_{\text {Veladty and Flow }} \mathrm{ft} & 1000000 \mathrm{gal}
\end{array}=9.47 \mathrm{MGD}
$$

$$
\begin{aligned}
& \text { flow rate for the pipe? } 18 / 12=1.5 \mathrm{ft} \\
& V \mathrm{Vel}=2490 \mathrm{ft} / 5 \mathrm{~min} \\
& \begin{array}{l|l}
830 y d s & 3 \mathrm{ft} \\
\hline & 1 y d
\end{array}=2490 \mathrm{ft} \\
& V e l=498 \mathrm{ft} / \mathrm{min} \\
& \begin{array}{r}
Q=(0.785)(1.5 \mathrm{ft})(1.5 \mathrm{ft})(498 \mathrm{ft} / \mathrm{min})=879.5933 \\
\mathrm{ft} / \mathrm{min}
\end{array}
\end{aligned}
$$

9. A water crew is flushing hydrants on a 12 -inch diameter main. The pitot gage reads 560 gpm being flushed from the hydrant. What is the flushing velocity (in

$$
Q=A * V
$$ feet/min) through the pipe? $12 / 12=1 \mathrm{ft}$

$$
\begin{aligned}
& Q=560 \mathrm{gal} / \mathrm{min} \quad A=(0.785)(1 \mathrm{ft})(1 \mathrm{ft})=0.785 \mathrm{ft}^{2} \\
& Q=\left(\frac{560 \mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{7.48 \mathrm{gal}}{\mathrm{ft}}\right)=4188.8 \mathrm{ft} / 3 / \mathrm{min} \\
& 4188.8 \mathrm{ft} 3 / \mathrm{min}=\left(0.785 \mathrm{ft}^{2}\right)(\mathrm{V})
\end{aligned}
$$

$$
\frac{4188.8 \mathrm{ft} 3 / \mathrm{min}}{0.785 \mathrm{ft}^{2}}=\mathrm{V} \Rightarrow 5336.05 \mathrm{ft} / \mathrm{min}
$$

VELOCITY (OPEN CHANNEL)
10. A float is placed in a channel. It takes 2.5 minutes to travel 300 feet. What is the flow velocity in feet per minute in the channel? (Assume that float is traveling at the average velocity of the water.)

$$
\begin{aligned}
& V e l=\frac{\text { distance }}{\text { time }} \\
& V_{\text {el }}=\frac{300 \mathrm{ft}}{2.5 \mathrm{~min}}=120 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

11. A cork placed in a channel travels 30 feet in 20 seconds. What is the velocity of the cork in feet per second?

$$
\begin{aligned}
& V e l=\frac{30 \mathrm{ft}}{20 \mathrm{sec}} \\
& V \mathrm{Vel}=1.5 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

12. A channel is 4 feet wide with water flowing to a depth of 2.3 feet. If a float placed in the channel takes 3 minutes to travel a distance of 500 feet, what is the cubic-feet-per-minute flow rate in the channel?

$$
\begin{aligned}
& Q=A * V \\
& Q=(4 \mathrm{ft})(2.3 \mathrm{ft})(500 \mathrm{ft} / 3 \mathrm{~min}) \\
& Q=1533.33 \mathrm{ft} 3 / \mathrm{min}
\end{aligned}
$$

AQUIFER FLOW
13. Geologic studies show that the water in an aquifer moves 25 feet in 60 days. What is the average velocity of the water in ft/day?

$$
\text { Vel }=\frac{25 \mathrm{ft}}{60 \text { days }}=0.42 \mathrm{ft} / \mathrm{day}
$$

14. If the water in a water table aquifer moves 2 feet per day, how far will the water travel in 13 days?

$$
\left(\frac{2 \mathrm{ft}}{\text { day }}\right)\left({ }^{13 \text { clays }}\right)=26 \mathrm{ft}
$$

15. If the water in a water table aquifer moves 2.25 feet per day, how long will it take the water to move 61 feet?

$$
(61 \mathrm{ft})\left(\frac{\text { day }}{2.25 \mathrm{ft}}\right)=27.11 \text { days }
$$

FLOW
16. The average velocity in a full-flowing pipe is measured and known to be 2.9 fps . The pipe is a $24^{\prime \prime}$ main. Assuming that the pipe flows 18 hours per day and that the month in question contains 31 days, what is the total flow for the pipe in MG for that one month? $24 / 12=2 \mathrm{ft}$

$$
\begin{aligned}
& Q=(0.785)(2 \mathrm{ft})(2 \mathrm{ft})(2.9 \mathrm{ft} / \mathrm{sec})=9.106 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& =136.83 \mathrm{MG}
\end{aligned}
$$

17. The flow entering the leg of a tee connection is 9 cfs . If the flow through one branch of the tee is 5 cfs , what is the flow through the other branch?

$$
q c f_{s}-5 c f s=4 c f s
$$

18. A water line has been run to a new subdivision. The flow through the main line is 468 gpm . The line splits into two lines (each serving half of the subdivision). If one line flows 210 gpm , what should be the flow from the other line?

$$
468 \mathrm{gpm}-210 \mathrm{gpm}
$$

$$
=258 \mathrm{gpm}
$$

19. Determine the velocity in $\mathrm{ft} / \mathrm{sec}$ at points $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$.

Sedimentation

1. The flow to a sedimentation tank is $200,000 \mathrm{gpd}$. If the tank is 50 feet long and 30 feet wide, what is the surface overflow rate in $\mathrm{gpd} / \mathrm{ft}^{2}$?

$$
\begin{aligned}
\text { SOR } & =\frac{f l o w, ~ \mathrm{gpd}}{\text { area, } \mathrm{ft}} \\
& =\frac{200000 \mathrm{gdd}}{(50 \mathrm{ft})(30 \mathrm{ft})}=133.33 \mathrm{gpd} / \mathrm{ft}
\end{aligned}
$$

2. A tank has a length of 75 ft and 25 ft wide. What is the weir length around the basin in feet?

$$
\begin{aligned}
\text { Weir length } & =(2)(\text { length })+(2)(\text { width }) \\
& =(2)(75 f t)+(2)(25 \mathrm{ft}) \\
& =150 \mathrm{ft}+50 \mathrm{ft}=200 \mathrm{ft}
\end{aligned}
$$

3. A clarifier has a diameter of 90 feet. What is the length of the weir around the clarifies in feet?

$$
\begin{aligned}
\text { weir length } & =(3.14) \text { (diameter) } \\
& =(3.14)(90 \mathrm{ft}) \\
& =282.6 \mathrm{ft}
\end{aligned}
$$

4. The diameter of weir in a circular clarifier is 105 feet. What is the weir overflow rate in $\mathrm{gpd} / \mathrm{ft}$ if the flow over the weir is 1.83 MGD ?

$$
\begin{aligned}
\text { WOR } & =\frac{\text { flow; } \mathrm{gpd}}{\text { Weir length }, \mathrm{ft}} \\
& =\frac{1,830,00 \mathrm{ggd}}{(3.14)(105 \mathrm{ft})} \\
& =5550.5 \mathrm{gpd} / \mathrm{ft}
\end{aligned}
$$

5. A clarifier is 45 feet long, 30 feet long and 10 feet deep. If the daily flow is 3.5

MGD, what is the detention time (in minutes) in the basin?

$$
\begin{aligned}
D T, \mathrm{hr}^{\prime} & =\frac{(v o l, \mathrm{gai})(24 \mathrm{hr} / \mathrm{day})}{f(10 \mathrm{w}, \mathrm{gpd}} \quad \mathrm{vol}=(45)(10)(30)(7.48)=100980 \\
& =\frac{(100980 \mathrm{gal})(2 \mathrm{gr} / \mathrm{day})}{3500000 \mathrm{gpd}} \\
& =(0.6924 \mathrm{hr})(60 \mathrm{~min} / \mathrm{hr})=41.55 \mathrm{~min}
\end{aligned}
$$

Applied Math for Water

Sedimentation and Detention Time

Surface Overflow Rates (SOR)

1. A tank has a length of 100 feet, a width of 25 feet and a depth of 15 feet. What is the surface area in ft^{2} ?

$$
\begin{aligned}
& A=(L, f t)(W, f t) \\
& A=(100 \mathrm{ft})(25 \mathrm{ft}) \\
& A=2500 \mathrm{ft}^{2}
\end{aligned}
$$

2. A clarifier has a diameter of 82 feet and a depth of 12 feet. What is the surface area of the clarifier in ft^{2} ?

$$
\begin{aligned}
& A=(0.785)(d, f t)^{2} \\
& A=(0.785)(82 \mathrm{ft})(82 \mathrm{ft}) \\
& A=5671.63 \mathrm{ft}^{2}
\end{aligned}
$$

3. The flow to a sedimentation tank is 3.05 MGD . If the tank is 80 feet long and 20 feet wide, what is the surface overflow rate in gallons per day per square foot?

$$
\begin{aligned}
\text { SOR } & =\frac{f l o w, ~}{\text { area } \mathrm{ft}} \mathrm{ft} \text { day } \\
& =\frac{3.050,000 \mathrm{gpd}}{(80 \mathrm{ft})(20 \mathrm{ft})} \\
& =1906.25 \mathrm{gpd} / \mathrm{ft}^{2}
\end{aligned}
$$

4. The flow to a sedimentation tank is 50,000 gpd. If the tank is 55 feet long and 15 feet wide, what is the surface overflow rate $\left(\mathrm{gpd} / \mathrm{ft}^{2}\right)$?

$$
\begin{aligned}
S O R & =\frac{50,000 \mathrm{~g} \mathrm{pd}}{(55 \mathrm{ft})(15 \mathrm{ft})} \\
& =60.61 \mathrm{gpd} / \mathrm{ft}^{2}
\end{aligned}
$$

5. A sedimentation tank is 90 feet long and 40 feet wide and receives a flow of 5.04 MGD . Calculate the SOR in gpd/ft ${ }^{2}$.

$$
\begin{aligned}
& \text { SOR }=5040000 \mathrm{gpd} \\
&(90 \mathrm{ft})(40 \mathrm{ft}) \\
&=1400 \mathrm{gpd} / \mathrm{ft}^{2}
\end{aligned}
$$

6. A circular clarifier has a diameter of 80 feet. If the flow to the clarifier is 3.8 MGD , what is the surface overflow rate $\left(\mathrm{gpd} / \mathrm{ft}^{2}\right)$?

$$
\begin{aligned}
\text { SOB } & =\frac{3880000}{(0.78)(80 \mathrm{ft)}(80 \mathrm{ft)}} \\
& =756.37 \mathrm{gPd} / \mathrm{ft}^{2}
\end{aligned}
$$

7. A clarifier has a flow rate of $4,600 \mathrm{gpm}$ and a diameter of 75 feet. What is the surface overflow rate in $\mathrm{gpd} / \mathrm{ft}^{2}$?

4600 gal	$1440 \min$
\min	day

$$
\begin{aligned}
\text { SUR } & =\frac{6624000 \mathrm{gpd}}{(0.785)(75 f t)(75 \mathrm{ft})} \\
& =1500.13 \mathrm{gpd} / \mathrm{ft}^{2}
\end{aligned}
$$

8. A clarifies with a diameter of 55 feet receives a flow of 2.075 MGD . What is the surface overflow rate $\left(\mathrm{gpd} / \mathrm{ft}^{2}\right)$?

$$
\begin{aligned}
\text { SOP } & =\frac{2075000 \mathrm{gpd}}{(0.785)(55 \mathrm{ft})(55 \mathrm{ft})} \\
& =873.82 \mathrm{gpd} / \mathrm{ft}^{2}
\end{aligned}
$$

9. What is the $\mathrm{gpd} / \mathrm{ft}^{2}$ overflow to a circular clarifier that has the following:

Diameter: 70 feet Flow: $1,950 \mathrm{gpm}$

$$
\text { Son }=\frac{2808000 \mathrm{grd}}{(0.855)(70 \mathrm{ft})(70 \mathrm{ft})}=730.01 \mathrm{gPd} / \mathrm{ft}^{2}
$$

10. A rectangular clarifier receives a flow of 5.4 MGD . The length of the clarifier is 99 feet 7 inches and the width is 78 feet 6 inches. What is the SOR in gpd/ft ${ }^{2}$?

$$
7 \mathrm{in}\left|\mathrm{ft},=0.5833 \mathrm{ft} \frac{6 \mathrm{in}}{}\right| \frac{\mathrm{ft}}{12 \mathrm{in}}=0.5 \mathrm{ft}
$$

$$
\text { SUR }=\frac{5400000 \mathrm{gpd}}{(99.05833 \mathrm{ft})(78.5 \mathrm{ft})}=690.78 \mathrm{gpd} / \mathrm{ft}^{2}
$$

Weir Overflow Rates (WOR)
11. A tank has a length of 100 feet, a width of 25 feet, and a depth of 15 feet. What is the weir length around the basin in feet?

$$
\begin{aligned}
& \text { Weir length }=2(\text { Weir length })+2(\text { Weir width }) \\
& \qquad \begin{aligned}
\text { Weir } & =2(100 \mathrm{ft})+2(25 \mathrm{ft})=200 \mathrm{ft}+50 \mathrm{ft} \\
& =250 \mathrm{ft}
\end{aligned}
\end{aligned}
$$

12. A clarifier has a diameter of 82 feet and a depth of 12 feet. What is the length of the weir around the clarifies in ft ?

$$
\begin{aligned}
& \text { Weir length= }=(3.14) \text { (Weir diameter) } \\
& =(3.14)(82 \mathrm{ft}) \\
& =257.48 \mathrm{ft}
\end{aligned}
$$

13. A sedimentation tank has a total of 150 feet of weir over which the water flows. What is the weir overflow rate in gallons per day per foot of weir when the flow is 1.7 GD?

$$
\begin{aligned}
& \text { WOw }=\frac{\text { flow, ged }}{\text { Weir lenght ft }} \\
& \begin{aligned}
&=1,700.000 \mathrm{ged} \\
&=11.335 \mathrm{ft} \\
&
\end{aligned}
\end{aligned}
$$

14. The diameter of the weir in a circular clarifier is 85 feet. What is the weir overflow rate ($\mathrm{gpd} / \mathrm{ft}$) if the flow over the weir is 2.24 MGD ?

$$
\begin{aligned}
W O R & =-2 a 20200 \mathrm{gop} \\
& =26164.71 \mathrm{gPd} / \mathrm{ft}
\end{aligned}
$$

15. A sedimentation tank has a total of 200 feet of weir which the water flows over. What is the weir overflow rate ($\mathrm{gpd} / \mathrm{ft}$) when the flow is 2.2 MGD ?

$$
\begin{aligned}
\text { WOR } & =\frac{2200000 \mathrm{gpd}}{200 \mathrm{ft}} \\
& =11,000 \mathrm{gpd} / \mathrm{ft}
\end{aligned}
$$

16. The diameter of the weir in a circular clarifier is 125 feet. The flow is 6.33 MGD . What is the weir overflow rate (gpd/ft)?

$$
\begin{aligned}
\text { WOR } & =\frac{63300000 \mathrm{~d}}{(3.14)(1259 \mathrm{ft)})} \\
& =16127.399 \mathrm{pd} / \mathrm{ft}
\end{aligned}
$$

17. A tank has a diameter of 49.4 feet. What is the gallons/day per foot of weir overflow when the tank receives $1,953,000 \mathrm{gpd}$?

$$
\begin{aligned}
\text { WOR } & =\frac{1953000 \mathrm{ged}}{(3.14)(49.4 \mathrm{ft})} \\
& =12590.58 \mathrm{ged} / \mathrm{ft}
\end{aligned}
$$

18. The flow rate to a particular clarifier is 528 gpm and the tank has a length of 30 feet and a width of 17.5 feet. What is the $\mathrm{gpd} / \mathrm{ft}$ of weir?

$$
\begin{aligned}
\text { WOR } & =\frac{760320 \mathrm{god}}{2(30 \mathrm{ft})+2(17.5 \mathrm{ft})} \\
& =8003.37 \mathrm{ged} / \mathrm{ft}
\end{aligned}
$$

19. The weir in a basin measures 30 feet by 15 feet. What is the weir overflow rate ($\mathrm{gpd} / \mathrm{ft}$) when the flow is $1,098,000 \mathrm{gpd}$?

$$
\begin{aligned}
W O R & =\frac{1098000 \mathrm{gdd}}{2(30 \mathrm{ft})+2(15 \mathrm{ft})} \\
& =12200 \mathrm{gpd} / \mathrm{ft}
\end{aligned}
$$

20. What is the weir overflow rate of a clarifier that is 50 feet 4 inches by 44 feet 3 inches and has an influent flow of 1.87 MGD ?

$$
4 / 12=0.3333 \mathrm{ft}
$$

$3 / 12=0.25 \mathrm{ft}$

$$
\begin{aligned}
\text { WOR } & =\frac{1870000 \mathrm{gpd}}{2(50.3333 \mathrm{ft})+2(44.25 \mathrm{ft})} \\
& =9885.47 \mathrm{gpd} / \mathrm{ft}
\end{aligned}
$$

Detention Time
21. A tank has a length of 100 feet, a width of 25 feet and a depth of 15 feet. What is the volume in gallons?

$$
\begin{aligned}
\text { in gallons? } \\
\begin{aligned}
\text { Vol, gal } & =(L, f t)(W, f t)(D, f t)\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right) \\
& =(100 \mathrm{ft})(25 \mathrm{ft})(15 \mathrm{ft})\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right) \\
& =280,500 \mathrm{gal}
\end{aligned}
\end{aligned}
$$

22. A clarifies has a diameter of 82 feet and a depth of 12 feet. What is the volume of the clarifies in gallons?

$$
\begin{aligned}
& \text { er in gallons? } \\
& \begin{aligned}
\text { Vol, } \mathrm{gal}= & (0.785)(\text { diameter, } \mathrm{ft})^{2}(\text { Depth, } \mathrm{ft})\left(7.489 \mathrm{ga}^{1} / \mathrm{ft}^{3}\right) \\
& =(0.785)(82 \mathrm{ft})(82 \mathrm{ft})(12 \mathrm{ft})\left(7.4891 / \mathrm{ft}^{3}\right) \\
& =473783.80 \mathrm{gal}
\end{aligned}
\end{aligned}
$$

23. A circular clarifier handles a flow of 0.9 MGD . The clarifier is 50 feet in diameter and 8 feet deep. What is the detention time in hours?

$$
\begin{aligned}
D T & =\frac{(V o l, \mathrm{gal})(24 \mathrm{hr} / \mathrm{d})}{f l o w, g \mathrm{gd}} \\
& =\frac{(0.785)(50 \mathrm{ft})(50 \mathrm{ft})(8 \mathrm{ft})(7.48 \mathrm{gal} / \mathrm{ft} 3)(24 \mathrm{hr} / \mathrm{d})}{900,000 \mathrm{gpd}}=3.13 \mathrm{hrs}
\end{aligned}
$$

24. A clarifier is 70 feet long, 25 feet wide and 10 feet deep. If the daily flow is $2,780,000 \mathrm{gpd}$, what is the detention time (in hours) in the basin?

$$
\begin{aligned}
& =1.13 \mathrm{hrs}
\end{aligned}
$$

25. What is the detention time in hours of a circular clarifies that receives a flow of $3,300 \mathrm{gpm}$

$$
\begin{aligned}
& \text { and the clarified is } 65 \text { feet in diameter and } 12 \text { feet deep? } \\
& D T=\frac{(0.785)(6554)(\operatorname{cosft)}(1284)(7.48)(24)}{4752000 \mathrm{gpd}} \\
& =1.50 \mathrm{hrs} \text { Sedimentation } \\
& \frac{3300 \mathrm{gol}}{\mathrm{~min}} \left\lvert\, \frac{1440 \mathrm{~min}}{\text { day }}=\begin{array}{c}
4752000 \\
\mathrm{gpd}
\end{array}\right.
\end{aligned}
$$

26. A sedimentation tank is 60 feet long, 12 feet wide and has water to a depth of 12 feet. If the flow to the tank is $21,600 \mathrm{gph}$, what is the detention time in hours?

$$
\begin{aligned}
D T & =\frac{(60 \mathrm{ft})(12 \mathrm{ft})(6 \mathrm{ft})(7.48 \mathrm{gal} / \mathrm{ft}+3)(2 \mathrm{hhr} / \mathrm{d})}{518400 \mathrm{gpd}} \\
& =2.99 \mathrm{hr}
\end{aligned}
$$

27. A circular clarifier receives a flow of 920 gpm . If it has a diameter of 55 feet and a water depth of 7 feet, what is the detention time in hours?
$D T=\frac{(55 \mathrm{ft})(55 \mathrm{ft})(0.785)(7 \mathrm{ft})(7.4899 / \mathrm{fs})(24 \mathrm{hr} / \mathrm{d})}{1324800 \mathrm{gpd}}$.

$$
=2.25 \mathrm{hr}
$$

28. A clear well is 70 feet long, 20 feet wide and has a water to a depth of 8 feet. If the daily

$$
\begin{aligned}
& \text { flow is } 698 \mathrm{gpm} \text {, what is the detention time in minutes? } \\
& D T_{1} h r=\frac{(70 \mathrm{ft})(20 \mathrm{ft})(8 \mathrm{ft})(7.4899 / \mathrm{fm3})(24 \mathrm{hr} / \mathrm{d})}{} 1005120 \mathrm{gpd} \quad \frac{698 \mathrm{gal}}{\mathrm{~min}} \frac{1440 \mathrm{~min}}{\mathrm{~min}} \\
& =1005120 \mathrm{gpd} \\
& =(2.00 \mathrm{hr})\left(\frac{60 \mathrm{~min}}{\mathrm{hr}}\right)=120 \mathrm{~min}
\end{aligned}
$$

Answers:

1. 2500 ft
2. $11,000 \mathrm{gpd} / \mathrm{ft}$
3. $\quad 5278 \mathrm{ft}^{2}$
4. $1906 \mathrm{gpd} / \mathrm{ft}^{2}$
5. $\quad 60.6 \mathrm{gpd} / \mathrm{ft}^{2}$
6. $16,127 \mathrm{gpd} / \mathrm{ft}$
7. $1400 \mathrm{gpd} / \mathrm{ft}^{2}$
8. $12,591 \mathrm{gpd} / \mathrm{ft}$
9. $756 \mathrm{gpd} / \mathrm{ft}^{2}$
10. $8003 \mathrm{gpd} / \mathrm{ft}$
11. $1500 \mathrm{gpd} / \mathrm{ft}^{2}$
12. $874 \mathrm{gpd} / \mathrm{ft}^{2}$
13. $730 \mathrm{gpd} / \mathrm{ft}^{2}$
14. $691 \mathrm{gpd} / \mathrm{ft}^{2}$
15. $12,200 \mathrm{gpd} / \mathrm{ft}$
16. 250 ft
17. 257.5 ft
18. $11333 \mathrm{gpd} / \mathrm{ft}$
19. $9885 \mathrm{gpd} / \mathrm{ft}$
20. $280,500 \mathrm{gal}$
21. $473,784 \mathrm{gal}$
22. 3.13 hr
23. 1.13 hr
24. 1.5 hr
25. 3.0 hrs
26. 2.25 hrs
27. $8393 \mathrm{gpd} / \mathrm{ft}$
28. 120 min

Applied Math for Water Sedimentation Practice Quiz

1. The flow to a sedimentation tank is 3.85 MGD . If the tank is 70 feet long and 35 feet wide, what is the surface overflow rate $\left(\mathrm{gpd} / \mathrm{ft}^{2}\right)$?

$$
\begin{aligned}
\text { SOR } & =\frac{3850000 \mathrm{ged}}{(70 \mathrm{ft})(35 \mathrm{ff})} \\
& =1571.43 \mathrm{gpd} / \mathrm{ft}^{2}
\end{aligned}
$$

2. The diameter of the weir in a circular clarifier is 110 feet. The flow is 5.75 MGD. What is the weir overflow rate (gpd/ft)?

$$
\begin{aligned}
\text { WOR } & =\frac{5750000 \mathrm{gpd}}{(3.14)(110 \mathrm{ft})} \\
& =16647.37 \mathrm{gpd} / \mathrm{ft}
\end{aligned}
$$

3. A rectangular clarifier handles a flow of 3.28 MGD. The clarifier is 60 feet long, 40 feet wide and 25 feet deep. What is the detention time in minutes?

$$
D T=\frac{(60 \mathrm{ft})(40 \mathrm{ft})(25 \mathrm{ft})\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right)\left(24^{\mathrm{hr}} / \text { day }\right)\left(60^{\mathrm{min}} / \mathrm{hr}\right)}{3280000 \mathrm{gpd}}
$$

$$
=197.03 \mathrm{~min}
$$

4. A circular clarifier receives a flow of $3,472.2 \mathrm{gpm}$. What is the detention time in the clarifier (in hours)? The clarifies has a diameter of 62.5 feet and a depth of 21 feet.

$$
D T=\frac{(0.785)(62.5 \mathrm{ft})(62.5 \mathrm{ft})(21 \mathrm{ft})(7.489 \mathrm{ga} / \mathrm{ft})(24 \mathrm{hr} / \mathrm{d})}{(3.472 .2 \mathrm{ga1} / \mathrm{min})\left(1440^{\mathrm{min}} / \mathrm{day}\right)}
$$

$=2.31$ hours

Answers:

1. $1571 \mathrm{gpd} / \mathrm{ft}^{2}$
2. $16,647 \mathrm{gpd} / \mathrm{ft}$
3. 197 min
4. 2.3 hours

Pumps

1. A pump must pump $4,500 \mathrm{gpm}$ against a total head of 75 feet. What horsepower will be required to do the work?

$$
\text { Whip } \left.=\frac{(\text { flow, gpo })(\text { head, } f t)}{3960}\right) \frac{(4500 \mathrm{gom})(75 \mathrm{ft})}{3960}=85 \mathrm{hp}
$$

2. If a pump is to deliver 325 gpm of water against a total head of 75 feet, and the pump has an efficiency of 87%, what horsepower must be supplied to the pump?

$$
\begin{aligned}
\text { BHP } & =\frac{(\text { flow, gem) (head, ft })}{(3960)(\text { pump eff })} \\
& =\frac{(325 \mathrm{gom})(75 \mathrm{ft})}{(3960)(0.87)}=7 \mathrm{hp}
\end{aligned}
$$

3. The manual indicates that the output of a certain motor is 40 hp . How much horsepower must be supplied to the motor if the motor is 95% efficient?

$$
\begin{aligned}
\text { MHP } & =\frac{B H P}{\text { motor eff: }} \\
& =\frac{40 \mathrm{hp}}{0.95}=42.1 \mathrm{hp}
\end{aligned}
$$

4. The water horsepower was calculated to be 20 hp . If the motor supplies the pump with 23 hp , what must be the efficiency of the pump?

$$
\begin{aligned}
\text { pump eff } & =\frac{\text { water hp }}{\text { brake hp }} * 100 \\
& =\frac{20 \mathrm{hp}}{23 \mathrm{hp}} * 100 \\
& =86.96 \%
\end{aligned}
$$

5. What is the overall efficiency if 40 hp is supplied to the motor and 26 hp of work is accomplished?

$$
\begin{aligned}
\text { Overall eff } & =\frac{\text { water hp }}{\text { motor hp }} * 100 \\
& =\frac{26 \mathrm{hp}}{40 \mathrm{hp}} * 100=65 \%
\end{aligned}
$$

6. Given that 30 kilowatts (kW) power is supplied to a motor and the brake horsepower is 31 hp , what is the efficiency of the motor?

$$
\begin{aligned}
& 31 \mathrm{~kW} / 0.746 \mathrm{~kW} / \mathrm{hp}=41.555 \mathrm{hp} \\
& \text { motor eff }=\frac{31 \mathrm{hp}}{41.555 \mathrm{hp}} * 100=74.6 \%
\end{aligned}
$$

7. A pump is discharging 1200 gpm against a head of 55 feet. The wire-waterefficiency is 75 percent. If the cost of power is $\$ 0.038 / \mathrm{kW} \mathrm{hr}$, what is the cost of the power consumed during a run of 105 hours?

$$
\begin{aligned}
m H P & =\frac{(f l o w, g p m)(h e a d, f t)}{(3960)(p u m p e f f)(\text { motor eff })}=\frac{(1200 g p m)(55 f t)}{(3960)(0.75)}=22.2 \\
\text { cost, } \$ / \mathrm{hr} & =(m H p)(0.746 \mathrm{~kW} / \mathrm{hp})(\text { cost, } \$ / \mathrm{kW}-\mathrm{hr}) \\
& =(22.22 \mathrm{hp})(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.038 / \mathrm{kw}-\mathrm{hr}) \\
& =(\$ 0.63 / \mathrm{hr})(105 \mathrm{hr})=\$ 66.14
\end{aligned}
$$

8. What is the horsepower for a motor that is rated at 55 amps and 440 volts?

$$
\begin{aligned}
h_{p} & =\frac{(\text { volts })(\text { amps })}{746 \text { watt } / \mathrm{hp}_{p}} \\
& =\frac{(440)(55)}{746 \mathrm{w} / \mathrm{hp}} \\
& =32.4 \mathrm{hp}
\end{aligned}
$$

9. Determine the power factor for a system that uses 4971 watts and pulls 12 amps at 440 volts.

$$
\begin{aligned}
\text { p.f. } & =\frac{\text { watts }}{(\text { volts })(\text { amps })} \\
& =\frac{4971}{(440)(12)}=0.94
\end{aligned}
$$

10. If a single-phase motor pulls 15 amps at 220 volts and has a power factor of 1.2, how many kilowatts of power does it use?

$$
\begin{aligned}
K|N| & =\frac{(\text { volts })(\text { amps })(p . f .)}{1000 \mathrm{~W} / \mathrm{kW}} \\
& =\frac{(220)(15)(1.2)}{1000} \\
& =3.96 \mathrm{~kW}
\end{aligned}
$$

11. How many watts of power does a three-phase motor use if it pulls 30 amps at 440 volts and has a power factor of 0.93 ?

$$
\begin{aligned}
\text { watts } & =(\text { volts })(\text { amps })(\text { p.f. })(1.732) \\
& =(440)(30)(0.93)(1.732) \\
& =21262.03 \text { watts }
\end{aligned}
$$

APPLIED MATH FOR WATER TREATMENT PUMP HORSEPOWER/EFFICIENCY/COST/MOTORS

HORSEPOWER

1. A pump must pump $3,000 \mathrm{gpm}$ against a total head of 25 feet. What horsepower (water horsepower) will be required to do the work?

$$
\begin{aligned}
\text { WHP } & =\frac{(f l o w, \text { gpm })(\text { head ft })}{3960} \\
& =\frac{(3000 \mathrm{gpm})(25 \mathrm{ft})}{3960}=18.94 \mathrm{hp}
\end{aligned}
$$

2. A flow of 555 gpm must be pumped against a head of 40 feet. What is the horsepower required?

$$
\begin{aligned}
W H P & =\frac{(555 \mathrm{~g} p \mathrm{~m})(40 \mathrm{ft})}{3960} \\
& =561 \mathrm{hp}
\end{aligned}
$$

3. Suppose a pump is pumping a total head of 76.2 feet. If 900 gpm is to be pumped, what is the water horsepower requirement?

$$
\begin{aligned}
W H P & =\frac{(9000 \mathrm{gmm})(\mathrm{gle.2ft})}{} \\
& =17.32 \mathrm{hp}
\end{aligned}
$$

4. Suppose a pump is pumping against a total head of 46 feet. If 850 gpm is to be pumped, what is the horsepower requirement?

$$
\begin{aligned}
W H P & =\frac{(850 \mathrm{goghanc}(46 \mathrm{llft})}{} \\
& =9.87 \mathrm{hP}
\end{aligned}
$$

5. A pump is delivering a flow of 835 gpm against a total head of 35.6 feet. What is the water horsepower?

$$
\begin{aligned}
W H P & =\frac{(835 \mathrm{gpm})(35.6 \mathrm{ft})}{3960} \\
& =7.51 \mathrm{hp}
\end{aligned}
$$

6. What is the water horsepower of a pump that is producing $1,523 \mathrm{gpm}$ against a head of 65 feet?

$$
\begin{aligned}
W H P & =\frac{(1523 \mathrm{gpm})(65 \mathrm{ft})}{3960} \\
& =25.0 \mathrm{hp}
\end{aligned}
$$

EFFICIENCY
7. If a pump is to deliver 360 gpm of water against a total head of 95 feet, and the pump has an efficiency of 85 percent, what horsepower must be supplied to the pump?

$$
\begin{aligned}
\text { BHT } & =\frac{(f l o w, \text { gpo })(\text { head, ft })}{(3960)(\text { Pump eff. })} \\
& =\frac{(360 \mathrm{gpm})(95 \mathrm{ft})}{(3960)(0.85)}=10.16 \mathrm{hp}
\end{aligned}
$$

8. If a pump is to deliver 450 gpm of water against a total head of 90 feet, and the pump has an efficiency of 70 percent, what horsepower must be supplied to the pump?

$$
\begin{aligned}
B H P & =\frac{(450 \mathrm{gpm})(90 \mathrm{ft})}{(3960)(0.70)} \\
& =14.61 \mathrm{hp}
\end{aligned}
$$

9. The motor nameplate indicated that the output of a certain motor is 35 hp . How much horsepower must be supplied to the motor, if the motor is 90% efficient?

$$
\begin{aligned}
\text { MHP } & =\frac{B H P}{\text { motor eff }} \\
& =\frac{35 \mathrm{hp}}{0.90}=38.89 \mathrm{hp}
\end{aligned}
$$

10. The motor nameplate indicated that the output of a certain motor is 20 hp . How much horsepower must be supplied to the motor if the motor is 90 percent efficient?

$$
\begin{aligned}
M H P & =\frac{20 \mathrm{hp}}{0.90} \\
& =22.28 \mathrm{hp}
\end{aligned}
$$

11. You have calculated that a certain pumping job will require 9 whp . If the pump is 80 percent efficient and the motor is 72 percent efficient, what motor horsepower will be required?
MHP $=\frac{\text { BHP }}{\text { motoreff }}$
$B H P=\frac{\text { WHP }}{\text { pumpeff }}$

$$
=\frac{11.25 \mathrm{hp}}{0.72}=15.63 \mathrm{hp}=\frac{9 \mathrm{hp}}{0.80}=11.25 \mathrm{hp}
$$

12. You have calculated that a certain pumping job will require 6 whp. If the pump is 80 percent efficient and the motor is 90 percent efficient, what motor horsepower will be required?

$$
\begin{aligned}
B H P & =\frac{6 \mathrm{hp}}{0.8} & M H P & =\frac{7.5 \mathrm{hp}}{0.90} \\
& =7.5 \mathrm{hp} & & =8.3 \mathrm{hp}
\end{aligned}
$$

13. Based on the gallons per minute to be pumped and the total head the pump must pump against, the water horsepower requirement was calculated to be 18.5 whp . If the motor supplies the pump with 21 hp , what must be the efficiency of the pump?

$$
\begin{aligned}
\text { Pump eff } & =\frac{\text { WHP }}{\text { BHP }} * 100 \\
& =\frac{18.5 h p}{21 h p} * 100=88.1 \%
\end{aligned}
$$

14. What is the overall efficiency if an electric power equivalent to 35 hp is supplied to the motor and 18.5 hp of work is accomplished?

$$
\begin{aligned}
\text { Overalleff } & =\frac{W H P}{M H P} * 100= \\
& =\frac{18.5 h p}{35 \mathrm{hp}} * 100=58.9 \%
\end{aligned}
$$

15. Suppose that 31 kilowatts (kW) power is supplied to a motor. If the brake horsepower is 19 bhp , what is the efficiency of the motor?

$$
\begin{aligned}
\text { Motor eff } & =\frac{B H P}{\text { MHP }} * 100 \\
& =\frac{19 h_{p}}{41.555 h_{p}} * 100 \\
& =45.72 \%
\end{aligned}
$$

16. Suppose that 10 kilowatts (kW) power is supplied to a motor. If the brake horsepower is 12 bhp , what is the efficiency of the motor?

$$
\begin{aligned}
\text { motor eff } & =\frac{12 \mathrm{hp}}{13.4048 \mathrm{hp}} * 100 \\
& =89.5 \%
\end{aligned}
$$

PUMPING COST

17. The motor horsepower required for a particular pumping job is 39 hp . If your power cost is $\$ 0.08 / \mathrm{kW} \mathrm{hr}$, what is the cost of operating the motor for one hour?

$$
\begin{aligned}
\operatorname{cost}_{1}^{\$} / \mathrm{hr} & =(M H P)(0.746 \mathrm{~kW} / \mathrm{hp})(\operatorname{cost} \$ / \mathrm{KW}-\mathrm{hr}) \\
& =(39 \mathrm{hp})(0.746 \mathrm{kw} / \mathrm{hp})(\$ 0.08 / \mathrm{KW}-\mathrm{hr}) \\
& =\$ 2.33 / \mathrm{hr}
\end{aligned}
$$

18. The motor horsepower required for a particular pumping job is 30 hp . If your power cost is $\$ 0.05 / \mathrm{kW} \mathrm{hr}$, what is the cost of operating the motor for one hour?

$$
\begin{aligned}
\operatorname{cost} & =(30 \mathrm{hp})(0.746 \mathrm{kw} / \mathrm{hp})\left(80.05 / \mathrm{kW}-\mathrm{hr}_{r}\right) \\
& =B 1.12 / \mathrm{hr}
\end{aligned}
$$

19. You have calculated that the minimum motor horsepower requirement for a particular pumping problem is 25 mhp . If the cost of power is $\$ 0.025 / \mathrm{kW}$

$$
\begin{aligned}
& \text { hr, what is the power cost in operating the pump for } 14 \text { hours? } \\
& \text { cost }=(25 \mathrm{hp})\left(0.746^{\mathrm{kW}} / \mathrm{hp}\right)(\$ 0.025 / \mathrm{kW}-\mathrm{hr}) \\
&=(\$ 0.47 / \mathrm{hr})(14 \mathrm{hr}) \\
&=\$ 6.53
\end{aligned}
$$

20. A pump is discharging 1100 gpm against a head of 65 feet. The wire-towater efficiency is 70 percent. If the cost of power is $\$ 0.025 / \mathrm{kW} \mathrm{hr}$, what is the cost of the power consumed during a week in which the pump runs 80 hours?

$$
\begin{aligned}
\text { dis? } & \begin{aligned}
\text { H }
\end{aligned}=\frac{(1100 \mathrm{gpm})(65 \mathrm{ft})}{(3960)(0.70)}=25.7936 \mathrm{hp} \\
\text { cost } & =(25.7936 \mathrm{hp})(0.746 \mathrm{~kW} / \mathrm{hp})(0.025 / \mathrm{kW}-\mathrm{hr}) \\
& =(\$ 0.48 / \mathrm{hr})(80 \mathrm{hrs}) \\
& =\$ 38.48
\end{aligned}
$$

21. Given a brake horsepower of 18.5, a motor efficiency of 88 percent and a cost of $\$ 0.015 / \mathrm{kW} \mathrm{hr}$, determine the daily power cost for operating a pump.

$$
\begin{aligned}
M H P & =\frac{18.5 \mathrm{hp}}{0.88}=21.0227 \mathrm{hp} \\
\text { cost } & =(21.0227 \mathrm{hp})(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.015 / \mathrm{kw}-\mathrm{hr}) \\
& =(\$ 0.24 / \mathrm{hr})(24 \mathrm{hr} / \mathrm{day}) \\
& =\$ 5.65 / \mathrm{day}
\end{aligned}
$$

22. A pump is discharging 1500 gpm against a head of 80 feet. The wire-towater efficiency is 68 percent. If the cost of power is $\$ 0.035 / \mathrm{kW} \mathrm{hr}$, what is the cost of the power consumed during a week in which the pump runs 90 hours?

$$
\text { uss? } \begin{aligned}
\text { MHP } & =\frac{(1500 \mathrm{gpm})(80 \mathrm{ft})}{(3960)(0.68)}=44.5633 \mathrm{hp} \\
\text { cost } & =(44.5633 \mathrm{hp})(0.746 \mathrm{~kW} / \mathrm{hp})(\$ 0.035 / \mathrm{kW}-\mathrm{hr}) \\
& =(\$ 1.16 / \mathrm{hr})(90 \mathrm{hr}) \\
& =104.72
\end{aligned}
$$

MOTORS
23. What would be the horsepower on a motor that is rated at 36 amps and 440 volts?

$$
\begin{aligned}
H P & =\frac{(\text { volts })(\text { amps })}{746 \text { watts } / \mathrm{hp}} \\
& =\frac{(440)(36)}{746}=21.23 \mathrm{hp}
\end{aligned}
$$

Pumps
24. What would be the horsepower on a motor that is rated at 12 amps and 440 volts?

$$
\begin{aligned}
H P & =\frac{(440)(12)}{746} \\
& =7.08 \mathrm{hp}
\end{aligned}
$$

25. What would be the horsepower on a motor that is rated at 16 amps and 440 volts?

$$
\begin{aligned}
H P & =\frac{(440)(16)}{746} \\
& =9.44 \mathrm{hp}
\end{aligned}
$$

26. How many watts of power does a single-phase motor use if it pulls 12 amps at 110 volts and has a power factor of 1 ?

$$
\begin{aligned}
\text { Watts } & =(\text { volts })(\text { amps })(\text { power factor) } \\
& =(110 \text { volts)(12amps)(1) } \\
& =1320 \text { watts }
\end{aligned}
$$

27. How many watts of power does a single-phase motor use if it pulls 12 amps at 220 volts and has a power factor of 0.8 ?

$$
\begin{aligned}
\text { watts } & =(220 \text { volts })(12 \mathrm{amps})(0.8) \\
& =2112 \mathrm{watts}
\end{aligned}
$$

28. How many watts of power does a single-phase motor use if it pulls 12 amps at 110 volts and has a power factor of 0.3 ?

$$
\begin{aligned}
\text { watts } & =(110 \text { volts })(12 \mathrm{amps})(0.3) \\
& =396 \text { Watts }
\end{aligned}
$$

29. How many watts of power does a three-phase motor use if it pulls 20 amps at 440 volts and has a power factor of 0.85 ?

$$
\begin{aligned}
\text { Watts } & =(\text { volts })(\text { amps })(\text { power factor) }(1.732) \\
& =(440)(20)(0.85)(1.732) \\
& =12,955.36 \text { watts }
\end{aligned}
$$

30. How many watts of power does a three-phase motor use if it pulls 40 amps at 440 volts and has a power factor of 0.9 ?

$$
\begin{aligned}
\text { watts } & =(440)(40)(0.9)(1.732) \\
& =27434.88 \text { watts }
\end{aligned}
$$

31. How many kilowatts of power does a three-phase motor use if it pulls 20 amps at 440 volts and has a power factor of 0.85 ?

$$
\begin{aligned}
K W & =\frac{(\text { valts })(\text { amps })(p f)(1.732)}{1000 \text { watt/kW }} \\
& =\frac{(440)(20)(0.85)(1.732)}{1000}=12.96 \mathrm{~kW}
\end{aligned}
$$

32. What is the power factor on a system that uses 3872 watts and pulls 11 amps at 440 volts?

$$
\begin{aligned}
\text { power factor } & =\frac{\text { watts }}{(\text { volts (amps) }} \\
& =\frac{3872}{(440)(11)}=0.8
\end{aligned}
$$

33. What is the power factor on a system that uses 3960 watts and pulls 10 amps at 440 volts?

$$
\begin{aligned}
\text { power factor } & =\frac{3960}{(440)(10)} \\
& =0.9
\end{aligned}
$$

APPLIED MATH FOR WATER TREATMENT PUMP RATES PROBLEMS

1. During a 60 -minute pumping test, 9,456 gallons are pumped into a tank that has a length of 10 feet, width of 8 feet, and depth of 6 feet. The tank was empty before the pumping test was started. What is the GPM rate?

$$
\mathrm{gal} / \mathrm{min}=\frac{9456 \mathrm{gal}}{60 \mathrm{~min}}=157.6 \mathrm{gpm}
$$

2. During a 30 -minute pumping test, 3680 gallons are pumped into a tank, which has a diameter of 10 ft . The water level before the pumping test was 3 ft . What is the GPM rate?

$$
\begin{aligned}
\mathrm{gal} / \mathrm{min} & =\frac{3680 \mathrm{gal}}{30 \mathrm{~min}} \\
& =122.67 \mathrm{gpm}
\end{aligned}
$$

3. A 50 -ft diameter tank has water to a depth of 6 feet. The inlet valve is closed and a 2 -hour pumping test is begun. If the water level in the tank at the end of the test is 2.3 feet, what is the pumping rate in gallons per minute?

$$
\begin{aligned}
\text { Vol } & =(0.785)(50 \mathrm{ft})(50 \mathrm{ft})(6-2.3 \mathrm{ft}) \\
& =(7261.25 \mathrm{ft} 3)\left(7.489 a 1 / \mathrm{ft}^{3}\right) \\
& =\frac{54314.15 \mathrm{gal}}{120 \mathrm{~min}} \\
& \mathrm{gal} / \mathrm{min}=452.62 \mathrm{gpm}
\end{aligned}
$$

4. A tank has a length of 12 feet, a depth of 12 feet, a width of 12 feet, and has water to a depth of 10 feet. If the tank can be emptied in 1 hour 37 minutes, what is the pumping rate in gallons per minute?

$$
\begin{aligned}
\text { Vol, gal } & =(12 \mathrm{ft})(12 \mathrm{ft})(10 \mathrm{ft})\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right) \\
& =\frac{10771.2 \mathrm{gal}}{97 \mathrm{~min}} \\
\mathrm{gal} / \mathrm{min} & =111.04 \mathrm{gpm}
\end{aligned}
$$

5. During a pumping test, water was pumped into an empty tank 10 feet by 10 feet by 5 feet deep. The tank completely filled with water in 10 minutes 30 seconds. Calculate the pumping rate in GPM.

$$
\begin{aligned}
\text { Vol, gal } & =(10 \mathrm{ft})(10 \mathrm{ft})(5 \mathrm{ft})\left(7.48 \mathrm{gal}^{2} / \mathrm{ft}^{3}\right) \\
& =\frac{3740 \mathrm{gal}}{10.5 \mathrm{~min}} \\
\mathrm{gal} / \mathrm{min} & =356.19 \mathrm{~g} \mathrm{pm}
\end{aligned}
$$

6. During a 60 minute pumping test, 11,321 gallons are pumped into a tank that has a length of 15 feet, a width of 10 feet and a depth of 8 feet. The tank was empty before the pumping test was started. What is the GPM rate?

$$
\begin{aligned}
\mathrm{gal} / \mathrm{min} & =\frac{11321 \mathrm{gal}}{66 \mathrm{~min}} \\
& =188.68 \mathrm{gpm}
\end{aligned}
$$

7. A wet well is 15 feet long and 12 feet wide. The influent valve to the wet well is closed. If a pump lowers the water level 1.25 feet during a 5 -minute pumping test, what is the gym pumping rate?

$$
\begin{aligned}
& V o l=(15 \mathrm{ft})(12 \mathrm{ft})(1.25 \mathrm{ft})(7.48 \mathrm{gal} / \mathrm{ft}) \\
&=\frac{1683 \mathrm{gal}}{5 \mathrm{~min}} \\
& \mathrm{gal} / \mathrm{min}=336.6 \mathrm{gpm}
\end{aligned}
$$

8. A pump is discharged into a 55-gallon barrel. If it takes 35 seconds to fill the barrel, what is the pumping rate in GPM? $35 / 60=0.5833 \mathrm{~min}$

$$
\begin{aligned}
\mathrm{gal} / \mathrm{min} & =\frac{55 \mathrm{gal}}{0.5888 \mathrm{~min}} \\
& =94.29 \mathrm{~g} \mathrm{pm}
\end{aligned}
$$

9. A pump is rated at 300 gpm . A pump test is conducted for 3 minutes. What is the actual gym pumping rate if the wet well is 10 feet long and 8 feet wide and the water level drops 1.33 feet during the pump test?

$$
\begin{aligned}
\mathrm{Vol}, \mathrm{gal} & =(10 \mathrm{ft})(8 \mathrm{ft})(1.33 \mathrm{ft})\left(7.48 \mathrm{gal}_{\mathrm{ft}} \mathrm{ft}^{3}\right) \\
& =\frac{795.872 \mathrm{gal}}{3 \mathrm{~min}} \\
\mathrm{gal} / \mathrm{min} & =265.29 \mathrm{gpm}
\end{aligned}
$$

10. During a pumping test, 12,600 gallons are pumped into a tank. If the pump is rated at 210 gpm , how many minutes did it take to fill the tank?

$$
210 \mathrm{ga} / \mathrm{min}=\frac{10600 \mathrm{gal}}{x} \underset{\text { Pumps }}{\Longrightarrow}
$$

$$
\begin{aligned}
& x=\frac{121000 \mathrm{gal}}{210 \mathrm{gpm}} \\
& x=60 \mathrm{~min}
\end{aligned}
$$

11. If a tank 12 feet long, 12 feet wide, 12 feet deep, and holding water to a depth of 8 feet can be emptied at a pumping rate of 575 gpm , how many minutes will it take to remove all the water?

$$
575 \mathrm{gal} / \mathrm{min}=\frac{(12 \mathrm{ft})(12 \mathrm{ft})(8 \mathrm{ft})(7.4899 \mathrm{l} / \mathrm{ft3}}{x \mathrm{~min}}
$$

$$
\begin{aligned}
x & =\frac{8616.96 \mathrm{gal}}{575 \mathrm{gpm}} \\
x & =14.99 \mathrm{~min}
\end{aligned}
$$

ANSWERS

1. $\quad 157.6 \mathrm{gpm}$
2. $\quad 122.7 \mathrm{gpm}$
3. 452.6 gpm
4. 111 gpm
5. 356.2 gpm
6. $\quad 188.7 \mathrm{gpm}$
7. 336.6 gpm
8. 94.3 gpm
9. $\quad 265.3 \mathrm{gpm}$
10. 60 minutes
11. 15 minutes

Applied Math for Water Treatment
 Pump Math
 Extra Problems

1. The brake horsepower of a pump is 22 hp . If the water horsepower is 17 hp , what is the efficiency of the pump?

$$
\begin{aligned}
\text { pump eff } & =\frac{17 h p}{22 h_{p}} * 100 \\
& 77.3 \%
\end{aligned}
$$

2. If the motor horsepower is 50 hp and the brake horsepower is 43 hp , what is the percent efficiency of the motor?

$$
\begin{aligned}
\text { motor eff } & =\frac{43 \mathrm{hp}}{50 \mathrm{hp}} * 100 \\
& =86 \%
\end{aligned}
$$

3. The motor horsepower is 25 hp . If the motor is 89% efficient, what is the brake horsepower?

$$
\begin{aligned}
& 0.89=\frac{B H P}{25 h P} \\
& (0.89)(25 \mathrm{hp})=\text { BHP } \\
& 22.25=B H P
\end{aligned}
$$

4. A total of 50 hp is supplied to a motor. If the wire-to-water efficiency of the pump and motor is 62%, what will the Whp be?

$$
\begin{aligned}
W H P & =(50 \mathrm{hp})(0.62) \\
& =31 \mathrm{hp}
\end{aligned}
$$

5. The brake horsepower is 34.4 hp . If the motor is 86% efficient, what is the motor horsepower?

$$
\begin{aligned}
M H P & =\frac{34.4 \mathrm{hp}}{0.86} \\
& =40 \mathrm{hp}
\end{aligned}
$$

6. A pump must pump 1500 gpm against a total head of 40 ft . What horsepower is required for this work?

$$
\begin{aligned}
W H P & =\frac{(1500 \mathrm{gpm})(40 \mathrm{ft})}{3960} \\
& =15.15 \mathrm{hp}
\end{aligned}
$$

7. If 20 hp is supplied to a motor (Mhp), what is the Bhp and Whp if the motor is 85% efficient and the pump is 80% efficient?

$$
\begin{aligned}
& B H P=(20 h p)(0.85)=17 \mathrm{hp} \\
& W H P=(17 \mathrm{hp})(0.80)=13.6 \mathrm{hp}
\end{aligned}
$$

8. A total of 35 hp is required for a particular pumping application. If the pump efficiency is 85%, what is the brake horsepower required?

$$
\begin{aligned}
B H P & =\frac{35 \mathrm{hp}}{0.85} \\
& =41.18 \mathrm{hp}
\end{aligned}
$$

9. The motor horsepower requirement has been calculated to be 45 hp . How many kilowatts electric power does this represent? (Remember, 1 $h p=746$ watts)

45 hp	746 watts	1 KW
1 hp	1000 watts	

10. The motor horsepower requirement has been calculated to be 75 hp . During the week, the pump is in operation a total of 144 hours. If the electricity cost is $\$ 0.06125$ per kW-hr, what would be the power cost that week for the pumping?

$$
\begin{aligned}
\text { cost } & =(75 \mathrm{hp})(0.746 \mathrm{~kW} / \mathrm{hp})(0.06125 / \mathrm{WW}-\mathrm{hr}) \\
& =(\$ 3.43 / \mathrm{hr})(144 \mathrm{hr}) \\
& =\$ 993.48
\end{aligned}
$$

5. 77%
6. 40 Mhp
7. 33.57 kW
8. 86%
9. 15 Whp
10.\$493.48
10. 22.25 Bhp
11. 17 Bhp, 13.6 Whp
12. 31 Whp
13. 41.2 Bhp

Disinfection

1. A treatment plant wants to have $1.4 \mathrm{mg} / \mathrm{L}$ residual chlorine in the distribution system. Due to a main break the demand has climbed to $0.8 \mathrm{mg} / \mathrm{L}$. What is the required dose?

$$
\begin{aligned}
\text { dose } & =\text { demand }+ \text { residual } \\
& =1.4 \mathrm{mg} / \mathrm{L}+0.8 \mathrm{mg} / \mathrm{L} \\
& =2.2 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

2. A city has a combined residual of $0.5 \mathrm{mg} / \mathrm{L}$ and a free residual of $1.8 \mathrm{mg} / \mathrm{L}$. What is the total residual in mg / L ?

$$
\begin{aligned}
\text { total } & =\text { combined }+ \text { residual } \\
& =0.5 \mathrm{mg} / \mathrm{L}+1.8 \mathrm{mg} / \mathrm{L} \\
& =2.3 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

3. A water plant treats 4.3 MGD . If the chlorine dose needs to be $4.5 \mathrm{mg} / \mathrm{L}$, what is the chlorine feed requirement in $\mathrm{lb} /$ day?

$$
\begin{aligned}
\mathrm{lb} / \text { day } & =(\text { dose, } \mathrm{mg} / \mathrm{L})(\text { flow, MGD) }(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =(4.5 \mathrm{mg} / \mathrm{L})(4.3 \mathrm{mGD})(8.34 \mathrm{~b} / \mathrm{gal}) \\
& =161.38 \mathrm{lb}
\end{aligned}
$$

4. Determine the chlorine dose in mg / L if 17 lbs of chlorine are fed while treating P. 7 1.3 MGD of water.

$$
\begin{aligned}
\text { dose }_{1} \mathrm{mg} / \mathrm{L} & =\frac{\text { feed rate } 1 \mathrm{lb} / \text { day }_{(\text {flow }, M G D)(8.34 \mathrm{lb} / \mathrm{gal})}^{(1.3 \mathrm{MGD})(8.34)}=1.57 \mathrm{mg} / \mathrm{L}}{}
\end{aligned}
$$

5. How many pounds of 65% available HTH is needed to make 4 gallons of a 7% solution?

$$
\begin{aligned}
H T H, 1 b s & =\frac{(\text { des.cl })(\text { des.vol })(8.34 \mathrm{lb} / \mathrm{gal})}{\% / 0 \mathrm{HTH}} \\
& =\frac{(0.07)(4 \mathrm{gal})(8.34 \mathrm{lb} / \mathrm{gal})}{0.65} \\
& =3.591 \mathrm{~b}
\end{aligned}
$$

6. How many gallons of bleach (12.5% available chlorine) will it take to make a 5% solution when added to enough water to make 50 gallons of hypochlorite?

$$
\begin{aligned}
\text { bleach, gal }= & \frac{(\text { des.cl })(\text { dee } . \text { vol })}{\% \text { bleach }} \\
& \frac{(0.05)(50 \text { gal })}{0.125}=20 \mathrm{gal}
\end{aligned}
$$

7. A water plant has just switched from sodium hypochlorite to chlorine gas. If they used an average of $32 \mathrm{gal} /$ day of 15% sodium hypochlorite, how many pounds per day will they use of Cl_{2} ?

$$
\begin{aligned}
\text { chlorine } & =(\text { avail } \mathrm{cl})(\mathrm{vol})(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =(0.15)(32 \mathrm{gal})(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =40.03 \mathrm{lb}
\end{aligned}
$$

8. A chlorine cylinder weighs 150 pounds. Twenty four hours later the same cylinder weighs 103 pounds. What is the chlorinator feed rate in $\mathrm{lb} /$ day?

$$
150 \mathrm{lb}-103 \mathrm{lb}=47 \mathrm{lb} / \mathrm{day}
$$

a. Estimate the chlorine dose in mg / L for the chlorinator. The flow totalizer reads 13, 597,405 gallons and 15, 078,687 gallons 24 hrs later.

$$
\begin{aligned}
15078681 \mathrm{gal}-13597405 \mathrm{gal} & =1,481,882 \mathrm{gal} \\
\text { dose, }^{\mathrm{mg}} / \mathrm{L}=\frac{47 \mathrm{~b} / \text { day }}{(1.481 \mathrm{mGD})(8.34)} & =3.81 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

b. If the setting on chlorinator does not change, how many pounds of chlorine will be left in the cylinder 2 days later?

$$
\begin{aligned}
& (47 \mathrm{lb} / \mathrm{day})(2 \mathrm{day})=94 \mathrm{lb} \\
& 103 \mathrm{lb}-971 \mathrm{lb}=6 \mathrm{lb}
\end{aligned}
$$

c. How many 150 lb cylinders will this plant need in a month (with 30 days)?

$$
\begin{aligned}
& (47 \mathrm{lb} / \text { day })(30 \text { days })=1410 \mathrm{lb} \\
& \frac{1410 \mathrm{lb}}{150 \mathrm{lb} / \text { cylinder }}=9.4 \Rightarrow 10 \mathrm{cy} \text { lingers }
\end{aligned}
$$

APPLIED MATH FOR WATER DISINFECTION MATH

DOSE \& DEMAND

1. A water system has a chlorine demand of $4.1 \mathrm{mg} / \mathrm{L}$ and wants to have a 1.1 mg / L residual. What would be the dose?

$$
\begin{gathered}
\text { demand }=\text { dose }- \text { residual } \\
4.1 \mathrm{mg} / \mathrm{L}=\text { dose }-1.1 \mathrm{mg} / \mathrm{L} \\
4.1 \mathrm{mg} / \mathrm{L}+1.1 \mathrm{mg} / \mathrm{L}=\text { dose } \\
5.2 \mathrm{mg} / \mathrm{L}=\text { dose }
\end{gathered}
$$

2. A city wants to have $1.4 \mathrm{mg} / \mathrm{L}$ chlorine in the distribution system. Due to a main break the demand has climbed to $1.0 \mathrm{mg} / \mathrm{L}$. What is the residual?

$$
\begin{gathered}
\text { demand }=\text { dose }-r \text { residual } \\
1.0 \mathrm{mg} / \mathrm{L}=1.4 \mathrm{mg} / \mathrm{L} \text { - residual } \\
1.4 \mathrm{mg} / \mathrm{L}-1.0 \mathrm{mg} / \mathrm{L}=\text { residual } \\
0.4 \mathrm{mg} / \mathrm{L}=
\end{gathered}
$$

3. A system just had a main break. The chlorine level of $3.3 \mathrm{mg} / \mathrm{L}$ has dropped to $0.3 \mathrm{mg} / \mathrm{L}$. What is the chlorine demand?

$$
\begin{aligned}
\text { demand } & =3.3 \mathrm{mg} / \mathrm{L}-0.3 \mathrm{mg} / \mathrm{L} \\
& =3.0 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

4. A city doses the water to have a residual of $1.9 \mathrm{mg} / \mathrm{L}$. The demand has risen because of a main break to $1.8 \mathrm{mg} / \mathrm{L}$. What is the free residual?

$$
\begin{aligned}
\text { residual } & =\text { dose }- \text { demand } \\
& =1.9-1.8 \\
& =0.1 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

5. A city has a combined residual of $0.2 \mathrm{mg} / \mathrm{L}$ and a free residual of $1.7 \mathrm{mg} / \mathrm{L}$.

What is the total residual in mg / L ?

$$
\begin{aligned}
\text { total residual } & =00 \mathrm{mbined}+\text { free } \\
& =0.2 \mathrm{mg} / \mathrm{L}+1.7 \mathrm{mg} / \mathrm{L} \\
& =1.9 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

6. The total residual in a clearwell is $2.7 \mathrm{mg} / \mathrm{L}$. If the free residual is 2.5 , what is the combined residual?
$2.7 \mathrm{mg} / \mathrm{L}=$ combined $+2.5 \mathrm{mg} / \mathrm{L}$
$2.7-2.5=$ combined
$0.2 \mathrm{mg} / \mathrm{L}=$ combined
7. The total residual in a the clearwell is $2.5 \mathrm{mg} / \mathrm{L}$. If the free residual is $2.2 \mathrm{mg} / \mathrm{L}$, what is the combined residual?

$$
\begin{aligned}
& 2.5 \mathrm{mg} / \mathrm{L}=\text { combined }+2.2 \mathrm{mg} / \mathrm{L} \\
& 2.5-2.2=\text { combined } \\
& 0.3 \mathrm{mg} / \mathrm{L}=\text { combined }
\end{aligned}
$$

DOSAGE
8. A water plant treats 7.5 MGD. If the chlorine dose needs to be $3 \mathrm{mg} / \mathrm{L}$, what is the chlorine requirement in pounds per day?

$$
\begin{aligned}
& \text { feed rate } 16 / \mathrm{day}=(\text { (dose) }(\mathrm{flow})(8.34 \mathrm{bl} / \mathrm{gal}) \\
&=(3 \mathrm{mg} / \mathrm{L})(7.5 \mathrm{MGD})(8.34 \mathrm{l} / \mathrm{gal}) \\
&=187.65 \mathrm{Ib} / \mathrm{day}
\end{aligned}
$$

9. If the water plant treats 1.8 MGD and wants to dose the water with $2.8 \mathrm{mg} / \mathrm{L}$ of chlorine, what would be the lbs/day feed rate?

$$
\begin{aligned}
1 \mathrm{~b} / \mathrm{day} & =(2.8 \mathrm{mg} / \mathrm{L})(1.8 \mathrm{MGOD})(8.34 \mathrm{~b} / \mathrm{gal}) \\
& =42.03 \mathrm{lb} / \text { day }
\end{aligned}
$$

10. How many pounds per day of chlorine are required to treat 14 million gallons of water with $3.3 \mathrm{mg} / \mathrm{L}$ of chlorine gas? $\mathrm{Cl}_{2}=100 \%$ purity

$$
\begin{aligned}
\mathrm{b} / \mathrm{day} & =\frac{(3.3 \mathrm{mg} / \mathrm{L})(14 \mathrm{MGGD})(8.34 \mathrm{~b} / \mathrm{gal})}{1} \\
& =385.31 \mathrm{~b} / \mathrm{day}
\end{aligned}
$$

11. Determine the chlorine dose in mg / L if 13 pounds of chlorine are fed while treating 968,000 gallons of water.

$$
\begin{aligned}
\text { dosage } m g / \mathrm{L} & =\frac{\text { feed rate }}{(\text { flow })\left(8.34^{\mathrm{lb} / g a l}\right)} \\
& =\frac{13 \mathrm{lb} / \mathrm{d}}{(0.968 \mathrm{MG})\left(8.3^{\prime \prime} 4\right)}=1.61 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

12. Determine the chlorine dose in mg / L if $28 \mathrm{lbs} /$ day is fed for a flow of $1,750,000$ gid.

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{28 \mathrm{lb} / \mathrm{day}}{(1.75 M G D)\left(8.34^{\mathrm{lb} / g \mathrm{gal})}\right.} \\
& =1.92 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

13. A water plant has a flow of $2,570 \mathrm{gpm}$. If the chlorinator is feeding 93 pounds per day, what is the dose in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{93 \mathrm{lb} / \mathrm{day}}{(3.7008 \mathrm{MGD})(8.34 \mathrm{~b} / \mathrm{gai})} \\
& =3.01 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
\frac{2570 \text { gal } / 1440 \min }{\min } / 1 \mathrm{MG} \\
\text { day } \\
=3.700000 \mathrm{gal}
\end{aligned}
$$

14. What should the setting be on a chlorinator in lbs/24 hours if a pump usually delivers 600 gpm and the desired chlorine dosage is $4 \mathrm{mg} / \mathrm{L}$?

$$
\begin{array}{rlr|}
\mathrm{lb} / \text { day } & =(4 \mathrm{mg} / \mathrm{L})(0.864 \mathrm{MGD})(8.34) & \cdot \frac{1600 \mathrm{gal} / 1440 \mathrm{~min}}{}\left|\frac{1 \mathrm{MG}}{\mathrm{~min}}\right| \text { day } \\
& =28.82 \mathrm{lb} / \text { day } & \\
& =0.864 \mathrm{MGD}
\end{array}
$$

15. The chlorinator is set to feed 31.5 lbs of chlorine per 24 hours for a plant flow of 1.6 MGD. Calculate the chlorine residual for a chlorine demand of $1.85 \mathrm{mg} / \mathrm{L}$.

$$
\begin{aligned}
\text { dose, } \mathrm{mg} / \mathrm{L} & =\frac{31.51 \mathrm{~b} / \text { day }}{(1.6 \mathrm{MGD})(8.34)}=2.36 \mathrm{mg} / \mathrm{L} \\
\text { demand } & =2.36 \mathrm{mg} / \mathrm{L}-1.85 \mathrm{mg} / \mathrm{L} \\
& =0.51 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

USE THE FOLLOWING INFORMATION FOR PROBLEMS 16-19:
At 8:00 a.m. on Monday morning a chlorine cylinder weighs 83 pounds. At 8:00 a.m. on Tuesday morning the same cylinder weighs 69 pounds.
16. What is the chlorinator feed rate in pounds per day?

$$
83 \mathrm{lb}-69 \mathrm{lb}=14 \mathrm{lb} / \text { day }
$$

17. Estimate the chlorine dose in mg / L for the chlorinator. The flow totalizer reads $12,982,083$ gallons at $8: 00 \mathrm{AM}$ on Monday morning and $13,528,924$ at $8: 00 \mathrm{AM}$ on Tuesday morning. (Note: This totalizer does not zero out each morning.)

$$
\begin{aligned}
& 13,528,924-12,982,083=546,841 \mathrm{gal} / \mathrm{day} \\
& \text { dose }=\frac{14 \mathrm{lb} / \mathrm{day}}{(0.54684 \mathrm{lgpd})(8.34 \mathrm{lb} / \mathrm{gal})} \\
&=3.07 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

18. If the setting on the chlorinator does not change, how many pounds of chlorine will be left in the cylinder on Friday morning at 8:00 a.m.?

$$
\begin{aligned}
& (14 \mathrm{lb} / \text { day })(3 \text { days })=42 \mathrm{lbs} \\
& 691 \mathrm{lb}-421 \mathrm{lb}=27 \mathrm{lb}
\end{aligned}
$$

19. How many $150-\mathrm{lb}$ chlorine cylinders will this water plant need in a month (with 30 days) if the chlorinator setting remains the same?

$$
\begin{aligned}
& (14 \mathrm{lb} / \mathrm{day})(30 \mathrm{days})=420 \mathrm{lbs} \\
& \frac{420 \mathrm{lb}}{150 \mathrm{~b} / \text { /finder }}=2.8 \Rightarrow 3 \mathrm{cylinders}
\end{aligned}
$$

USE THE FOLLOWING INFORMATION FOR PROBLEMS 20-22:
At 8:00 a.m. on Friday morning a chlorine cylinder weighs 298 pounds. That afternoon at 4:00 p.m. the same cylinder weighs 216 pounds.
20. What is the chlorinator feed rate in pounds per day?

$$
298 \mathrm{lb}-21616=821 \mathrm{lb} / 8 \mathrm{hr}=(10.25 \mathrm{bl} / \mathrm{hr})(24 \mathrm{hr} / \mathrm{day})
$$

21. How many pounds of chlorine will be in the cylinder at 8:00 adm. on Saturday morning if the feed rate does not change?

$$
298 \mathrm{lb}-246 \mathrm{lb}=52 \mathrm{lb}
$$

22. What is the minimum number of ton cylinders the operator will need in a month with 31 days (at this feed rate)?

$$
\begin{aligned}
& (2441 \mathrm{~b} / \mathrm{day})(31 \text { days })=7626 \mathrm{lb} \\
& \frac{76261 \mathrm{~b}}{20000 \mathrm{~b} / \mathrm{y} \text { hinder }}=3.813 \Rightarrow 4 \mathrm{cy} \text { lingers }
\end{aligned}
$$

HYPOCHLORINATION
23. How many pounds of 65% available chlorine HTH is needed to make 1 gallon of

$$
\begin{aligned}
\begin{aligned}
& 10 \% \text { solution? } \\
& H T H, 1 \mathrm{~b}=\frac{(\text { desired } \mathrm{Cl})(\text { desired vol) }(8.34 \mathrm{lb} / \mathrm{gai})}{H T H \text { avail } \mathrm{Cl}} \\
&=\frac{(0.10)(19 \mathrm{l} 1)(8.34 \mathrm{lo} / \mathrm{gal})}{0.65} \\
&=1.28 \mathrm{lb}
\end{aligned}
\end{aligned}
$$

24. How many pounds of 65% available HTH is needed to make 5 gallons of 18% solution?

$$
\begin{aligned}
\text { HRH } & =\frac{(0.18)(5 g a l)(8.34 \mathrm{~b} / \mathrm{gal})}{(0.65)} \\
& =11.55 \mathrm{lb}
\end{aligned}
$$

25. How many pounds of 65% HTH are used to make 1 gallon of 3% solution?

$$
\text { HTH, } \begin{aligned}
\mathrm{lb} & =\frac{(0.03)(\operatorname{lgal})(8.34 \mathrm{lb} / \mathrm{gal})}{0.65} \\
& =0.38 \mathrm{lb}
\end{aligned}
$$

26. How many gallons of bleach (15% available chlorine) will it take to make a 4% solution when added to enough water to make 50 gallons of hypochlorite?

$$
\begin{aligned}
& \begin{array}{l}
\text { bleach, gal }=\frac{(\text { des.chlarine) (de volume, gal) }}{\text { avail chlorine }} \\
= \\
=\frac{(0.04)(50 \mathrm{gal})}{(0.15}=13.33 \mathrm{gal}
\end{array}
\end{aligned}
$$

27. How many pounds of HTH (65% available chlorine) will it take to make a 2% solution when dissolved in enough water to make 15 gallons of hypochlorite?

$$
\begin{aligned}
H T H, 1 \mathrm{bs} & =\frac{(0.02)(15 \mathrm{gal})(8.34 \mathrm{lb} / \mathrm{gal})}{0.65} \\
& =3.85 \mathrm{lbs}
\end{aligned}
$$

28. How many gallons of bleach (5.25% available chlorine) will it take to make a 2% solution when added to enough water to make 8 gallons of hypochlorite?

$$
\begin{aligned}
\text { bleach, gal } & =\frac{(0.02)(89 \mathrm{al})}{0.0525} \\
& =3.05 \mathrm{gal}
\end{aligned}
$$

29. Water from a well is being treated by a hypochlorinator. If the hypochlorinator is set at a pumping rate of 25 gallons per day and uses a 2% available chlorine solution, what is the chlorine dose in mg / L if the pump delivers 140 gpm ?

$$
\begin{aligned}
\text { dose, mg } / L & =\frac{(\text { bleach fed) (avail chlorine) }}{\text { flow }} \\
& =\frac{(25 \mathrm{gpd})(0.02)}{0.2016 \mathrm{MGD}} \\
& =2.48 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

$$
\begin{array}{c|c|c}
140 \mathrm{gal} & 1440 \mathrm{~min} & 1 \mathrm{MG} \\
\hline \min & \text { day } & 1000000 \mathrm{gal}
\end{array}
$$

30. A water plant has just switched from sodium hypochlorite to chlorine gas. If they used an average of $26 \mathrm{gal} /$ day of 15% sodium hypochlorite, how many pounds per day will they use of Cl_{2} ?

$$
\begin{aligned}
\text { Chlorine, } 1 \mathrm{~b} & =(\text { avail chlorine })(\text { bleach vol })(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =(0.15)(26 \mathrm{gal} / \text { day })(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =32.53 \mathrm{lb}
\end{aligned}
$$

31. A water plant has run out of calcium hypochlorite for disinfecting a storage tank. If they needed 55 pounds of HTH, how many gallons of 15% sodium hypochlorite will they need?
bleach, gal $=\frac{\text { (HTHavail chbrine) }(H T H, 1 \mathrm{~h})}{(\text { bleach avail chlorine) }(8.3410 \mathrm{hal})}$

$$
\begin{aligned}
& =\frac{(0.65)(55 / \mathrm{b})}{(0.15)(8.34 \mathrm{lb} / \mathrm{gal})} \\
& =28.58 \mathrm{gal}
\end{aligned}
$$

USE THE FOLLOWING INFORMATION TO ANSWER \#32-34:
A section of pipe 250 feet long and 10 inches in diameter is filled with water. You need to disinfect it with a chlorine dose of $50 \mathrm{mg} / \mathrm{L} .110 / 12=0.8333 \mathrm{ft}$
$\begin{array}{ll}\mathrm{Vol}, \mathrm{gal}=(0.785)(0.8333)(0.8333)(260)(7.48) & =1019.4097 \mathrm{gal}\end{array}$
32. How many pounds of chlorine gas will be required?

$$
\begin{aligned}
& \text { Chem fed, } \mathrm{Ibs}=(\text { dose })(\text { vol })\left(8.34^{\mathrm{tb}} / \mathrm{gal}\right) \\
&=(50 \mathrm{mg} / \mathrm{L})(0.001019 \mathrm{MG})(8.34 \mathrm{lb} / \mathrm{gal}) \\
&=0.43 \mathrm{lbs}
\end{aligned}
$$

33. How many pounds of 65% available HTH will be required?

$$
\text { Chem fed, } \begin{aligned}
\text { lbs } & =\frac{(\text { dose })(v \mathrm{vl})(8.34)}{90 \mathrm{l}} \\
& =\frac{(50 \mathrm{mg} / \mathrm{L})(0.001019 \mathrm{MG})(8.34 \mathrm{lb} / \mathrm{gal})}{0.65} \\
& =0.65 \mathrm{lb} H T \mathrm{H}
\end{aligned}
$$

34. How many gallons of 5.25% available bleach will be required?

$$
\begin{aligned}
\text { feed rate, gal/day } & =\frac{(c l d o s e)(f l o w)}{a v a i l ~ C l} \\
& =\frac{(50 \mathrm{mg} / \mathrm{l})(0.001019 \mathrm{mc})}{0.0525}=0.97 \mathrm{gal} / \mathrm{day}
\end{aligned}
$$

35. You need to disinfect a water storage tank that has just been repaired. You have decided to use AWWA Chlorination Method 3 to disinfect the tank. This method requires you to make up a $50 \mathrm{mg} / \mathrm{L}$ available chlorine solution that will fill approximately 5% of the tank volume. The tank holds 3 MG. How many gallons of water and lbs of HTH 65% available chlorine will have to be added to meet the above mentioned requirements?

$$
\begin{aligned}
& \mathrm{Vol}=0.05 * 3000000 \mathrm{gal}=150.000 \mathrm{gal} \\
& \begin{aligned}
H T H, l \mathrm{bs} & =\frac{(50 \mathrm{mg} / \mathrm{L})(0.15 \mathrm{MG})(8.34 \mathrm{lb} / \mathrm{gal})}{0.65} \\
& =96.23 \mathrm{lbs} \mathrm{HTH}
\end{aligned}
\end{aligned}
$$

36. How many gallons of water and lbs of HTH 65% available chlorine will have to be added to disinfect a tank that holds 100,000 gallons using the above mentioned requirements?

$$
\begin{aligned}
V_{0} l_{\mathrm{gal}} & =0.05 * 100.000 \mathrm{gal}=5000 \mathrm{gal} \\
H T H_{1} \mathrm{lbs} & =\frac{(50 \mathrm{mg} / \mathrm{L})(0.005 \mathrm{MG})(8.34 \mathrm{l} / \mathrm{gall}}{0.65} \\
& =3.21 \mathrm{lbs}
\end{aligned}
$$

Answers:

1. $\quad 5.2 \mathrm{mg} / \mathrm{L}$
2. $\quad 0.4 \mathrm{mg} / \mathrm{L}$
3. $\quad 3.0 \mathrm{mg} / \mathrm{L}$
4. $\quad 0.1 \mathrm{mg} / \mathrm{L}$
5. $\quad 1.9 \mathrm{mg} / \mathrm{L}$
6. $\quad 0.2 \mathrm{mg} / \mathrm{L}$
7. $\quad 0.3 \mathrm{mg} / \mathrm{L}$
8. $\quad 188 \mathrm{lbs} /$ day
9. $42 \mathrm{lbs} /$ day
10. $385 \mathrm{lbs} /$ day
11. $\quad 1.61 \mathrm{mg} / \mathrm{L}$
12. $\quad 1.92 \mathrm{mg} / \mathrm{L}$
13. $\quad 3.01 \mathrm{mg} / \mathrm{L}$
14. $29 \mathrm{lbs} / 24 \mathrm{hr}$
15. $\quad 0.51 \mathrm{mg} / \mathrm{L}$
16. $\quad 14 \mathrm{lbs} /$ day
17. $3.07 \mathrm{mg} / \mathrm{L}$
18. 27 lbs
19. 3 cylinders
20. $246 \mathrm{lbs} /$ day
21. $\quad 52 \mathrm{lbs}$
22. 4 cylinders
23. $\quad 1.28 \mathrm{lbs}$
24. $\quad 11.5 \mathrm{lbs}$
25. $\quad 0.38 \mathrm{lbs}$
26. $\quad 13.3$ gallons bleach
27. $\quad 3.8 \mathrm{lbs}$
28. 3 gallons
29. $2.48 \mathrm{mg} / \mathrm{L}$
30. $\quad 32.5 \mathrm{lbs}$
31. 28.6 gal
32. 0.43 Ibs
33. $\quad 0.65 \mathrm{lbs}$
34. $\quad 0.97$ gallons
35. 150,000 gallons, 96.2 lbs
36. 5000 gallons, 3.2 lbs

Fluoridation

1. A water plant produces $1,750 \mathrm{gpm}$ and the town wants to have a $0.8 \mathrm{mg} / \mathrm{L}$ of fluoride in the finished water. If fluorosilicic acid is used, what would be the fluoride feed rate in $\mathrm{lb} /$ day? feed ratello/day $=\frac{(\text { dose })(\text { flow, mG. } D)(8.34 \mathrm{lb} / \mathrm{gal}) \mathrm{l}) \mathrm{min} / \mathrm{Iday} / 1000000 \mathrm{gal}}{}$

$$
=\frac{(0.8 \mathrm{mg} / \mathrm{L})(0.105 \mathrm{MGD})(8.34 \mathrm{~b} / \mathrm{gal})}{(0.23)(0.792)}=3.85 \mathrm{lb} / \mathrm{day}
$$

2. A water plant produces 2750 gpm . What would be the fluoride feed rate from a saturator in gem to obtain $0.7 \mathrm{mg} / \mathrm{L}$ in the water?

$$
\begin{aligned}
\text { rate, gm } & =\frac{(\text { dose })(\text { flow, gom })}{18000 \mathrm{mg} / \mathrm{L}} \\
& =\frac{(0.7 \mathrm{mg} / \mathrm{L})(2750 g \mathrm{~mm})}{18000 \mathrm{mg} / \mathrm{L}}=0.11 \mathrm{~g} \mathrm{pm}
\end{aligned}
$$

3. A plant uses 90 lb of sodium fluorosilicate in treating 9.6 MGD. What is the calculated dosage in mg / L ?

$$
\begin{aligned}
\text { dose, }^{m g / L} & =\frac{(F 1,16 s)(A F 1)(\text { Purity })}{(f l o w, m G D)(8.34)} \\
& =\frac{(9016)(0.985)(0.607)}{(9.6 \mathrm{mGD})(8.34)} \\
& =0.67 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

4. The fluoride for a plant's raw water source was measured to be $0.2 \mathrm{mg} / \mathrm{L}$. If the city wants the finished water to contain the recommended amount of $0.7 \mathrm{mg} / \mathrm{L}$, what mg / L of fluoride should the water plant dose?

$$
F I=0.7 \mathrm{mg} / \mathrm{L}-0.2 \mathrm{mg} / \mathrm{L}=0.5 \mathrm{mg} / \mathrm{L}
$$

Applied Math for Water
Fluoride
Feed Rates
1.a. A water plant produces $2,000 \mathrm{gpm}$, and the city wants to have $1.1 \mathrm{mg} / \mathrm{L}$ of fluoride in the finished water. If sodium fluorosilicate were used, what
1.b. Give that there are 453.6 grams in a pound, what would the fluoride feed rate for the previous problem be in gram/ min?

$$
\begin{array}{c|c|c|c|c|}
44.1916 & 10 y & 453.69 \\
\hline \text { day } & 1440 \mathrm{~min} & 116
\end{array}=13.99 / \mathrm{min}
$$

2. A water plant has a daily average production of 695 gpm , and the city wants to have a $1.0 \mathrm{mg} / \mathrm{L}$ fluoride in the finished water. The natural fluoride level is less than $0.1 \mathrm{mg} / \mathrm{L}$. Find the fluoride feed rate in lbs $/$ day using sodium fluorosilicate.

$$
\begin{aligned}
\mathrm{lb} / \mathrm{day} & =\frac{(1.0 \mathrm{mg} / \mathrm{l})(1.0008 \mathrm{maD})(8.34)}{(0.607)(0.985)} \\
& =13.96 \mathrm{lb} / \mathrm{day}
\end{aligned}
$$

$$
\begin{array}{c|c|c}
695 \mathrm{ga} / & 1440 \mathrm{~min} & 1 \mathrm{MG} \\
\hline \mathrm{~min} & \text { day } & 1000000 \mathrm{gat}
\end{array}
$$

$$
=1.0008 \mathrm{MGGD}
$$

3. If it is known that the plant rate is $4,000 \mathrm{gpm}$ and the dosage needed is $0.8 \mathrm{mg} / \mathrm{L}$, what is the fluoride feed rate in $\mathrm{lbs} / \mathrm{min}$ using fluorosilicic acid?

$$
\begin{aligned}
\mathrm{lb} / \text { min } & =\frac{(\text { dose })(\text { flow })(8.34 \mathrm{lb} / \mathrm{gal})}{(1000000)(\mathrm{AFI})(\text { purity })} \\
& =\frac{(0.8 \mathrm{mg} / \mathrm{L})(4000 \mathrm{gm})(8.3 \mathrm{lb} / 0 \mathrm{ll})}{(1000000)(0.798)(0.23)}=0.15 \mathrm{lb} / \mathrm{min}
\end{aligned}
$$

would the fluoride feed rate be in lbs/day?

$$
\begin{aligned}
& =\frac{\left(1.1^{\mathrm{mg}} / \mathrm{L}\right)(2.88 \mathrm{MGD})\left(8.34^{\mathrm{lb} / \mathrm{gal}}\right.}{(0.985)(0.607)}=44.19 \mathrm{lb} / \mathrm{day}
\end{aligned}
$$

4. What is the fluoride feed rate in lbs/day using fluorosilicic acid if the plant rate is 1.0 MGD , the natural fluoride content is $0.2 \mathrm{mg} / \mathrm{L}$, and the desired fluoride content is $1.2 \mathrm{mg} / \mathrm{L}$? dose $=1.2 \mathrm{mg} / \mathrm{L}-0.2 \mathrm{mg} / \mathrm{L}=1.0 \mathrm{mg} / \mathrm{L}$

$$
\begin{aligned}
\mathrm{lb} / \mathrm{dav} & =\frac{(1.0 \mathrm{mg} / \mathrm{L})(1.0 M \mathrm{MCD})(8.34 \mathrm{lb} / \mathrm{gal})}{(0.792)(0.23)} \\
& =45.78 \mathrm{lb} / \mathrm{day}
\end{aligned}
$$

5. If a small water plant wishes to use sodium fluorosilicate in a dry feeder and the water plant has a flow of 180 gpm , what would the fluoride feed rate be in $\mathrm{lbs} / \mathrm{min}$? Assume $0.1 \mathrm{mg} / \mathrm{L}$ natural fluoride and $1.0 \mathrm{mg} / \mathrm{L}$ is the desired concentration in the finished water.

$$
\text { dose }=1.0-0.1=0.9 \mathrm{mg} / \mathrm{c}
$$

$$
\begin{aligned}
\mathrm{lb} / \mathrm{min} & =\frac{(0.9 \mathrm{mg} / \mathrm{L})(180 \mathrm{gom})(8.34 \mathrm{lb} / \mathrm{gal})}{(1000000)(0.607)(0.985)} \\
& =0.002 \mathrm{lb} / \mathrm{min}
\end{aligned}
$$

Sodium Fluoride Feed Rates for Saturator
6. A water plant produces 1.0 MGD . What would the fluoride feed rate be from a saturator in ged to obtain $1.0 \mathrm{mg} / \mathrm{L}$ in the water?

$$
\begin{aligned}
\text { gal } / \mathrm{min} & =\frac{(\text { dose })(\text { flow })}{18000 \mathrm{mg} / \mathrm{L}} \\
& =\frac{(1.0 \mathrm{mg} / \mathrm{L})(694.44 \mathrm{~g} \mathrm{pm})}{18000 \mathrm{mg} / \mathrm{L}} \\
& =0.03858 \mathrm{gpm}
\end{aligned}
$$

7. A small water plant has a daily production rate of 180 gpm and the natural fluoride level is $0.1 \mathrm{mg} / \mathrm{L}$. If $1.0 \mathrm{mg} / \mathrm{L}$ fluoride is desired in the water, what feed rate in $\mathrm{mL} / \mathrm{min}$ of sodium fluoride from a saturator must be maintained?

$$
\begin{aligned}
& \text { dose }=1.0-0.1=0.9 \mathrm{mg} / \mathrm{L} \\
& \mathrm{gal} / \mathrm{min}=\frac{(0.9 \mathrm{mg} / \mathrm{L})(180 \mathrm{gpm})}{18000 \mathrm{mg} / \mathrm{L}}=0.009 \mathrm{gpm} \\
& \begin{array}{c|c|c}
0.009 \mathrm{gal} & 3.785 \mathrm{~L} & 1000 \mathrm{~mL} \\
\hline \min & \mathrm{gal} & 1 \mathrm{~L}
\end{array}=34.07 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

Calculated Dosages

8. A plant uses 65 lbs of sodium fluorosilicate in treating 5,540,000 gallons of water in one day. What is the calculated dosage in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / L & =\frac{(\text { fluoride })(A F I)(\text { purity })}{(\text { flow })(8.34)} \\
& =\frac{(6516 \mathrm{~b})(0.607)(0.985)}{(5.54 \mathrm{MGD})(8.34)}=0.84 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

9. A plant uses 26 lbs of sodium fluorosilicate to treat $1,756,000$ gallons of water. What is the calculated dosage for this plant in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(26 \mathrm{bs})(0.607)(0.985)}{(1.756 \mathrm{MGD})(8.34)} \\
& =1.06 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

10. A water plant has an actual production rate of 0.8 MGD . If 10 lbs of sodium fluorosilicate was fed in one day, what is the calculated dosage in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(1016)(0.607)(0.985)}{(0.8 \mathrm{MGDD})(8.34)} \\
& =0.90 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

11. A plant uses 43lbs of fluorosilicic acid in treating $1,226,000$ gallons of water. What is the calculated dosage in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(4316)(0.792)(0.23)}{(1.226 \mathrm{MG})(8.34)} \\
& =0.77 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

12. A plant uses 898 lbs of fluorosilicic acid in treatment of $17,058,000$ gallons of water. What is the calculated dosage in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / L & =\frac{(898 \mathrm{lb})(0.792)(0.23)}{(17.058 \mathrm{MG})(8.34)} \\
& =1.15 \mathrm{mg} / L_{\text {Fluoridation }}
\end{aligned}
$$

13. A water plant uses a total of $2,800 \mathrm{lbs}$ of fluorosilicic acid at 28% purity during 4 days to fluoridate 52 million gallons of water. What would be the calculated dosage in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(28001 b)(0.28)(0.792)}{(52 \mathrm{MG})(8.34)} \\
& =1.43 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

14. A water plant feeds sodium fluoride in a dry feeder. They use 5.51 bs of the chemical to fluoridate 240,000 gallons of water. What is the calculated dosage in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(5.51 \mathrm{~b})(0.452)(0.98)}{(0.24 \mathrm{MG})(8.34)} \\
& =1.22 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

15. A plant uses 10 gallons of sodium fluoride from a saturator in treating 200,000 gallons of water. What is the calculated dosage in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(\text { sol'n fed })(18000 \mathrm{mg} / \mathrm{L})}{\mathrm{fbw}, g \mathrm{gd}} \\
& =\frac{(10 \mathrm{gal})(18000 \mathrm{mg} / \mathrm{L})}{200,000 \mathrm{gpd}} \\
& =0.9 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

16. A plant uses 19 gallons of solution from its saturator in treating 360,000 gallons of water. What is the calculated dosage in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(19 \mathrm{gal})(18000 \mathrm{mg} / \mathrm{L})}{360,000 \mathrm{gd} \mathrm{~d}} \\
& =0.95 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

17. A small water plant uses sodium fluoride from a saturator at a rate of 1.0 gpd and the plant treats 4500 gpd . What is the calculated dosage in mg / L ?

$$
m g / L=\frac{(\operatorname{lgal})\left(18000^{m g} / \mathrm{L}\right)}{4500 \mathrm{gpd}}=4 \mathrm{mg} / \mathrm{L}
$$

Applied Math for Water
Fluoride Practice Quiz

1. A water plant has a daily average production of $1,736 \mathrm{gpm}$ and the city wants to have a 1.0 mg / L fluoride level in the finished water. How many lbs/day of sodium fluorosilicate would be required to reach this dosage?

$$
\begin{aligned}
\mathrm{lb} / \text { day } & =\frac{(1 \mathrm{mg} / \mathrm{h})(2.5 \mathrm{MG} D)(8.34 \mathrm{lb} / \mathrm{gal})}{(0.607)(0.985)} \\
& =34.87 \mathrm{lb} / \mathrm{day}
\end{aligned}
$$

$1736 \mathrm{gal} / 144 \mathrm{~min}$	1 MG	
min	day	100000 gal

$$
=2.50 \mathrm{MGD}
$$

2. What is the fluoride feed rate in lbs/day using fluorosilic acid if the plant rate is 1.0 MGD , the natural fluoride level is $0.3 \mathrm{mg} / \mathrm{L}$, and the desired fluoride level is $1.2 \mathrm{mg} / \mathrm{L}$?

$$
\begin{aligned}
& \mathrm{lb} / \text { day }=\frac{(0.9 \mathrm{mg} / \mathrm{L})(1 \mathrm{MG.D})(8.34 \mathrm{lb} / \mathrm{gal})}{(0.792)(0.23)} \quad \text { dose }=1.2-0.3=0.9 \\
& \mathrm{mg} / \mathrm{L} \\
&=41.21 \mathrm{lb} / \mathrm{day}
\end{aligned}
$$

3. A small water plant wishes to use sodium fluoride in a dry feeder and the water plant has a capacity (flow) of 220 gpm , what would the fluoride feed rate be in grams $/ \mathrm{min}$? Assume a $0.1 \mathrm{mg} / \mathrm{L}$ natural fluoride and $1.0 \mathrm{mg} / \mathrm{L}$ is desired in the drinking water.

$$
\text { dose }=1-0.1=0.9 \mathrm{mg} / \mathrm{L}
$$

$$
\begin{array}{rlrl}
\mathrm{Ib} / \mathrm{day} & =\frac{(0.9 \mathrm{mg} / \mathrm{h})(0.3168 \mathrm{MGD})(8.34 \mathrm{bb} / \mathrm{gal})}{(0.452)(0.985)} \quad \frac{220 \mathrm{gal} / 1440 \mathrm{~min}}{\mathrm{~min}} / \mathrm{mG} \\
& =5.3 \mathrm{MG} & 100000 \mathrm{gal} \\
& =54 \mathrm{bb} / \mathrm{day} & =0.3168 \mathrm{MGD}
\end{array}
$$

$$
\begin{aligned}
\mathrm{gram} / \mathrm{min} & =\frac{\left(5.34^{\mathrm{lb}} / \mathrm{day}\right)(453.6 \mathrm{gram} / \mathrm{lb})}{1440 \mathrm{~min} / \mathrm{day}} \\
& =1.68 \mathrm{gram} / \mathrm{min}
\end{aligned}
$$

4. A plant uses 69 lbs of sodium fluorosilicate in treating $4,950,000$ gallons of water in one day. What is the calculated dosage in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(69 / \mathrm{b})(0.607)(0.985)}{(4.95 \mathrm{MGD})(8.34)} \\
& =1.0 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

5. A water plant produces 0.75 MGD . What would the fluoride feed rate from a sodium fluoride saturator be, in eph, to obtain $1.0 \mathrm{mg} / \mathrm{L}$ in the water?

$$
\begin{aligned}
\mathrm{gal} / \mathrm{min} & =\frac{(1.0 \mathrm{mg} / \mathrm{L})(520.83 \mathrm{gem})}{18,000 \mathrm{mg}} \\
& =0.028935 \mathrm{gpm}
\end{aligned}
$$

Answers:

1. $34.9 \mathrm{lbs} /$ day
2. $41.2 \mathrm{lbs} /$ day
3. $1.7 \mathrm{grams} / \mathrm{min}$
4. $1.0 \mathrm{mg} / \mathrm{L}$
5. $\quad 1.7 \mathrm{gph}$

Stabilization

1. Calculate the Langlier Index for a water sample based on the following information:

$$
\begin{aligned}
& \mathrm{pH}=7.8 \quad \mathrm{pH}_{s}=A+B-\log \mathrm{Ca}-\log \text { alk } \\
& \text { temperature }=20^{\circ} \mathrm{C} \quad A=2.04 \quad=2.04+9.75-1.95-2.23 \\
& \text { iDS }=100 \mathrm{mg} / \mathrm{L} B=9.75=7.61 \\
& \text { calcium }=90 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3} \rightarrow 1.95 \\
& \text { alkalinity }=170 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3} \rightarrow 2.23 \\
& L I=p H-p H_{s} \\
& =7.8-7.61 \\
& =0.19 \rightarrow \text { nonaggressive }
\end{aligned}
$$

2. Calculate the Aggressive Index for a water sample based on the following information:

$$
\begin{aligned}
\text { total alkalinity } & =100 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3} \\
\text { calcium } & =65 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3} \\
\mathrm{pH} & =7.2
\end{aligned}
$$

$$
\begin{aligned}
A I & =p H+\log C a+\log \text { alk } \\
& =7.2+2+1.81 \\
& =11.01 \rightarrow \text { moderately aggressive }
\end{aligned}
$$

Applied Math for Water
Stabilization Math

Langelier Index - Determine the LI and the corrosive characteristics:

1. Calculate the Langelier Index for the following information:

$$
\begin{array}{lll}
\text { pH } & =7.65 & \\
\text { temperature } & =15^{\circ} \mathrm{C} A=2.12 & p H_{s}=A+B-\log (\mathrm{Ca})-\log (a \mid k) \\
\text { TDS } & =200 \mathrm{mg} / \mathrm{L} B=9.8 & =2.12+9.8-1.9-2.0 \\
\text { Calcium } & =80 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3}=1.90 & \\
\text { Alkalinity } & =100 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3}=2.00 & =8.02
\end{array}
$$

$\begin{aligned} & L I=p H-p H_{S} \\ &=7.65-8.02 \\ &=-0.37 \Rightarrow \text { moderately } \\ & \text { aggressive }\end{aligned}$
2. Calculate the Langelier Index for the following information:
$\mathrm{pH}=7.4$
temperature $=20^{\circ} \mathrm{C} A=2.04$
TDS $\quad=200 \mathrm{mg} / \mathrm{L} \mathrm{B}=9.8$
Calcium $=80 \mathrm{mg} / \mathrm{L}$ as $\mathrm{CaCO}_{3}=1.90$
Alkalinity $=100 \mathrm{mg} / \mathrm{L}$ as $\mathrm{CaCO}_{3}=2.0$

$$
\mathrm{PH}_{\mathrm{s}}=2.04+9.8-1.90-2.00=7.94
$$

$$
L I=7.4-7.94=-0.54
$$

moderately. aggressive
3. Calculate the Langelier Index for the following information:
$\mathrm{pH} \quad=\quad 7.4$
temperature $=20^{\circ} \mathrm{CA}=2.04$
$\operatorname{TDS}=400 \mathrm{mg} / \mathrm{LB}=9.86$
Calcium $=100 \mathrm{mg} / \mathrm{L}$ as $\mathrm{CaCO}_{3}=2.0$
Alkalinity $=100 \mathrm{mg} / \mathrm{L}$ as $\mathrm{CaCO}_{3}=2.0$

$$
p H_{s}=2.04+9.86-2.0-2.0=7.9
$$

$$
L I=7.4-7.9=-0.5
$$

moderately
4. Calculate the Langelier Index for the following information:

$$
\begin{array}{lll}
\mathrm{pH} & =7.0 & A=2.12 \\
\text { temperature } & =15^{\circ} \mathrm{C} & B=9.8 \\
\text { TbS } & =200 \mathrm{mg} / \mathrm{L} & \\
\text { Calcium } & =10 \mathrm{mg} / \mathrm{Las} \mathrm{CaCO}_{3} & \log \mathrm{Ca}=1.0 \\
\text { Alkalinity } & =10 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3} & \log A 1 \mathrm{~K}=1.0 \\
\mathrm{PH}= & 2.12+9.8-1.0-1.0= & 9.92 \\
L I=7.0-9.92=-2.92 & \\
& & \\
& & \text { highly }
\end{array}
$$

5. Calculate the Langelier Index for the following information:

\[

\]

$$
L I=7.6-7.43=0.17
$$

non aggressive
6. Calculate the Langelier Index for the following information:

$$
\begin{aligned}
& \mathrm{pH} \quad=8.6 \quad A=2.12 \\
& \text { temperature }=15^{\circ} \mathrm{C} \\
& \text { TD } \quad=\quad 200 \mathrm{mg} / \mathrm{L} \\
& \begin{array}{ll}
\text { Calcium } & =50 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3} \\
\text { Alkalinity } & =100 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3}
\end{array} \quad \log \mathrm{Ca}=1.70 \\
& \log \text { alk }=2.00 \\
& p H_{s}=2.12+9.8-1.70-2=8.22 \\
& L I=8.6-8.22=0.38 \\
& \text { nonaggressive }
\end{aligned}
$$

Aggressive Index - Determine the AI and the corrosive characteristics:
7. Calculate the aggressive index for the following information:

$$
A I=p H+\log C a+\log a l k
$$

$$
=7.6+1.84+2.0
$$

$$
=11.44 \text { moderately }
$$

aggressive
8. Calculate the aggressive index for the following information:

Total alkalinity	$=$	$270 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}	\log alk $=2.43$
Calcium	$=$	$200 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}	$\log \mathrm{Ca}=2.30$
pH	$=$	7.3	

$$
A I=7.3+2.43+2.30
$$

$$
=12.03
$$

non-aggressive
9. Calculate the aggressive index for the following information:

Total alkalinity	$=100 \mathrm{mg} / \mathrm{L} \mathrm{as} \mathrm{CaCO}$		$\log a l k=2.00$
Calcium	$=50 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}	$\log \mathrm{Ca}=1.70$	
pH	$=7.2$	\log	

$$
A I=7.2+2.0+1.70
$$

$$
=10.9
$$

moderately
aggressive
10. Calculate the aggressive index for the following information:

Total alkalinity $\quad=\quad 100 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Calcium $\quad=\quad 70 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
pH

$$
=7.2
$$

$$
\begin{aligned}
& \log a \mid K=2.0 \\
& \log C a=1.84
\end{aligned}
$$

$$
A I=7.2+2.0+1.84
$$

$$
=11.04 \text { moderately aggressive }
$$

$$
\begin{aligned}
& \begin{aligned}
\text { Total alkalinity } & =100 \mathrm{mg} / \mathrm{L}^{\text {as } \mathrm{CaCO}_{3} \quad} \quad \log a 1 \mathrm{~K}=2.0
\end{aligned} \\
& \begin{array}{ll}
\text { Calcium } & =70 \mathrm{mg} / \mathrm{L}_{\mathrm{pH}}^{\mathrm{pH}} \mathrm{CaCO} \\
3
\end{array} \quad=7.6 \quad \log \mathrm{Ca}=1.84
\end{aligned}
$$

11. Calculate the aggressive index for the following information:

| Total alkalinity | $=100 \mathrm{mg} /{\mathrm{L} \mathrm{as} \mathrm{CaCO}_{3}}$ | $\log a l k=2.0$ |
| :--- | :--- | :--- | :--- |
| Calcium | $=80 \mathrm{mg} / \mathrm{L}$ as CaCO_{3} | $\log \mathrm{Ca}=1.90$ |
| pH | $=7.1$ | |

$$
\begin{aligned}
& A I=7.1+2.0+1.90 \\
&=11 \\
& \text { moderately aggressive }
\end{aligned}
$$

12. Calculate the aggressive index for the following information:
$\begin{array}{llll}\text { calculate the aggressive index for the following information: } \\ \begin{array}{ll}\text { Total alkalinity } & = \\ \text { Calcium } & =15 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3}\end{array} \log a l k=1.3 \\ \mathrm{pH} & =15 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3} & \log \mathrm{Ca}=1.18\end{array}$

$$
\begin{aligned}
A I & =7.0+1.3+1.18 \\
& =9.48 \\
& \text { highly aggressive }
\end{aligned}
$$

Answers:

1. -0.37 MA
2. -0.55 MA
3. -0.51 MA
4. -2.92 HA
5. 11.45 MA
6. 0.17 NA
7. $\quad 12.03 \mathrm{NA}$
8. 10.9 MA
9. 0.38 NA
10. 11.05 MA
11. 11.0 MA
12. 9.48 HA

Filtration

1. The Cartersville WTP treats an average of 2.97 MGD. The water is split equally to each of 6 filters. Each filter basin measures 10 feet wide by 20 feet long and 22 feet deep. Each filter bed measures 8 ft by 17 ft by 15 ft deep.

a. Determine the daily flow to each of the filters in gallons per minute.

$$
\frac{2,970,000 \mathrm{gpd}}{6 \text { filters }}=495,000 \mathrm{gpd} / \text { filter }
$$

b. The influent line to filter 5 is closed while the effluent remains open. Using a hook gauge and a stop watch, it is noted that the water level in the filter drops 6 inches in 70 seconds. What is the filtration rate in gallons per minute?

$$
\begin{aligned}
\text { vol, gal } & =(10 \mathrm{ft})(20 \mathrm{ft})(0.5 \mathrm{ft})(7.48)=748 \mathrm{gal} \\
\text { time } & =70 \mathrm{~s} / 60^{5} / \mathrm{min}=1.17 \mathrm{~min} \\
\text { gpm } & =\frac{748 \mathrm{gal}}{1.17 \mathrm{gin}}=641.1429 \mathrm{gat} / \mathrm{min}
\end{aligned}
$$

c. What is the filtration rate in gallon per minute per filter per square foot of surface area?

$$
\begin{aligned}
& \text { basin area }=(10 \mathrm{ft})(20 \mathrm{ft})=300 \mathrm{ft}^{2} \\
& \text { filter rate }=\frac{641.1429 \mathrm{gpm}}{300 \mathrm{ft}}=2.13 .71 \mathrm{~g} \mathrm{pm} / \mathrm{ft}^{2}
\end{aligned}
$$

d. A hook gauge was used to determine the rate of rise in the filter bed during the backwash cycle. The water rose 6 inches in 20 seconds. What is the backwash rate in gallons per minute?

$$
\begin{aligned}
& \mathrm{vol}, \mathrm{gal}=(8 \mathrm{ft})(17 \mathrm{ft})(0.5 \mathrm{ft})(7.48)=508.64 \mathrm{gal} \\
& \mathrm{gpm}=\frac{508.64 \mathrm{gal}}{0.333 \mathrm{~min}}=1525.92 \mathrm{gal} / \mathrm{min}
\end{aligned}
$$

e. Calculate the filter backwash rate in gallons per minute per square foot.

$$
\begin{aligned}
& \text { area }=(8 \mathrm{ft})(17 \mathrm{ft})=136 \mathrm{ft}^{2} \\
& \mathrm{gpm} / \mathrm{ft}^{2}=\frac{1525.92 \mathrm{gom}}{136 \mathrm{ft}^{2}}=11.22 \mathrm{gpm} / \mathrm{ft}^{2}
\end{aligned}
$$

f. Calculate the gallons of water used to backwash the filter if it was backwashed for 15 minutes.

$$
\begin{aligned}
\text { bach wash vol } & =\left(\text { rate, } \mathrm{gmm} / \mathrm{ft}{ }^{2}\right)(\text { time, min })(\text { filter area }) \\
& =\left(11,22 g \mathrm{gm} / \mathrm{ft}^{2}\right)(15 \mathrm{~min})\left(136 \mathrm{ft}^{2}\right)=22,888.80 \mathrm{gal}
\end{aligned}
$$

g. During a filter run of 75 hours, the total volume of water filtered was 2.8 million gallons. Calculate the percent of the product water used for backwashing.

$$
\begin{aligned}
\% \text { back wash } & =\frac{\text { backwash water }}{\text { filtered water }} * 100 \\
& =\frac{22888.80 \mathrm{gal}}{2800000 \mathrm{gal}} * 100 \\
& =0.82 \%
\end{aligned}
$$

APPLIED MATH FOR WATER FILTER MATH

BASICS

1. A filter basin and its sand bed measure 28 feet by 16 feet. Calculate its sand bed area in ft^{2}.

$$
\begin{aligned}
\text { sand bed area, } \mathrm{ft}^{2} & =(\text { length, } \mathrm{ft})(\text { width, } \mathrm{ft}) \\
& =(28 \mathrm{ft})(16 \mathrm{ft}) \\
& =448 \mathrm{ft}^{2}
\end{aligned}
$$

2. The same filter basin that measures 28 feet by 16 feet has the water drop 6 inches, what was volume in gallons of the drop test?

$$
6 / 12=0.5
$$

$$
\begin{aligned}
\text { vol, gal } & =(28 \mathrm{ft})(16 \mathrm{ft})(0.5 \mathrm{ft})\left(7.48^{\mathrm{gal}} / \mathrm{ft} 3\right) \\
& =1675.52 \mathrm{gal}
\end{aligned}
$$

3. The filter drop test was timed. The test times were 68 seconds, 72 seconds and 71 seconds. What was the average time in minutes?

$$
\begin{aligned}
\operatorname{avg}=\frac{68 \mathrm{~s}+72 \mathrm{~s}+71 \mathrm{~s}}{3} & =70.3 \mathrm{sec} \\
\frac{70.3 \mathrm{sec} \mid 1 \mathrm{~min}}{60 \mathrm{sec}} & =1.17 \mathrm{~min}
\end{aligned}
$$

4. A filter measures 28 feet by 20 feet. The influent is closed and the effluent is opened and the water drops 6 inches in 2 minutes. What is the filter rate in $6 / 12=0.5 \mathrm{ft}$
gallons per minute?

$$
\begin{aligned}
\text { Vol, gal } & =(28 \mathrm{ft})(20 \mathrm{ft})(0.5 \mathrm{ft})(7.48 \mathrm{gal} / \mathrm{ft} 3) \\
& =\frac{20944 \mathrm{gal}}{2 \mathrm{~min}} \\
\mathrm{gal} / \mathrm{min} & =1047.2 \mathrm{gpm}
\end{aligned}
$$

5. A filter measures 28 feet by 20 feet. The influent is closed and the effluent is opened and the water drains down $6^{\prime \prime}$ in 2 minutes. What is the filter loading rate in gallons per minute per square foot?

$$
\begin{aligned}
& \text { vol, } \mathrm{gal}=(28 \mathrm{ft})(20 \mathrm{ft})(0.5 \mathrm{ft})\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right)=2094.4 \mathrm{gal} \\
& \text { sand area, } \mathrm{ft}^{2}=(28 \mathrm{ft})(20 \mathrm{ft})=560 \mathrm{ft}^{2} \\
& \mathrm{gpm}=\frac{2094.4 \mathrm{gal}}{2 \mathrm{~min}}=1047.2 \mathrm{gpm} \quad \mathrm{gpm} / \mathrm{ft}^{2}=\frac{1047.2 \mathrm{gpm}}{560 \mathrm{ft}}=1.87 \mathrm{gpm} / \mathrm{ft}^{2}
\end{aligned}
$$

6. A filter measures 26 feet by 15 feet. The influent line is shut and the water drops

$$
2.6 \text { inches per minute. Calculate the rate of filtration in MGD. } \quad 2.6 / 12=0.2167 \mathrm{ft}
$$

$\mathrm{gal} / \mathrm{min}=\frac{(26 \mathrm{ft})(15 \mathrm{ft})(0.2167 \mathrm{ft})\left(7.48 \mathrm{ga} / \mathrm{ft}{ }^{3}\right)}{1 \mathrm{~min}}=632.06 \mathrm{~g} \mathrm{pm}$

7. A filter measures 26 feet by 15 feet and has a filter media depth of 36 inches.

Assuming a backwash rate of $15 \mathrm{gpm} / \mathrm{ft}^{2}$ and 11 minutes of backwash required, how many gallons of water are required for each backwash?

$$
\begin{aligned}
& \text { backwash vol, gal }=(\text { backwashrate) (time) (filterarea) } \\
&=\left(15 \mathrm{gpm} / \mathrm{ft}{ }^{2}\right)(11 \mathrm{~min})(26 \mathrm{ft})(15 \mathrm{ft}) \\
&=64350 \mathrm{gal}
\end{aligned}
$$

8. The filter in Problem \#7 filtered 13.95 MG during the last filter run. Based on the gallons produced and the gallons required to backwash the filter, calculate the percent of the product water used for backwashing.

$$
\begin{aligned}
\% \text { backwash } & =\frac{64350 \mathrm{gal}}{13950000 \mathrm{gal}} * 100 \\
& =0.46 \%
\end{aligned}
$$

USE THE FOLLOWING INFORMATION FOR PROBLEMS 9a-g.
9. The Randyville Water Plant treats an average of 5.18 MGD. The water is split equally to each of the 8 filters. Each filter basin measures 12 feet wide by 16 feet long and by 24 feet deep. Each filter bed measures 12 feet by 14 feet by 11 feet deep. $5.18 \mathrm{MGD} / 8$ filters $=0.6475 \mathrm{MGD} /$ filter
a. Determine the daily flow to each of the filters in gallons per minute.

| 0.6475 MGG | day | 100000 gal |
| :---: | :---: | :---: |$=449.56 \mathrm{gpm}$

b. The influent line to Filter 6 is closed while the effluent remains open. Using a hook gauge and a stopwatch; it is noted that the water level in the filter drops 7 inches in 80 seconds. What is the filtration rate in gallons per minute?

$$
\begin{aligned}
\text { vol,gal } & =(12 \mathrm{ft})(16 \mathrm{ft})(0.5833 \mathrm{ft})\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right) \quad 80 / 60=1.33 \mathrm{~min} \\
& =\frac{837.76 \mathrm{gal}}{1.3333 \mathrm{~min}} \\
\text { gal } / \mathrm{min} & =628.32 \mathrm{gpm}
\end{aligned}
$$

c. What is the filtration rate in gallons per minute per filter per square foot of surface area?

$$
\begin{aligned}
& \text { sand area, } \mathrm{ft}^{2}=(12 \mathrm{ft})(14 \mathrm{ft})=168 \mathrm{ft}^{2} \\
& \mathrm{gpm} / \mathrm{ft}^{2}=\frac{628.32 \mathrm{gpm}}{168 \mathrm{ft}^{2}}=3.749 \mathrm{pm} / \mathrm{ft}^{2}
\end{aligned}
$$

d. A hook gauge was used to determine the rate of rise in the filter basin during the backwash cycle. The water rose 7 inches in 15 seconds. What is the backwash rate in gallons per minute? $\quad 7 / 12=0.5833 \mathrm{ft} \quad 15 / 00=0.25 \mathrm{~min}$

$$
\begin{aligned}
\mathrm{gal} / \mathrm{min} & =\frac{(12 \mathrm{ft})(14 \mathrm{ft})(0.5833 \mathrm{ft})(7.48)}{0.25 \mathrm{~min}} \\
& =2932.16 \mathrm{gpm}
\end{aligned}
$$

e. Calculate the filter backwash rate in gallons per minute per square foot.

$$
\begin{aligned}
\mathrm{gpm} / \mathrm{ft}^{2} & =\frac{2932.16 \mathrm{gpm}}{(12 \mathrm{ft})(14 \mathrm{ft})} \\
& =17.45 \mathrm{gpm} / \mathrm{ft}^{2}
\end{aligned}
$$

f. Calculate the gallons of water used to backwash the filter if it was backwashed for 15 minutes.

$$
\begin{aligned}
\text { backwash }_{\text {vol }} & =(17.459 \mathrm{pm} / \mathrm{ft})(15 \mathrm{~min})\left(168 f t^{2}\right) \\
& =43982.4 \mathrm{gal}
\end{aligned}
$$

g. During a filter run of 95 hours the total volume of water filtered was 3.80 million gallons. Calculate the percent of the product water used for backwashing.

$$
\begin{aligned}
\% \text { back wash } & =\frac{43982.4 \mathrm{gal}}{3800000 \mathrm{gal}} * 100 \\
& =1.15 \%
\end{aligned}
$$

USE THE FOLLOWING INFORMATION FOR PROBLEMS 10a - g.
10. The Chrisburg. Water Plant treats an average of 7.2 MGD. The water is split equally to each of 8 filters. Each filter basin measures 12.5 feet wide by 16.5 feet long by 24 feet deep. Each filter bed measures 12.5 feet by 14 feet by 10 feet deep.
a. Determine the daily flow to each of the filters.

$$
\frac{7.2 M G D}{8 \text { filters }}=0.9 \mathrm{MGD} / \text { filter }
$$

b. The influent line to Filter 6 is closed while the effluent remains open. Using a hook gauge and a stopwatch, it is noted that the water level in the filter drops 6 inches in 69 seconds on test 1,6 inches in 67 seconds on test 2 and 6 inches in 70 seconds on test 3 . What is the filtration rate in gallons per minute?

$$
\begin{aligned}
& \text { vol, gal }=(12.5 \mathrm{ft})(16.5 \mathrm{ft})(0.5 \mathrm{ft})(7.48)=771.375 \mathrm{gal} \\
& \text { avgtime }=\frac{69 \mathrm{~s}+67 \mathrm{~s}+70 \mathrm{~s}}{3}=68.67 \mathrm{sec} / 60 \mathrm{sec} / \mathrm{min}=1.14 \mathrm{~min} \\
& \mathrm{gal} / \mathrm{min}=\frac{771.375 \mathrm{gal}}{1.14 \mathrm{~min}}=676.64 \mathrm{gpm}
\end{aligned}
$$

c. What is the filtration rate in gallons per minute per square foot of surface area?

$$
\mathrm{gpm} / \mathrm{ft}^{2}=\frac{676.64 \mathrm{gpm}}{(12.5 \mathrm{ft})(14 \mathrm{ft})}=3.86 \mathrm{gpm} / \mathrm{ft}^{2}
$$

d. A hook gauge was used to determine the rate of rise in the filter basin during the backwash cycle. The water rose 6 inches in 13 seconds. What is the backwash rate in gallons per minute?

$$
\begin{aligned}
\mathrm{Vol}, \mathrm{gal} & =(12.5 \mathrm{ff})(14 \mathrm{ft})(0.5 \mathrm{ft})(7.48)=654.5 \mathrm{gal} \\
\mathrm{gal} / \mathrm{min} & =\frac{654.5 \mathrm{gal}}{0.2167 \mathrm{~min}} \\
& =3020.77 \mathrm{~g} \mathrm{pm}
\end{aligned}
$$

e. Calculate the filter backwash rate in gallons per minute per square foot.

$$
\begin{aligned}
\mathrm{gpm} / \mathrm{ft}^{2} & =\frac{3020.77 \mathrm{gpm}}{(125 f t)(14 \mathrm{ft})} \\
& =17.26 \mathrm{gpm} / \mathrm{ft}^{2}
\end{aligned}
$$

f. Calculate the gallons of water used to backwash the filter if it was backwashed for 20 minutes.

$$
\begin{aligned}
\text { back wash vol } & =\left(17.269 \mathrm{pm}^{2} / \mathrm{ft}^{2}\right)(20 \mathrm{~min})(12.5 \mathrm{ft})(14 \mathrm{ft}) \\
& =60415.38 \mathrm{gal}
\end{aligned}
$$

g. During a filter run of 95 hours the total volume of water filtered was 3.74 million gallons. Calculate the percent of the product water used for backwashing.

$$
\begin{aligned}
\% \text { backwash } & =\frac{60415.38 \mathrm{gal}}{3740000 \mathrm{gal}} * 100 \\
& =1.61 \%
\end{aligned}
$$

11. Calculate the filtration rate in $\mathrm{gpm} / \mathrm{ft}^{2}$ for a filter with a sand area of 26 feet by 22 feet when the applied flow is 2.36 MGD.

$$
\begin{aligned}
\mathrm{gpm} / \mathrm{ft}^{2} & =\frac{1638.89 \mathrm{gpm}}{(26 \mathrm{ft})(2 a \mathrm{ff})} \\
& =2.879 \mathrm{pm} / \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{array}{r|r|}
2.36 \mathrm{mG}+ & 1 \text { day } \\
\hline \text { day } & 1440 \mathrm{man} \\
& 1 \mathrm{MG}+\mathrm{gal} \\
= & 1638.89 \mathrm{gpr}
\end{array}
$$

12. Determine the filtration rate in $\mathrm{gpm} / \mathrm{ft}^{2}$ for a filter with a surface of 28 feet by 20 feet. With the influent valve closed, the water above the filter dropped 12 inches in 4 minutes.

$$
\begin{aligned}
\text { vol, gal } & =(28 \mathrm{ft})(20 \mathrm{ft})(1 \mathrm{ft})(7.48) \\
& =\frac{4188.8 \mathrm{gal}}{4 \mathrm{~min}} \quad \mathrm{gpm} / \mathrm{ft}^{2}
\end{aligned}=\frac{1047.2 \mathrm{gpm}}{(28 \mathrm{ft})(20 \mathrm{ft})}
$$

13. A filter measures 26 feet by 15 feet. The influent line is shut and the water drops 2.6 inches per minute, calculate the rate of filtration in MGD.

$$
2.6 / 12=0.2167 \mathrm{ft}
$$

$$
\begin{aligned}
& \text { vol, gal }=(26 \mathrm{ft})(15 \mathrm{ft})(0.2167 \mathrm{ft})(7.48) \\
&=632.06 \mathrm{gal} / \mathrm{min} \\
& \frac{632.06 \mathrm{gal}}{\mathrm{~min}} / \frac{1440 \mathrm{~min}}{\text { day }} / 1000000 \mathrm{gGal}
\end{aligned}=0.91 \mathrm{MGD}
$$

14. The filter in Problem \#13 has a filter media depth of 36 inches. Assuming a backwash rate of $15 \mathrm{gpm} / \mathrm{ft}^{2}$ and 6 minutes of backwash, how many gallons of water is required for each backwash?

$$
\begin{aligned}
\text { backwash, vol } & =(159 \mathrm{pm} / \mathrm{ft})(6 \mathrm{~min})(26 \mathrm{ft})(15 \mathrm{ft}) \\
& =35,100 \mathrm{gal}
\end{aligned}
$$

15. A filter plant has 6 filters, each measuring 20 feet $X 15$ feet. One filter is out of service. The other five filters are capable of filtering 500 GPM each. How many gallons per minute per square foot will each filter?

$$
\begin{aligned}
\mathrm{gpm} / f t^{2} & =\frac{500 \mathrm{gmm}}{(20 \mathrm{ft})(15 \mathrm{ft})} \\
& =1.679 \mathrm{pm} / \mathrm{ft}^{2}
\end{aligned}
$$

16. A filter is 30 feet $X 20$ feet. If, when the influent valve is closed, the water above the filter drops 3.7 inches per minute, what is the rate of filtration in MGD?

$$
\begin{aligned}
& \mathrm{gal} / \mathrm{min}=\frac{(30 \mathrm{ft})(20 \mathrm{ft})(0.3083 \mathrm{ft})(7.48)}{1 \mathrm{~min}} \quad 3.7 / 12=0.3083 \mathrm{ft} \\
&=1383.8 \mathrm{gal} / \mathrm{min} \\
& \frac{1383.8 \mathrm{gal} / 1440 \mathrm{~min}}{\mathrm{~min}} / \frac{1 \mathrm{MG}}{\text { day }} / 100000 \mathrm{gal}
\end{aligned}=1.99 \mathrm{MGD} .
$$

17. Determine the backwash pumping rate in gallons per minute for a filter 33 feet by

21 feet if the desired backwash rate is $17 \mathrm{GPM} / \mathrm{ft}^{2}$.

$$
\begin{aligned}
g p m & =\left(179 \mathrm{pm} / \mathrm{ft} t^{2}\right)(33 \mathrm{ft})(21 \mathrm{ft}) \\
& =11,781 \mathrm{gpm}
\end{aligned}
$$

18. Determine the volume of water in gallons required to backwash the filter in the previous problem if the filter is backwashed for 6 minutes.

$$
\begin{aligned}
\text { backwash vol } & =\left(179 \mathrm{Pm} / \mathrm{ft}^{2}\right)(6 \mathrm{~min})(33 \mathrm{ft})(21 \mathrm{ft}) \\
& =70,686 \mathrm{gal}
\end{aligned}
$$

19. During a filter run the total volume of water filtered was 14.65 million gallons. When the filter was backwashed, 72,560 gallons of water were used. Calculate the percent of the filtered water used for backwashing.

$$
\begin{aligned}
\% \text { backwash } & =\frac{72560 \mathrm{gal}}{14650000 \mathrm{gal}} * 100 \\
& =0.49 \%
\end{aligned}
$$

USE THE FOLLOWING INFORMATION FOR PROBLEMS 21a - 21 g
(put your thinking cap on)
20. The Billyville Water Treatment Plant treats an average of 8.0 MGD. The water is split equally to each of four filters. Each filter basin measures 35 feet long by 19 feet wide and has a divider wall jutting out into the middle measuring 1 foot by 16 feet. Each filter basin contains two filter beds, each measuring 17 feet by 16 feet. The filter basins are 12 feet deep.

a. Determine the daily flow to each of the filters.

$$
\frac{8 M G_{T} D}{4 \text { filters }}=2.0 \mathrm{mGD} / \text { filter }
$$

b. The influent line to Filter 1 is closed while the effluent remains open. Using a hook gauge and a stopwatch, it is noted that the water level in the filter drops 6 inches in 93 seconds. What is the filtration rate in gallons per minute? $6 / 12=0.5 \mathrm{ft}$ $\left.\begin{array}{l}\text { filter } \\ \text { area }\end{array}=[(35 \mathrm{ft})(19 \mathrm{ft})-(1 \mathrm{ft})(16 \mathrm{ft})]=649 \mathrm{ft}^{2}\right)$ voligal $=\left(6.49 \mathrm{ft}^{2}\right)(0.5 \mathrm{ft})(7.48)$ \qquad $=\frac{2427.26 \mathrm{gal}}{1.55 \mathrm{~min}}$
$\mathrm{gal} / \mathrm{min}=1565.97 \mathrm{gpm}_{\text {Filtration }}$
c. What is the filtration rate in gallons per minute per square foot of surface area?

$$
\begin{aligned}
\mathrm{gpm} / \mathrm{ft}^{2} & =\frac{1565.97 \mathrm{gpm}}{(2)(17 \mathrm{ft})(16 \mathrm{ft})} \\
& =2.889 \mathrm{pm} / \mathrm{ft}^{2}
\end{aligned}
$$

d. A hook gauge was used to determine the rate of rise in the filter basin during the backwash cycle. The water rose 6 inches in 19.5 seconds. What is the backwash rate in gallons per minute?

$$
\begin{aligned}
\text { vol, } \mathrm{gal}= & (2)(17 \mathrm{ft})(16 \mathrm{ft})(0.5 \mathrm{ft})(7.48) \\
& =\frac{2034.56 \mathrm{gal}}{0.325 \mathrm{~min}}
\end{aligned}
$$

$$
6 / 12=0.5 \mathrm{ft}
$$

$$
19.5 / 60=0.325
$$

$$
\min
$$

$$
\mathrm{gal} / \mathrm{min}=6260.18 \mathrm{gpm}
$$

e. Calculate the filter backwash rate in gallons per minute per square foot.

$$
\begin{aligned}
\mathrm{gpm} / \mathrm{ft}^{2} & =\frac{62160.18 \mathrm{gpm}}{(2)(17 \mathrm{ft})(16 \mathrm{ft})} \\
& =11.51 \mathrm{gpm} / \mathrm{ft}^{2}
\end{aligned}
$$

f. Calculate the gallons of water used to backwash the filter if it was backwashed for 11 minutes.

$$
\begin{aligned}
& \text { back wash vol }=\left(11.519 \mathrm{Pm} / \mathrm{ft}^{2}\right)(11 \mathrm{~min})(2)(17 \mathrm{ft})(16 \mathrm{ft}) \\
& =68,862.03 \mathrm{gal}
\end{aligned}
$$

g. During a filter run of 117 hours the total volume of water filtered was 8.78 million gallons. Calculate the percent of the product water used for backwashing.

$$
\begin{aligned}
\% \text { backwash } & =\frac{168862.03 \mathrm{gal}}{8780000 \mathrm{gall}} * 100 \\
& =0.78 \%
\end{aligned}
$$

Coagulation/Flocculation
p. 5

1. The average flow for a water plant is 5.2 MGD . A jar test indicates that the best alum dosage is $3.5 \mathrm{mg} / \mathrm{L}$. How many pounds per day will the operator feed?

$$
\begin{aligned}
\mathrm{lb} / \text { day } & =(\text { dose })(\text { flow })\left(8.34^{\mathrm{lb}} / \mathrm{gal}\right) \\
& =(3.5 \mathrm{mg} / \mathrm{L})(5.2 \mathrm{mGD})(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =151.79 \mathrm{lb} / \text { day }
\end{aligned}
$$

2. The average flow for a water plant 1,200,000 gallons per day. A jar test
$p \mathrm{~g} .11$ indicates that the best alum dosage is $1.8 \mathrm{mg} / \mathrm{L}$. How many grams per minute should the feeder deliver?

$$
\begin{aligned}
\text { gram } / \text { min } & =\frac{(\text { dose })(\text { flow })(3.785 \mathrm{~L} / \mathrm{gal})}{(1440 \mathrm{~min} / \text { day })(1000 \mathrm{mg} / \mathrm{g})} \\
& =\frac{(1.8 \mathrm{mg} / \mathrm{L})(1200000 \mathrm{god})(3.785)}{(1440)(1000)}=5.689 / \mathrm{min}
\end{aligned}
$$

Pg. 5 3. A plant used 39 pounds of alum treating 3.7 MGD. Calculate the dose in mg / L.

$$
\begin{aligned}
\text { dose, },^{\mathrm{mg} / \mathrm{L}} & =\frac{\text { feed rate } 1 \mathrm{lb} / \text { day }}{(\text { flow })(8.34 \mathrm{lb} / \mathrm{gal})} \\
& =\frac{39 \mathrm{lb}}{(3.7 \mathrm{mGD})\left(8.34^{1 \mathrm{~b}} / \mathrm{gal}\right)} \\
& =1.26 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

4. Liquid polymer is supplied to a water treatment plant as a 9% solution. How many gallons of this liquid is required to make 150 gallons of 1.5% polymer solution?

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& (0.09)\left(V_{1}\right)=(0.015)(150 \mathrm{gal}) \\
& V_{1}=\frac{(0.015)(150 \mathrm{gal})}{0.09} \\
& V_{1}=25 \mathrm{gal}
\end{aligned}
$$

5. Liquid alum delivered to a water treatment plant contains 795.4 milligrams of alum per milliliter of liquid solution. Jar test indicate that the best alum dose is 5 mg / L. Determine the setting on the liquid alum feeder in milliliters per minute if the flow is 2.8 MGD .

$$
\begin{aligned}
\mathrm{mL} / \mathrm{min} & =\frac{(\text { dose })(\text { flow, ged })(3.7854 / \text { gal })}{\left(\text { conc }{ }^{\mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} / \text { day })}\right.} \\
& =\frac{(5 \mathrm{mg} / \mathrm{L})(2800000 \mathrm{gpd})(3.785)}{(795.4 \mathrm{mg} / \mathrm{mL})(1440)}=46.26 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

6. An operator has decided to switch from dry alum to liquid alum. If he feeds an average of 150 lbs of dry alum a day, how many gallons of liquid alum will he need to feed on average given the following information?

$$
\begin{array}{c|c}
150 \mathrm{lb} & \mathrm{gal} \\
\hline 5.4 \mathrm{lb} \text { alum } \\
=27.78 \mathrm{gal}
\end{array}
$$

Alum, liquid: $\quad 49 \%$ concentration
$10.7 \mathrm{lbs} /$ gallon weight 5.4 lbs dry alum/gallon conc.
1.335 specific gravity

APPLIED MATH FOR WATER COAGULATION \& FLOCCULATION

$$
\mathrm{pg}, 5
$$

1. The average flow for a water plant is 3.25 MGD. A jar test indicates that the best alum dosage is $2.5 \mathrm{mg} / \mathrm{L}$. How many pounds per day will the operator feed?

$$
\begin{aligned}
\mathrm{lb} / \mathrm{day} & =(\text { close })(\text { flow })(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =(2.5 \mathrm{mg} / \mathrm{h})(3.25 \mathrm{mGD})(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =67.76 \mathrm{lb} / \text { day }
\end{aligned}
$$

2. The average flow for a water plant is 13.5 MGD. The jar test indicates that the best alum dose is $1.8 \mathrm{mg} / \mathrm{L}$. How many pounds per day will the operator feed?

$$
\begin{aligned}
\mathrm{lb} / \text { day } & =(1.8 \mathrm{mg} / \mathrm{L})(13.5 \mathrm{mG}+\mathrm{D})(8.34 \mathrm{~b} / \mathrm{gal}) \\
& =202.66 \mathrm{lb} / \text { day }
\end{aligned}
$$

3. Determine the setting on a dry alum feeder in pounds per day when the flow is 1.3 MGD. Jar tests indicate that the best alum dose is $12 \mathrm{mg} / \mathrm{L}$.

$$
\begin{aligned}
1 \mathrm{~b} / \mathrm{day} & =(12 \mathrm{mg} / \mathrm{L})(1.3 \mathrm{mGD})(8.34 \mathrm{blgal}) \\
& =130.10^{10} / \mathrm{day}
\end{aligned}
$$

5. The average daily flow for a water plant is 0.75 MGD. If the polymer dosage is kept at $1.8 \mathrm{mg} / \mathrm{L}$, how many pounds of polymer will be used in 30 days?

$$
\begin{aligned}
\mathrm{lb} / \text { day } & =(1.8 \mathrm{mg} / \mathrm{L})(0.75 \mathrm{mGD})(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =(11.259 \mathrm{lb} / \text { day })(30 \text { days }) \\
& =337.77 \mathrm{lb}
\end{aligned}
$$

6. The average flow for a water plant is $8,890 \mathrm{gpm}$. A jar test indicates that the best polymer dose is $3.1 \mathrm{mg} / \mathrm{L}$. How many pounds will the plant feed in one week? (Assume the plant runs 24 hour/day, 7 days/week.)

$$
\begin{array}{c|c|c}
8890 \text { gal } & 1440 \mathrm{~min} & 1 \mathrm{MG} \\
\hline \mathrm{~min}^{2} & \text { day } & 1000000 \mathrm{gll} \\
& =12.8016 \mathrm{mGD}
\end{array}
$$ gallons of water during a 24 -hour period. What is the polymer dosage in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{\text { feed rate }}{(\text { flow })(8.34)} \\
& =\frac{271 \mathrm{bl} / \text { day }}{(1.6 \mathrm{mGD})(8.341 \mathrm{lgal})} \\
& =2.02 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

8. A water plant fed 130 lbs of alum treating 1.3 MGD. Calculate the dose in mg / L.

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{130 \mathrm{~b} / \mathrm{day}}{(1.3 \mathrm{mGD})(8.34 \mathrm{bb} / \mathrm{gal})} \\
& =11.99 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

9. A water plant fed 52 grams per minute of dry alum while treating 2.6 MGD. Calculate the mg / L dose.

$$
\mathrm{mg} / L=\frac{(\text { feed rate, } 9 / \mathrm{min})(1000 \mathrm{mg} / \mathrm{g})}{(\text { flow, } \mathrm{gpm})(3.7854 \mathrm{gail})}
$$

$$
\begin{array}{c|c|c}
2.10 \mathrm{MG} & \text { day } & 100000 \mathrm{gal} \\
\hline \text { day } & 144 \mathrm{~min} & \text { MG }
\end{array}
$$

$$
=1805.550 \mathrm{~g} \mathrm{Pm}
$$

10. Liquid polymer is supplied to a water treatment plant as an 8% solution. How many gallons of this liquid polymer should be used to make 200 gallons of a 0.7% polymer solution?

$$
\begin{aligned}
C_{1} V_{1} & =C_{2} V_{2} \\
(0.08)\left(V_{1}\right) & =(0.007)(200 \mathrm{gal}) \\
V_{1} & =\frac{(0.007)(200 \mathrm{gal})}{0.08} \\
& =17.5 \mathrm{gal}
\end{aligned}
$$

11. Liquid polymer is supplied to a water treatment plant as an 8% solution. How many gallons of this liquid polymer should be used to make 5 gallons of a 5% polymer solution?

$$
\begin{aligned}
&\left(C_{1}\right)\left(V_{1}\right)=\left(C_{2}\right)\left(V_{2}\right) \\
&(0.08)\left(V_{1}\right)=(0.05)(5 \mathrm{gal}) \\
& V_{1}=\frac{(0.05)(5 \mathrm{gal})}{0.08} \\
&=3.13 \mathrm{gal}
\end{aligned}
$$

12. Liquid polymer is supplied to a water treatment plant as an 8% solution. How many gallons of liquid polymer should be used to make 55 gallons of a 0.5% polymer solution?

$$
\begin{aligned}
&(0.08)\left(V_{1}\right)=(0.005)(55 \mathrm{gal}) \\
& V_{1}=\frac{(0.005)(55 \mathrm{gal})}{0.08} \\
& V_{1}=3.44 \mathrm{gal} \\
& \text { coosulition/ / Fococulation }
\end{aligned}
$$

13. Liquid alum delivered to a water treatment plant contains 642.3 milligrams of alum per milliliter of liquid solution. Jar tests indicate that the best alum dose is $8 \mathrm{mg} / \mathrm{L}$. Determine the setting on the liquid alum chemical feeder in milliliters per minute if the flow is 2.2 MGD.

$$
\begin{aligned}
\mathrm{mL} / \mathrm{min} & =\frac{\left(\text { dose }^{\mathrm{mg} / \mathrm{L})(\mathrm{flow}, \text { gTd })(3.7854 \mathrm{gal})}\right.}{(\text { conc, } \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} / \text { day })} \\
& =\frac{(8 \mathrm{mg} / \mathrm{L})(2800000 \mathrm{gpd})(3.785 \mathrm{~L} / \mathrm{gal})}{(642.3 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~mm} / \mathrm{dov})} \\
& =72.02 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

14. You collect three 2-minute samples from an Alum dry feeder. What is the feed rate in mg / L when the flow rate is 2 MGD ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(\text { feed rate })(1000 \mathrm{mg} / \mathrm{g})}{(\text { flow })(3.785 / \mathrm{gal})} \\
& =\frac{(23.67 \mathrm{~g} / 2 \mathrm{~min})(1000 \mathrm{mg} / \mathrm{g})}{(1388.89 \mathrm{gpm})(3.7854 \mathrm{gal})} \\
& =2.25 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sample } 1=25 \text { grams } \\
& \text { Sample } 2=22 \text { grams } \\
& \text { Sample } 3=24 \text { grams } \\
& \frac{25 g+22 g+24 g}{3}=23.67 g \\
& \begin{array}{c|c|c}
2 m G & \text { day } & \text { bococogal } \\
\hline \text { day } & 1440 \mathrm{~min} & 1 \mathrm{mG}
\end{array} \\
& =1388.89 \mathrm{gpm}
\end{aligned}
$$

15. A water plant is treating 8.2 MGD with $2.0 \mathrm{mg} / \mathrm{L}$ liquid alum. How many ged of liquid alum will be required? The liquid alum contains 5.36 lbs dry alum/gallon.

$$
\begin{aligned}
\mathrm{gal} / \text { day } & =\frac{(\text { dose })(\text { flow })(8.34 \mathrm{bb} / \mathrm{gal})}{\text { conc. } \mathrm{lb} / \mathrm{gal}} \\
& =\frac{(2.0 \mathrm{mg} / \mathrm{h})(8.2 \mathrm{ma})(8.34 \mathrm{lb} / \mathrm{gal})}{5.36 \mathrm{bb} / \mathrm{gal}} \\
& =25.52 \mathrm{gal} / \mathrm{day}
\end{aligned}
$$

16. A jar test indicates the $3.4 \mathrm{mg} / \mathrm{L}$ of liquid alum is required in treating 7.6 MGD. How many $\mathrm{mL} / \mathrm{min}$ should the metering pump deliver? The liquid alum delivered to the plant contains 645 mg alum per mL of liquid solution.

$$
\begin{aligned}
\mathrm{mL} / \mathrm{min} & =\frac{(3.4 \mathrm{mg} / \mathrm{L})(7600000 \text { gal } / \text { day })(3.785 \text { /gal })}{(645 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} / \text { day })} \\
& =105.30 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

17. A jar test indicates that $1.8 \mathrm{mg} / \mathrm{L}$ of liquid ferric chloride should be fed to treat 2,778 gpm of water. How many $\mathrm{mL} / \mathrm{min}$ should be fed by a metering pump? Ferric chloride contains 4.59 lbs dry chemical per gallon of liquid solution.

$$
\begin{aligned}
\mathrm{mL} / \mathrm{min} & =\frac{(1.8 \mathrm{mg} / \mathrm{L})(4000320 \mathrm{gpd})(3.785)}{(550.07 \mathrm{mg} / \mathrm{ml})(1440 \mathrm{~mm} / \mathrm{d})} \\
& =34.41 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

$$
=550.07
$$ $\mathrm{mg} / \mathrm{mL}$

18. An operator has decided to switch from dry alum to liquid alum. If he feeds an average of 100 lbs of dry alum a day, how many gallons of liquid alum will he need to feed on average given the following information:

Alum, liquid:
48.5\% concentration
$11.13 \mathrm{lbs} / \mathrm{gallon}$
5.40 lbs dry alum/galion
1.335 Specific Gravity
$=18.52 \mathrm{gal}$
19. If an operator wants to switch from dry ferric chloride to liquid ferric chloride, how many gallons per day would he have to feed if he normally feeds 200 lbs of dry ferric daily? Plant flow rate is 4 MGD. What would be the feed rate in milliliters per minute?

39\% concentration $11.76 \mathrm{lbs} / \mathrm{gallon}$

$$
=43.57 \mathrm{gal} / \text { day }
$$

20. Based on the information provided below calculate the milligrams of alum per milliliter of solution. If jar test results indicate that the best dosage is $25 \mathrm{mg} / \mathrm{L}$, what is the feed rate in $\mathrm{mL} / \mathrm{min}$? The plant flow rate is 6 MGD .

$$
\begin{array}{c|c|c|c}
5.4 \mathrm{lb} & 1 \mathrm{gal} & 453.69 & 1000 \mathrm{mg} \\
\hline \mathrm{gal} & 3785 \mathrm{~mL} & 1 \mathrm{bb} & 1 \mathrm{~g}
\end{array}=
$$

48.5\% concentration $11.13 \mathrm{lbs} /$ gallon
5.40 lbs dry alum/gallon 1.335 Specific Gravity

$$
\begin{aligned}
\mathrm{mL} / \mathrm{min} & =\frac{(25 \mathrm{mg} / \mathrm{L})(10000000 \mathrm{gpd})(3.7854 \mathrm{gal})}{(647.14 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} / \mathrm{day})} \\
& =609.25 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

21. Based on the information provided below calculate the milligrams of ferric chloride per milliliter of solution. If jar test results indicate that the best dosage is $7 \mathrm{mg} / \mathrm{L}$, what is the feed rate in $\mathrm{mL} / \mathrm{min}$? The plant flow rate is 6 MGD.

$$
\begin{aligned}
& \begin{array}{c|c|c|c}
4.59 \mathrm{lb} & 19 \mathrm{al} & 453.69 & 1000 \mathrm{mg} . \\
\hline \mathrm{gal} & 3785 \mathrm{~mL} & 1 \mathrm{lb} & 19
\end{array} \\
& \text { 39\% concentration } \\
& 11.76 \mathrm{lbs} / \text { gallon } \\
& =550.07 \mathrm{mg} / \mathrm{mL} \\
& 4.59 \mathrm{dry} \text { lbs of } \mathrm{FeCl}_{2} / \mathrm{gallon} \\
& \text { 1.41 Specific Gravity } \\
& \mathrm{mL} / \mathrm{min}=\frac{(7 \mathrm{mg} / \mathrm{L})(1.000000 \mathrm{gpd})(3.78549 a 1)}{(550.07 \mathrm{mg} / \mathrm{mL})(144 \mathrm{~min} / \mathrm{day})} \\
& =200.69 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

ANSWERS:

1. $\quad 67.8 \mathrm{lbs} /$ day
2. $\quad 202.7 \mathrm{lbs} /$ day
3. $\quad 130 \mathrm{lbs} /$ day
4. $\quad 48 \mathrm{grams} / \mathrm{min}$
5. $\quad 337.8 \mathrm{lbs}$
6. $2,316.5 \mathrm{lbs}$
7. $\quad 2 \mathrm{mg} / \mathrm{L}$
8. $\quad 12 \mathrm{mg} / \mathrm{L}$
9. $\quad 7.6 \mathrm{mg} / \mathrm{L}$
10. $\quad 17.5$ gallons
11. $\quad 3.1$ gal
12. $\quad 3.4 \mathrm{gal}$
13. $\quad 72 \mathrm{~mL} / \mathrm{min}$
14. $\quad 2.25 \mathrm{mg} / \mathrm{L}$
15. $\quad 25.5 \mathrm{gal} /$ day
16. $\quad 105.3 \mathrm{~mL} / \mathrm{min}$
17. $\quad 34.4 \mathrm{~mL} / \mathrm{min}$
18. $\quad 18.5$ gallons
19. $\quad 43.6 \mathrm{gal} / \mathrm{day}$ $114.5 \mathrm{~mL} / \mathrm{min}$
20. $\quad 647.14 \mathrm{mg} / \mathrm{mL}$ $609.3 \mathrm{~mL} / \mathrm{min}$
21. $\quad 550.07 \mathrm{mg} / \mathrm{mL}$ $200.7 \mathrm{~mL} / \mathrm{min}$

APPLIED MATH FOR WATER COAGULATION \& FLOCCULATION PRACTICE QUIZ

1. The average flow for a water plant is 6.3 MGD. A jar test indicates that the best alum dosage is $19 \mathrm{mg} / \mathrm{L}$. How many pounds per day will the operator feed?

$$
\begin{aligned}
\mathrm{lb} / \text { day } & =(19 \mathrm{mg} / \mathrm{L})(6.3 \mathrm{mGD})\left(8.34^{\mathrm{b}} / \mathrm{gal}\right) \\
& =998.3 \mathrm{lb} / \text { day }
\end{aligned}
$$

2. Determine the setting on a dry alum feeder when the flow is 5.4 MGD. Jar tests indicate that the best alum dose is $8 \mathrm{mg} / \mathrm{L}$. What would be the setting in grams per minute?

$$
\begin{aligned}
\mathrm{gram} / \mathrm{min} & =\frac{(8 \mathrm{mg} / \mathrm{h})(540000 \mathrm{gpd})(3.785 / \mathrm{gal})}{(1440 \mathrm{~min} / \mathrm{day})(1000 \mathrm{mg} / \mathrm{g})} \\
& =113.55 \mathrm{~g} / \mathrm{min}
\end{aligned}
$$

3. The average daily flow for a water plant is 7.5 MGD. Jar test results indicate the best polymer dosage is $1.8 \mathrm{mg} / \mathrm{L}$. How many pounds of polymer will be used in 90 days?

$$
\begin{aligned}
\mathrm{Ib} / \text { day } & =(1.8 \mathrm{mg} / \mathrm{L})(7.5 \mathrm{mGD})(8.34 \mathrm{lb} / \mathrm{gal}) \\
& =(112.59 \mathrm{lb} / \mathrm{day})(90 \text { days }) \\
& =16133.1 \mathrm{lbs}
\end{aligned}
$$

4. A water treatment plant used 14 pounds of cationic polymer to treat 2.0 million gallons of water during a 24 -hour period. What is the polymer dosage in mg / L ?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{14 \mathrm{lb} / \mathrm{day}}{(2.0 \mathrm{maD})(8.34 \mathrm{lb} / \mathrm{gal})} \\
& =0.84 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

5. A water plant fed 48.5 grams per minute while treating 2.2 MGD. Calculate the mg / L dose.

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(48.59 / \mathrm{min})(1000 \mathrm{mg} / \mathrm{g})}{(1527.78 \mathrm{gmm})(3.7854 \mathrm{gal})} \\
& =8.39 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

6. Liquid polymer is supplied to a water treatment plant as an 8% solution. How many gallons of liquid polymer should be used to make 200 gallons of a 1.0% polymer solution?

$$
\text { dion? } \begin{aligned}
C_{1} V_{1} & =C_{2} V_{2} \\
(0.08)\left(V_{1}\right) & =(0.01)(200 \mathrm{gal}) \\
V_{1} & =\frac{(0.01)(200 \mathrm{gal})}{0.08} \\
& =25 \mathrm{gal}
\end{aligned}
$$

7. Liquid alum delivered to a water treatment plant contains 642.3 milligrams of alum per milliliter of liquid solution. Jar tests indicate that the best alum dose is $15 \mathrm{mg} / \mathrm{L}$. Determine the setting on the liquid alum chemical feeder in milliliters per minute when the flow is 7.2 MGD. There are 3.785 liters in one gallon.

$$
\begin{aligned}
\mathrm{mL} / \mathrm{min} & =\frac{(15 \mathrm{mg} / \mathrm{L})(7200000 \mathrm{gdd})(3.7854 / \mathrm{gal})}{(642.3 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{ml/} / \mathrm{day})} \\
& =441.97 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

8. A water plant is treating 1.8 MGD with $2.0 \mathrm{mg} / \mathrm{L}$ liquid alum. How many gad of liquid alum will be required? The liquid alum contains 5.36 lbs dry alum/gallon.

$$
\begin{aligned}
\mathrm{gal} / \mathrm{day} & =\frac{(2.0 \mathrm{mg} / \mathrm{L})(1.8 \mathrm{mG} D)(8.34 \mathrm{lb} / \mathrm{gal})}{5.3616 / \mathrm{gal}} \\
& =5.6 \mathrm{gpd}
\end{aligned}
$$

9. A jar test indicates the $4.3 \mathrm{mg} / \mathrm{L}$ of liquid alum is required in treating 6.7 MGD. How many $\mathrm{mL} / \mathrm{min}$ should the metering pump deliver? The liquid alum delivered to the plant contains 645 mg alum per mL of liquid solution.

$$
\begin{aligned}
\mathrm{mL} / \mathrm{min} & =\frac{(4.3 \mathrm{mg} / \mathrm{L})(6700000 \mathrm{gpd})(3.785)}{(645 \mathrm{mg} / \mathrm{mL})\left(1440^{\mathrm{min}} / \mathrm{day}\right)} \\
& =117.41 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

10. An operator has decided to switch from dry alum to liquid alum. If he feeds 114 lbs of dry alum on average a day, how many gallons of liquid alum will he need to feed on average given the following information:

114 lhalum	gal	Alum, liquid	4.5\% concentration
	5.41 lb		5.40 lbs dry alum/gallon 1.335 Specific Gravity
$=21$	gal		

11. Based on the information provided below calculate the milligrams of ferric chloride per milliliter of solution. If jar test results indicate that the best dosage is $21 \mathrm{mg} / \mathrm{L}$, what is the feed rate in $\mathrm{mL} / \mathrm{min}$? The plant flow rate is 7.5 MGD .

4.59 lb	1 gal	453.69	1000 mg	39\% concentration
gal	3785 mL	1 lb	19	$11.76 \mathrm{lbs} / \mathrm{gallon}$
	$=550.07 \mathrm{mg} / \mathrm{mL}$			4.59 dry lbs/gallon 1.41 Specific Gravity

$\mathrm{ml} / \mathrm{min}=\frac{(21 \mathrm{mg} / \mathrm{L})(7500000 \mathrm{gpd})(3.7854 \mathrm{gal})}{(550.07 \mathrm{mg} / \mathrm{mi})(120 \mathrm{~min}}$
 $(550.07 \mathrm{mg} / \mathrm{ml})\left(1440^{\mathrm{min}} /\right.$ day $)$

$$
=752.6 \mathrm{~mL} / \mathrm{min}
$$

ANSWERS:

1. $\quad 998.3 \mathrm{lbs} /$ day
2. $\quad 113.5$ grams $/ \mathrm{min}$
3. $10,133.1 \mathrm{lbs}$
4. $\quad 0.84 \mathrm{mg} / \mathrm{L}$
5. $\quad 8.39 \mathrm{mg} / \mathrm{L}$
6. 25 gal
7. $442 \mathrm{~mL} / \mathrm{min}$
8. $\quad 5.6 \mathrm{gpd}$
9. $\quad 117.4 \mathrm{~mL} / \mathrm{min}$
10. $\quad 21.1 \mathrm{gpd}$
11. $\quad 550.07 \mathrm{mg} / \mathrm{mL} ; 752.6 \mathrm{~mL} / \mathrm{min}$

Feeders

1. An operator collections 5 three-minute samples from a dry feeder. Based on the information given, determine the average grams per min.

$$
\begin{aligned}
& \text { Sample } 1=37.8 \text { grams } \\
& \begin{array}{l}
\text { Sample } 2=38.3 \text { grams } \\
\text { Sample } 3=35.6 \text { grams }
\end{array} \quad a v g .=\frac{37.89+38.39+35.69}{3} \\
& =37.233 \mathrm{~g} \\
& \text { gram } / \mathrm{min}=\frac{37.23339}{.5 \mathrm{~min}}=7.459 / \mathrm{min}
\end{aligned}
$$

pg. 5
2. What is the average dose in mg / L for the feeder in the previous question if the

$$
\begin{aligned}
& \text { plant treats } 3.9 \mathrm{MGD} \text { ? } \\
& \text { dose, }_{\mathrm{mg}}^{\mathrm{mg}} \mathrm{~L}=\frac{(\text { feedrate, } \mathrm{g} / \mathrm{min})(1000 \mathrm{mg} / \mathrm{g})}{(f / 0 \mathrm{w}, \mathrm{gpm})(3.785 \mathrm{~L} / \mathrm{gal})} \quad \frac{390000 \mathrm{gal} / \frac{\text { day }}{\text { day }} / 60 \mathrm{~min}}{65,000} \mathrm{gpm} \\
&=\frac{(7.459 / \mathrm{min})(1000 \mathrm{mg} / \mathrm{g})}{(65,000 \mathrm{gmm})\left(3.785^{\mathrm{L}} / \mathrm{gal}\right)} \\
&=0.03 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

APPLIED MATH FOR WATER
FEEDER MATH
1.a. An operator is checking the calibration on a chemical feeder. The feeder delivers 102 grams in 5 minutes. How many grams per minute does the feeder deliver?

$$
\begin{aligned}
\mathrm{gram} / \mathrm{min} & =\frac{102 \mathrm{grams}}{5 \mathrm{~min}} \\
& =20.49 / \mathrm{min}
\end{aligned}
$$

1.b. How many pounds per day does the feeder deliver?

$$
\begin{array}{c|c|c}
20.4 \mathrm{~g} & 1440 \mathrm{~min} & \frac{1 \mathrm{lb}}{\mathrm{~min}} \frac{\text { day }}{453.6 \mathrm{~g}}
\end{array}=64.76 \mathrm{lb} / \mathrm{day}
$$

2.a. An operator checks the calibration of a dry feeder by catching samples and weighing them on a balance. Each catch lasts 1 minute. Calculate the average feed rate in grams per minute based on the following data:

Sample 1 weighs 37.0 grams
Sample 2 weighs 36.2 grams
Sample 3 weighs 39.4 grams
Sample 4 weighs 38.6 grams

$$
\begin{aligned}
& a v g=\frac{37.0 \mathrm{~g}+36.2 \mathrm{~g}+39.4 \mathrm{~g}+38.6 \mathrm{~g}}{4}=37.8 \mathrm{~g} \\
& \mathrm{gram} / \mathrm{min}=\frac{37.8 \mathrm{~g}}{1 \mathrm{~min}}=37.89 / \mathrm{min}
\end{aligned}
$$

2.b. How many pounds per hour is being fed?

$$
=5 \mathrm{lb} / \mathrm{hr}
$$

3.a. An operator collects 3 two-minute samples from a dry feeder:

Sample 1 weighs 22.2 grams
Sample 2 weighs 24.0 grams
Sample 3 weighs 21.9 grams
What is the average grams per minute?

$$
\begin{aligned}
& a v g=\frac{22.2 \mathrm{~g}+24.0 \mathrm{~g}+21.9 \mathrm{~g}}{3}=22.7 \mathrm{~g} \\
& \mathrm{gram} / \mathrm{min}=\frac{22.7 \mathrm{gram}}{2 \mathrm{~min}}=11.359 / \mathrm{min}
\end{aligned}
$$

3.b. What is the average dose in mg / L for the feeder in question 3.a. if the plant treats 420,000 gpd?

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(11.359 / \mathrm{min})(1000 \mathrm{mg} / \mathrm{g})}{(291.67 \mathrm{gpm})(3.785 / \mathrm{gai})} \\
& =10.28 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

4.a. An operator collects 5 two-minute samples from a dry feeder:

Sample 1 weighs 49.2 grams
Sample 2 weighs 44.0 grams
Sample 3 weighs 41.9 grams
Sample 4 weighs 48.3 grams
Sample 5 weighs 47.6 grams
What is the average grams per minute?

$$
\begin{aligned}
& a v g=\frac{49.2 g+44.0 g+41.9 g+48.3 g+47.6 g}{5}=46.2 g \\
& g \mathrm{ram} / \min =\frac{416.2 g}{2 \text { min }}=23.19 / \mathrm{min}
\end{aligned}
$$

4.b. What is the average dose in mg / L if the plant treats $1,200,000 \mathrm{gpd}$?

$$
\begin{aligned}
& \text { What is the average dose in mg /L if the plant treats } 1,200,000 \mathrm{gpd} ? \\
& \mathrm{mg} / \mathrm{L}=\left.\frac{(23.19 / \mathrm{min})(1000 \mathrm{mg} / \mathrm{g})}{(833.33 \mathrm{gpm})(3.7854 / \mathrm{gal})} \quad \frac{12000 \mathrm{gal}}{\text { day }}\right|_{1440 \mathrm{~min}} ^{1 \text { day }} \\
&=833.33 \mathrm{~g} \mathrm{pm} \\
&=7.32 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

5.a. A chemical feeder calibration is tested using a $1,000 \mathrm{ml}$ graduated cylinder. The cylinder filled to 850 ml in a 3 minute test. What is the chemical feed rate in milliliters per minute?

$$
\begin{aligned}
\mathrm{mL} / \min & =\frac{850 \mathrm{~mL}}{3 \mathrm{~min}} \\
& =283.33 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

5.b. What is the chemical feed rate in gallons per minute?

$$
\begin{array}{c|l|l}
283.33 \mathrm{~mL} & 1 \mathrm{~L} & \mid \mathrm{gal} \\
\hline \mathrm{~min} & 1000 \mathrm{~mL} & 3.785 \mathrm{~L} \\
=0.075 \mathrm{gal} / \mathrm{min}
\end{array}
$$

5.c. What is the chemical feed rate in gallons per day?

$$
\begin{array}{c|c}
0.075 \mathrm{gal} & 1440 \mathrm{~min} \\
\hline \mathrm{~min} & 1 \text { day } \\
=107.79 \mathrm{gpd}
\end{array}
$$

6.a. A chemical feeder draws a liquid chemical from a one-liter ($1,000 \mathrm{ml}$) graduated cylinder for 30 seconds. At the end of 30 seconds, the graduated cylinder has 400 ml remaining. What is the chemical feed rate in milliliters per minute?

$$
\begin{aligned}
\mathrm{mL} / \min & =\frac{600 \mathrm{~mL}}{0.5 \mathrm{~mL}} \\
& =1200 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

$$
30 / 60=0.5 \mathrm{~min}
$$

$$
1000 \mathrm{~mL}-400 \mathrm{~mL}
$$

$$
=600 \mathrm{~mL}
$$

6.b. What is the chemical feed rate in gallons per minute?

$$
\begin{array}{c|c}
1200 \mathrm{~mL} & \mathrm{gal} \\
\hline \mathrm{~min} & 3785 \mathrm{~mL}
\end{array}=0.317 \mathrm{gpm}
$$

6.c. What is the chemical feed rate in gallons per day?

$$
\begin{array}{c|c}
0.317 \mathrm{gal} & 1440 \mathrm{~min} \\
\hline \mathrm{~min} & \text { day }
\end{array}=456.54 \mathrm{gpd}
$$

7. A water plant treats 3.5 MGD with a dose of $2.2 \mathrm{mg} / \mathrm{L} \mathrm{KMnO} 4$. If the water plant uses 257 gallons of permanganate per day, how many $\mathrm{ml} / \mathrm{min}$ must be pumped?

$$
\begin{array}{r|c|c}
257 \mathrm{gal} & 1 \text { day } & 3785 \mathrm{~mL} \\
\hline \text { day } & 1440 \mathrm{~min} & 1 \text { gal } \\
& =675.52 \mathrm{~mL} / \mathrm{min}
\end{array}
$$

8.a. A water plant treats 8.5 MGD with a dose of $1.7 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$. How many gid of permanganate must be used? (KMnO_{4} was made up at 0.25 lbs per 1 gallon of water)

$$
\begin{aligned}
1 / \mathrm{day} & =\frac{(1.7 \mathrm{mg} / \mathrm{L})(8.5 \mathrm{maCD})(8.34 \mathrm{l} / \mathrm{gal})}{0.25 \mathrm{l} / \mathrm{gal}} \\
& =482.05 \mathrm{gpd}
\end{aligned}
$$

8.b. How many $\mathrm{ml} / \mathrm{min}$ must be pumped?

8.c. If the water plant uses 3 potassium permanganate pumps, how many $\mathrm{ml} / \mathrm{min}$ must be pumped by each?

$$
\begin{aligned}
& \frac{1267.06 \mathrm{~mL} / \mathrm{min}}{3 \text { pumps }}= \\
& \quad=422.35 \mathrm{~mL} / \mathrm{min} \text { per pump }
\end{aligned}
$$

9. KMnO_{4} has been made according to the manufacturer recommendations (30 $\mathrm{mg} / \mathrm{mL}$). The water plant operators wants to dose 3.6 MGD with $2.0 \mathrm{mg} / \mathrm{L}$ KMnO4. How many $\mathrm{ml} / \mathrm{min}$ must be delivered by the metering pump?

$$
\begin{aligned}
\mathrm{mL} / \mathrm{min} & =\frac{(2.0 \mathrm{mg} / \mathrm{L})(3600000 \mathrm{gpd})(3.785)}{(30 \mathrm{mg} / \mathrm{mL})(1440)} \\
& =630.83 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

Answers:

1.a. $\quad 20.4$ grams $/ \mathrm{min}$
1.b. $\quad 64.76 \mathrm{lbs} / \mathrm{day}$
2.a. $\quad 37.8 \mathrm{grams} / \mathrm{min}$
2.b. $\quad 5 \mathrm{lbs} /$ hour
3.a. $\quad 11.35 \mathrm{grams} / \mathrm{min}$
3.b. $\quad 10.3 \mathrm{mg} / \mathrm{L}$
4.a. $\quad 23.1$ grams $/ \mathrm{min}$
4.b. $\quad 7.3 \mathrm{mg} / \mathrm{L}$
5.a. $\quad 283.3 \mathrm{ml} / \mathrm{min}$
5.b. $\quad 0.0748 \mathrm{gal} / \mathrm{min}$
5.c. $\quad 107.7$ ged

APPLIED MATH FOR WATER FEEDER MATH PRACTICE QUIZ

1. An operator collects 3 two-minute samples from a dry feeder:

Sample 1 weighs 47.3 grams
Sample 2 weighs 44.8 grams
Sample 3 weighs 42.4 grams
The water plant is treating 4.5 MGD. What is the average dose in mg / L ?

$$
a v g=\frac{47.3 g+44.8 g+42.4 g}{3}=\frac{44.83 \mathrm{~g}}{2 \mathrm{~min}}=224
$$

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =\frac{(22.49 / \mathrm{min})(1000 \mathrm{mg} / \mathrm{g})}{(3125 \mathrm{gpm})(3.7854 \mathrm{gal})} \\
& =1.90 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

2. A chemical feeder feeds a liquid chemical to a 1000 mL graduated cylinder for 48 seconds. At the end of the 48 seconds, the graduated cylinder is completely full. What is the chemical feed rate for the metering pump in gallons per day?

$$
\begin{aligned}
& \mathrm{mL} / \mathrm{min}=\frac{1000 \mathrm{~mL}}{0.8 \mathrm{~min}}=1250 \mathrm{~mL} / \mathrm{min} \\
& \begin{array}{r|}
1250 \mathrm{~mL} \\
\hline \mathrm{~min}
\end{array} \frac{1440 \mathrm{~min}}{\text { day }} / \frac{1 \mathrm{gal}}{3785 \mathrm{~mL}} \\
& \\
& =475.56 \mathrm{gpm}
\end{aligned}
$$

$$
48 / 60=0.8 \mathrm{~min}
$$

3. A water plant used 167 gallons of a liquid chemical in one day. How many $\mathrm{mL} / \mathrm{min}$ was pumped?

167 gal	1 day	3785 ml
day	1440 min	1 gal

$$
=438.95 \mathrm{~mL} / \mathrm{min}
$$

4. The operator measured the amount of dry chemical fed in one day as 114.5 lbs . How many grams/min should the dry feeder have delivered?

$$
=
$$

5. How many grams in one pound?

$$
453.6 \mathrm{~g} / \mathrm{lb}
$$

6. How many milliliters in one gallon?

$$
3785 \mathrm{~mL} / \mathrm{gal}
$$

7. How many milligrams in one pound?

8. How many liters in one gallon?

$$
3.785 \mathrm{~L} / \mathrm{gal}
$$

ANSWERS:

1. $\quad 1.9 \mathrm{mg} / \mathrm{L}$
2. $\quad 475.6 \mathrm{gpd}$
3. $\quad 439 \mathrm{~mL} / \mathrm{min}$
4. $\quad 36.1 \mathrm{~g} / \mathrm{min}$
5. 453.6
6. 3,785
7. 453,600
8. $\quad 3.785$

Pre-treatment and Lab

1. A holding pond measures 550 feet by 1075 feet and has an average depth of 12 feet.
a. What is the volume of the pond in acre-feet?

$$
\text { pond vol, } \begin{aligned}
a \mathrm{ft} & =\frac{(\text { length })(\text { width })(\text { depth })}{43560 \mathrm{ft}^{2} / \mathrm{ac}} \\
& =\frac{(550 \mathrm{ft})(1075 \mathrm{ft})(12 \mathrm{ft})}{43660 \mathrm{ft}^{2} / \mathrm{ac}}=162.88 \mathrm{ac}-\mathrm{ft}
\end{aligned}
$$

b. What is the volume of the pond in million gallons?

$$
\begin{aligned}
\text { Vol, gal } & =(\mathrm{vol}, \mathrm{ac} \mathrm{ft})\left(4356 \mathrm{ft}^{2} / \mathrm{ac}\right)\left(7.48 \mathrm{gal} / \mathrm{ft}^{2}\right) \\
& =(162.8788 \mathrm{ac}-\mathrm{ft})(43560)(7.48)=53070600 \mathrm{gal} \\
\mathrm{Vol}, M G & =(53070600 \mathrm{gal}) / 1000000 \mathrm{gal} / \mathrm{mG}=53.07 \mathrm{mG}
\end{aligned}
$$

c. If the Methyl Orange alkalinity is $21 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat the water for algal problems?

$$
\begin{aligned}
& 21<50 \\
& 1 \mathrm{bs}=(0.9 \mathrm{lb} / \mathrm{ac}-\mathrm{ft})(\mathrm{vol}, \mathrm{ac}-\mathrm{ft}) \\
&=(0.9 \mathrm{lb} / \mathrm{oc}-\mathrm{ft})(162.8788 \mathrm{ac}-\mathrm{ft}) \\
&=146.59 \mathrm{lbs}
\end{aligned}
$$

d. If the Methyl Orange alkalinity is $72 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate $\begin{array}{ll}\text { will be required to treat the water for algal problems? } & A=\frac{(550 \mathrm{ft})(1075 \mathrm{ft})}{43560 \mathrm{ft}^{2} / \mathrm{cc}}=13.57 \\ 72>50\end{array}$

$$
\begin{aligned}
\text { lbs } & =(\text { surface area, ac })(5.4 \mathrm{lb} / \mathrm{ac}) \\
& =(13.57 \mathrm{ac})(5.4 \mathrm{lb} / \mathrm{ac}) \\
& =73.30 \mathrm{lb}
\end{aligned}
$$

2.a. Caius Chemicals recommends a 5% permanganate solution. If $2.0 \mathrm{lbs} \mathrm{KMnO}_{4}$ $\begin{aligned} & \text { is dissolved in } 10 \text { gallons of water, what is the } \% \text { by weight? } \\ & \% \\ & \text { wit chem }\end{aligned} \frac{10 \mathrm{gol} / 8.34 \mathrm{lb}}{\mathrm{gal}}=83.4 \mathrm{lb}$

$$
\begin{aligned}
\% \text { by weight } & =\frac{\text { wt chem }}{\text { wt water }+ \text { wt chemicals }} * 100 \\
& =\frac{2.6 \mathrm{lb}}{83.4 .16+2.016} * 100=2.34 \%
\end{aligned}
$$

b. To produce a 5% solution, how many pounds of KMnO_{4} should be dissolved in a tank 4.0 feet in diameter and filled to a depth 4.5 feet? Vol, gal $\begin{aligned} & =(0,785)(4)(4)(4.5)(7.48) \\ & =422.7696 \mathrm{gal}\end{aligned}$

$$
\begin{aligned}
\text { lbs } & =\frac{(\text { vol *8.34 } \mathrm{b} / \mathrm{gal})(\text { does conc. })}{100 \%-\text { desc conc }}=422 \\
& =\frac{(422.7696 \mathrm{gal} * 8.34)(0.05)}{0.95}=185.57 \mathrm{lb}
\end{aligned}
$$

c. Your raw water has $1.6 \mathrm{mg} / \mathrm{L}$ of iron. How much KMnO_{4} should be used to treat the iron? Each 1.0 ppm requires $0.91 \mathrm{mg} / \mathrm{L}$ of KMnO_{4}.

$$
\begin{array}{l|l}
1.6 \mathrm{mg} / \mathrm{L} & 0.91 \mathrm{mg} / \mathrm{L} \\
1 \mathrm{ppm} \mathrm{Fe}
\end{array}=1.456 \mathrm{mg} / \mathrm{L}
$$

d. Your raw water has $6.2 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used to treat manganese? Each 1.0 ppm of manganese requires $1.92 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}{ }_{4}$.

$$
K M_{n O} \mathrm{mg}_{1} / \mathrm{L}=(6.2 \mathrm{mg} / \mathrm{L})(1.92 \mathrm{mg} / \mathrm{L})=11.904 \mathrm{mg} / \mathrm{L}
$$

e. Your raw water has $0.4 \mathrm{mg} / \mathrm{L}$ of iron and $3.4 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used? (Each 1.0 ppm requires $0.91 \mathrm{mg} / \mathrm{L}$ of KMnO_{4}; each 1.0 ppm of manganese requires $1.92 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$)

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} & =(0.4 \mathrm{mg} / \mathrm{L})(0.91)=0.364 \mathrm{mg} / \mathrm{L} \\
\mathrm{Fe} / \mathrm{L} & =(3.4 \mathrm{mg} / \mathrm{L})(\mathrm{L} .92)=6.528 \mathrm{mg} / \mathrm{L} \\
\mathrm{mn} & \\
\mathrm{Motal} & =0.364 \mathrm{mg} / \mathrm{L}+6.528 \mathrm{mg} / \mathrm{L}=6.892 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}
\end{aligned}
$$

f. Carus Chemicals recommends a 5% permanganate solution mixed at a ratio of 0.25 lbs per 1 gallons of water. How many mg of KMnO_{4} is there per mL of solution?

$$
\begin{array}{c|c|c|c}
0.25 \mathrm{~b} & \mathrm{Igal} & 453.6 \mathrm{~g} & 1000 \mathrm{mg} \\
\hline \mathrm{gal} & 3785 \mathrm{~mL} & 11 \mathrm{~b} & 1 \mathrm{~g}
\end{array}=29.96 \mathrm{mg} / \mathrm{mL}
$$

g. The water plant is treating 3.0 MGD and the operator has determined that the KMnO_{4} dose should be $3.9 \mathrm{mg} / \mathrm{L}$. How many $\mathrm{mL} / \mathrm{min}$ must be pumped to obtain this dose? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lb} / \mathrm{gal}$)

$$
\begin{aligned}
\mathrm{mL}_{\mathrm{min}} & =\frac{(\text { dose })(\mathrm{flow}, \mathrm{god})(3.785 \mathrm{~L} / \mathrm{gal})}{\left(\text { conc } \mathrm{c}_{1} \mathrm{mg} / \mathrm{mL}\right)(1440 \mathrm{~min} / \text { day })} \\
& =\frac{(3.9 \mathrm{mg} / \mathrm{L})(3900000 \mathrm{gpd})(3.785 \mathrm{~L} / \mathrm{gal})}{(29.96 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} / \text { day })} \\
& =1334.41 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

Applied Math for Water
 Laboratory Solutions

1. A laboratory solution is made using 52 milligrams of Sodium Chloride (NaCl) dissolved in a 1 liter volumetric flask filled to the mark. What is the mg / L concentration of the solution?

$$
\begin{aligned}
m g / L & =\frac{52 \mathrm{mg}}{1 \mathrm{~L}} \\
& =52 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

2. If 33 lbs of a chemical is added to 148 lbs of water, what is the $\%$ strength by weight?

$$
\begin{aligned}
& \% \text { strength }=\frac{w+\text { chem }}{w+\text { water }+w+\text { chem }} * 100 \\
& =\frac{33 \mathrm{lb}}{1481 \mathrm{lb}+33 \mathrm{lb}} * 100=18.23 \%
\end{aligned}
$$

3. You need 1 liter of 0.1 N HCl and you have 10 N on hand. How many mL 's of the 10 N do you need to make 1 liter?

$$
\begin{gathered}
N_{1} V_{1}=N_{2} V_{2} \\
(0.1 \mathrm{~N})(1000 \mathrm{~mL})=(10 \mathrm{~N})\left(V_{2}\right)
\end{gathered}
$$

$$
\frac{(0.1 \mathrm{~N})(1000 \mathrm{~mL})}{10 \mathrm{~N}}=V_{2} \Longrightarrow 10 \mathrm{~mL}
$$

4. $\quad 250 \mathrm{~mL}$ of 3 N NaOH is diluted to 1000 mL . What is the new normality of the solution?

$$
\begin{aligned}
(250 \mathrm{~mL})(3 \mathrm{~N}) & =\left(\mathrm{N}_{2}\right)(1000 \mathrm{~mL}) \\
\frac{(250 \mathrm{~mL})(3 \mathrm{~N})}{1000 \mathrm{~mL}} & =\mathrm{N}_{2} \\
0.75 \mathrm{~N} & =\mathrm{N}_{2}
\end{aligned}
$$

5. 500 mL of 10 N NaOH is diluted to 1 liter. What is the new normality of the solution?

$$
\begin{gathered}
(500 \mathrm{~mL})(10 \mathrm{~N})=(1000 \mathrm{~mL})\left(\mathrm{N}_{2}\right) \\
\frac{(500 \mathrm{~mL})(10 \mathrm{~N})}{1000 \mathrm{~mL}}=N_{2} \\
5 \mathrm{~N}=\mathrm{N}_{2}
\end{gathered}
$$

6. You are given 20 mL of 30 N HCl . How many mL 's of water should be added to make 1.1 N HCl ?

$$
\begin{gathered}
(20 \mathrm{~mL})(30 \mathrm{~N})=\left(V_{2}\right)(1.1 \mathrm{~N}) \\
\frac{(20 \mathrm{~mL})(30 \mathrm{~N})}{1.1 \mathrm{~N}}=V_{2} \\
545.45 \mathrm{~mL}=V_{2}
\end{gathered}
$$

7. An operator needs a 0.1 N solution in order to conduct an analysis. The operator has 1.5 N solution on hand. How much (mL) of the 1.5 N solution is needed to make 1 liter of 0.1 N solution?

$$
\begin{gathered}
(1000 \mathrm{~mL})(0.1 \mathrm{~N})=\left(V_{2}\right)(1.5 \mathrm{~N}) \\
\frac{(1000 \mathrm{~mL})(0.1 \mathrm{~N})}{1.5 \mathrm{~N}}=V_{2} \\
66.67 \mathrm{~mL}=V_{2}
\end{gathered}
$$

8. An operator needs a 0.1 N solution in order to conduct an analysis. The operator has 2.0 N solution on hand. How many milliliters of the 2.0 N solution is needed to make 1 liter of 0.1 N solution?

$$
\begin{aligned}
(1000 \mathrm{~mL})(0.1 \mathrm{~N}) & =\left(V_{2}\right)(2.0 \mathrm{~N}) \\
\frac{(1000 \mathrm{~mL})(0.1 \mathrm{~N})}{2.0 \mathrm{~N}} & =V_{2} \\
50 \mathrm{~mL} & =V_{2}
\end{aligned}
$$

9. 450 mL of 5 N NaOH is diluted to 1 liter. What is the new normality of the solution?

$$
\begin{aligned}
& (450 \mathrm{~mL})(5 \mathrm{~N})=(1000 \mathrm{~mL})\left(\mathrm{N}_{2}\right) \\
& \frac{(450 \mathrm{~mL})(5 \mathrm{~N})}{1000 \mathrm{~mL}}=\mathrm{N}_{2}
\end{aligned}
$$

$$
2.25 \mathrm{~N}=\mathrm{N}_{2}
$$

10. You are given 8 mL of $15 \mathrm{NH}_{2} \mathrm{SO}_{4}$. How much water (in mL) should be added to make $0.4 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$?

$$
\begin{aligned}
(8 \mathrm{~mL})(15 \mathrm{~N}) & =\left(V_{2}\right)(0.4 \mathrm{~N}) \\
\frac{(8 \mathrm{~mL})(15 \mathrm{~N})}{0.4 \mathrm{~N}} & =V_{2} \\
300 \mathrm{~mL} & =V_{2}
\end{aligned}
$$

11. An operator needs a 0.2 N solution and has 2.5 N on hand. How much (in mL) of the 2.5 N solution is needed to make one-half liter of 0.2 N solution?

$$
\begin{aligned}
& (500 \mathrm{~mL})(2.5 \mathrm{~N})=\left(\mathrm{V}_{2}\right)(0.2 \mathrm{~N}) \\
& \frac{(500 \mathrm{~mL})(2.5 \mathrm{~N})}{0.2 \mathrm{~N}}=6250 \mathrm{~mL}=V_{2}
\end{aligned}
$$

Applied Math for Water
Pretreatment

Copper Sulfate
1.a. A holding pond measures 400 feet by 1213 feet and has an average depth of 10.5 feet. What is the volume of the pond in acre-ft?

$$
\begin{aligned}
\text { Area, acc } & =\frac{(L, f t)(W / f t)}{4356 f^{\prime} t^{2} / a c}= \\
& =\frac{(400 \mathrm{ft})(121 \mathrm{ft})}{43560 \mathrm{ft}^{2} / \mathrm{ac}}=11.14 \mathrm{ac}
\end{aligned} \quad \begin{aligned}
& \text { Vol, } \mathrm{ac}_{\mathrm{c}} \mathrm{ft}=(11.3387 \mathrm{ac})(10.5 \mathrm{ft})=116.96 \mathrm{ac}-\mathrm{ft}
\end{aligned}
$$

b. What is the volume of the pond in million gallons?
alk $<50 \mathrm{mg} / \mathrm{L}$

$$
\begin{aligned}
\text { Vol, gal } & =(\text { Vol, ac -ft })\left(43,560 \mathrm{ft}^{2} / \mathrm{cc}\right)\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right) \\
& =(116.96 \mathrm{ac}-\mathrm{ft})\left(43,560 \mathrm{ft}^{2} / \mathrm{ac}\right)\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right) \\
& =38107608 \mathrm{gal} / 1000000 \mathrm{gal} / \mathrm{mG}=38.11 \mathrm{mG}
\end{aligned}
$$

c. If the Methyl Orange alkalinity is $28 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat the water for algal problems?

$$
\begin{aligned}
\text { copper sulfate, lbs } & =\left(0.9^{\mathrm{lb}} / \mathrm{ac}-\mathrm{ft}\right)(\text { Vol, ac-ft }) \\
& =\left(0.9^{\mathrm{lb}} / \mathrm{acft}\right)(116.9559 \mathrm{ac}-\mathrm{ft}) \\
& =105.26 \mathrm{lb}
\end{aligned}
$$

d. If the Methyl Orange alkalinity is $61 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat the water for algal problems?
alk $>50 \mathrm{mg} / \mathrm{L}$

$$
\begin{aligned}
\text { copper sulfate, } 1 \mathrm{bs} & =(\text { area }, \mathrm{ac})(5.4 \mathrm{lb} / \mathrm{ac}) \\
& =(11.1387 \mathrm{ac})(5.4 . \mathrm{b} / \mathrm{ac}) \\
& =60.14 \mathrm{lb}
\end{aligned}
$$

2.a. A holding pond measures 2400 feet by 576 feet and has an average depth of 8.75 feet. What is the volume of the pond in acre-ft?

$$
\begin{aligned}
\text { Area, ac-ft } & =\frac{(L)(W)(D)}{43560 \mathrm{ft} / a c} \\
& =\frac{(2400 \mathrm{ft})(576 \mathrm{ft})(8.75 \mathrm{ft})}{43,560 \mathrm{ft}^{2} / \mathrm{ac}} \\
& =277.69 \mathrm{ac}-\mathrm{ft}
\end{aligned}
$$

b. What is the volume of the pond in million gallons?

$$
\begin{aligned}
& \text { Vol, gal }=(277.69 \mathrm{ac}-\mathrm{ft})\left(43,560 \mathrm{ft}^{2} / \mathrm{ac}\right)\left(7.48 \mathrm{gal} / \mathrm{ft}^{3}\right) \\
& =90478080 \mathrm{gal} / 1000000 \mathrm{gal} / \mathrm{ma} \\
& =90.48 \mathrm{mG}
\end{aligned}
$$

c. If the Methyl Orange alkalinity is $44 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat the water for algal problems?

$$
\text { alk }<50 \mathrm{mg} / \mathrm{h}
$$

$$
\begin{aligned}
\mathrm{Ibs} & =(0.91 \mathrm{~b} / \mathrm{ac}-\mathrm{ft})(277.69 \mathrm{ac}-\mathrm{ft}) \\
& =249.92 \mathrm{lb}
\end{aligned}
$$

d. If the Methyl Orange alkalinity is $82 \mathrm{mg} / \mathrm{L}$, how many pounds of copper sulfate will be required to treat the water for algal problems?

$$
\begin{aligned}
\mathrm{lbs} & =(31.74 \mathrm{ac})(5.4 \mathrm{lb} / \mathrm{ac}) \\
& =171.37 \mathrm{lbs}
\end{aligned}
$$

$$
\begin{aligned}
& \text { per sulfate will be } \\
& \begin{array}{l}
A=\frac{(5400 \mathrm{ft})(5 \mathrm{ft})}{43560 \mathrm{ftr} / \mathrm{cc}} \\
\\
\\
=31.74 a c
\end{array}
\end{aligned}
$$

alk $>50 \mathrm{mg} / \mathrm{L}$
3. For algae control of a reservoir, a dosage of $0.5 \mathrm{mg} / \mathrm{L}$ copper is desired. The reservoir has a volume of 20 MG . How many pounds of copper sulfate (25% available copper) will be required?

$$
\begin{aligned}
\text { equired? } & =\frac{(\text { dose })(\text { volume })(8.34 \mathrm{lb} / \mathrm{gal})}{\% / 0 \text { copper }} \\
& =\frac{(0.5 \mathrm{mg} / \mathrm{L})(20 \mathrm{mG})(8.34)}{0.25}=333.6 \mathrm{lb}
\end{aligned}
$$

4. The desired copper sulfate dose in a reservoir is $5 \mathrm{mg} / \mathrm{L}$. The reservoir has a volume of 62 acre-ft. How many lbs of copper sulfate (25% available copper) will be required?

$$
\begin{array}{rlr|}
\mathrm{lbs} & =\frac{(5 \mathrm{mg} / \mathrm{L})(20.20 \mathrm{mG})(8.34)}{0.25} & \left.\frac{62 \mathrm{ac}-\mathrm{ft}}{\mathrm{lbs}} \right\rvert\, 325820.8 \mathrm{gal} / \mathrm{ImG} \\
& =3369.59 \mathrm{lbs} &
\end{array}
$$

5. A pond has an average length of 250 ft , an average width of 75 ft and an average depth of 10 ft . If the desired dose of copper sulfate is $0.8 \mathrm{lbs} /$ acre ft , how many pounds of copper Sulfate will be required?

$$
\begin{aligned}
& \text { Vol, ac-ft }=\frac{(250 \mathrm{ft})(75 \mathrm{ft})(10 \mathrm{ft})}{43660 \mathrm{ft} / \mathrm{cc}}=4.3 \mathrm{ac}-\mathrm{ft} \\
& \mathrm{lbs}=\frac{4.3 a c-f t \mid}{0.8 \mathrm{lb}} \mathrm{ac-ft} \\
& =3.44 \mathrm{lb}_{\text {pretreamenentanc lab }}
\end{aligned}
$$

Potassium Permanganate
1.a. Carus Chemicals recommends a 3% permanganate solution. If $2.5 \mathrm{lbs} \mathrm{KMnO}_{4}$ is dissolved in 10 gallons of water, what is the \% by weight?

$$
\begin{aligned}
\text { \%ostrength } & =\frac{2.5 \mathrm{lb}}{83.41 \mathrm{~b}+2.5 \mathrm{lb}} * 100 \\
& =2.91 \%
\end{aligned}
$$

b. To produce a 3% solution, how many pounds KMnO_{4} should be dissolved in a tank 3.5 feet in diameter and filled to a depth of 4.25 feet? \quad vol. $\mathrm{gal}=(0.785)(3.5)(3.5)(4.25)(7.48)$

$$
\begin{aligned}
\text { chem, } 1 \text { bs } & =\frac{(\text { water vol *8.34)(des conc.) }}{(1-\text { des conc) }} \quad=305.70 \mathrm{gal} \\
& =\frac{(305.70 \mathrm{gal} * 8.34)(0.03)}{1-0.03} \\
& =78.85 \mathrm{lb}
\end{aligned}
$$

c. Your raw water has $1.8 \mathrm{mg} / \mathrm{L}$ of iron. How much KMnO_{4} should be used to treat the iron? (Each 1.0 ppm of Iron requires $0.91 \mathrm{mg} / \mathrm{L}$ of KMnO_{4})

$$
=1.64 \mathrm{mg} / \mathrm{L}
$$

d. Your raw water has $6.6 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used to treat manganese? (Each 1.0 ppm of Manganese requires $1.92 \mathrm{mg} / \mathrm{L}$ of KMnO_{4})

$$
\begin{aligned}
\mathrm{mg} / \mathrm{LKmnO} & =(6.6)(1.92) \\
& =12.67 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

e. Your raw water has $0.2 \mathrm{mg} / \mathrm{L}$ of iron and $2.9 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used? $\left(0.91 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}\right.$ per $1.0 \mathrm{ppm} \mathrm{Fe} ; 1.92 \mathrm{mg} / \mathrm{L}_{\mathrm{KMnO}}^{4}$ per 1.0 ppm Mn$)$

$$
\begin{aligned}
\mathrm{mg} / \mathrm{L} \mathrm{KMnO} & =(0.2 \mathrm{mg} / \mathrm{L} \mathrm{Fe})(0.91 \mathrm{mg} / \mathrm{L})=0.182 \mathrm{mg} / \mathrm{L} \\
\mathrm{mg} / \mathrm{LKnO} & =(2.9 \mathrm{mg} / \mathrm{LMn})(1.92 \mathrm{mg} / \mathrm{L})=5.568 \mathrm{mg} / \mathrm{L} \\
0.182 & +5.568=5.75 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

f. Carus Chemicals recommends a 3% permanganate solution mixed at a ratio of 0.25 lbs per 1 gallon of water. How many $\mathrm{mg} \mathrm{KMnO}_{4}$ is there per mL of solution?
g. Carus Chemicals recommends a 3\% permanganate solution mixed at a ratio of 0.25 lbs per 1 gallon of water. If 55 gallons of KMnO_{4} is made at this ratio, how many pounds of chemical are required?

$$
\begin{aligned}
& l \mathrm{bs}= \\
& \frac{0.25 \mathrm{lb}}{\mathrm{gal}} / 55 \mathrm{gal} \\
&=13.75 \mathrm{lbs}
\end{aligned}
$$

h. The water plant is treating 2.0 MGD and the operator has determined that the KMnO_{4} dose should be $4.6 \mathrm{mg} / \mathrm{L}$. How many $\mathrm{mL} / \mathrm{min}$ must be pumped to obtain this dose? (The

$$
\begin{aligned}
& \mathrm{KMnO} \mathrm{~mL}_{4} \text { was made a the recommended } 0.25 \mathrm{lbs} / \mathrm{gal} \mathrm{~min} \\
& \mathrm{~mL} \\
& \frac{(4.6 \mathrm{mg} / \mathrm{L})(200000 \mathrm{gad})(3.785 / \mathrm{gal})}{(29.96 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} / \text { day })}
\end{aligned}
$$

$$
=807.13 \mathrm{~mL} / \mathrm{min}
$$

i. The water plant is treating 11.2 MGD and the operator has determined that the KMnO_{4} dose should be $2.3 \mathrm{mg} / \mathrm{L}$. How many $\mathrm{mL} / \mathrm{min}$ must be pumped to obtain this dose? (The KMnO_{4} was made at the recommended $0.25 \mathrm{Ibs} / \mathrm{gal}$)

$$
\begin{aligned}
\mathrm{mL} / \mathrm{min} & =\frac{(2.3 \mathrm{mg} / \mathrm{L})(11200000 \mathrm{gpd})\left(3.785^{2} / \mathrm{gal}\right)}{(29.96 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} / \mathrm{day})} \\
& =2259.97 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

j. Your raw water contains $0.7 \mathrm{mg} / \mathrm{L}$ iron and $1.2 \mathrm{mg} / \mathrm{L}$ manganese. You have determined to feed $0.4 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$ to overcome a taste and odor problem caused by an algal bloom in addition to the amounts required to oxidize the iron and manganese. How many $\mathrm{mL} / \mathrm{min}$ should the liquid feeder be set to feed in order to treat 9.1 MGD ? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lbs} / \mathrm{gal} ; 0.91 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$ per $1.0 \mathrm{ppm} \mathrm{Fe} ; 1.92 \mathrm{mg} / \mathrm{L}$ KMnO_{4} per 1.0 ppm Mn)

$$
\begin{aligned}
& \text { Fe } \quad(0.7 \mathrm{mg} / \mathrm{LFe})(0.91 \mathrm{mg} / \mathrm{L})=0.637 \mathrm{mg} / \mathrm{L} \\
& \mathrm{mn} \quad(1.2 \mathrm{mg} / \mathrm{LMn})(1.92 \mathrm{mg} / \mathrm{L})=2.304 \\
& T_{\text {total }}=0.637 \mathrm{mg} / \mathrm{L}+2.304 \mathrm{mg} / \mathrm{L}+0.4 \mathrm{mg} / \mathrm{L}=3.341 \mathrm{mg} / \mathrm{L} \\
& \mathrm{~mL} / \mathrm{min}
\end{aligned}=\frac{(3.341 \mathrm{mg} / \mathrm{L})(9100000 \mathrm{gpd})(3.7854 / \mathrm{gal})}{(29.96 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} / \text { day })} .
$$

2.a. Carus Chemicals recommends a 3% permanganate solution. If 25 lbs of KMnO_{4} are dissolved in 100 gallons of water, what is the $\%$ by weight?

$$
\begin{aligned}
\% \text { strength } & =\frac{25 \mathrm{lb}}{8341 \mathrm{lb}+25 \mathrm{lb}} * 100 \\
& =2.91 \%
\end{aligned}
$$

$$
100 \mathrm{gal} \left\lvert\, \frac{8.34 \mathrm{lb}}{g a l}\right.
$$

$$
=834 \mathrm{lb}
$$

b. To produce a 3\% solution, how many pounds KMnO_{4} should be dissolved in a tank 3.5 feet in diameter and filled to a depth of 3.5 feet? $\mathrm{VOl}, \mathrm{gal}=(0.785)(3.5)(3.5)(3.5)(7.48)$

$$
\begin{aligned}
16 s= & \frac{(251.75 \mathrm{gal} 2.34)(0.03)}{(1-0.03)} \quad=251.75 \mathrm{gal} \\
& =64.94 \mathrm{lb}
\end{aligned}
$$

c. Your raw water has $2.8 \mathrm{mg} / \mathrm{L}$ of iron. How much KMnO_{4} should be used to treat the iron? (Each 1.0 ppm of Iron requires $0.91 \mathrm{mg} / \mathrm{L}$ of KMnO_{4})

$$
\begin{gathered}
(2.8 \mathrm{mg} / \mathrm{L})(0.91 \mathrm{mg} / \mathrm{L}) \\
=2.55 \mathrm{mg} / \mathrm{L}
\end{gathered}
$$

d. Your raw water has $2.0 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used to treat the manganese? (Each 1.0 ppm of Manganese requires $1.92 \mathrm{mg} / \mathrm{L}$ of KMnO_{4})

$$
\begin{gathered}
(2.0 \mathrm{mg} / \mathrm{L})(1.92 \mathrm{mg} / \mathrm{L}) \\
=3.84 \mathrm{mg} / \mathrm{L}
\end{gathered}
$$

e. Your raw water has $0.2 \mathrm{mg} / \mathrm{L}$ of iron and $3.1 \mathrm{mg} / \mathrm{L}$ of manganese. How much KMnO_{4} should be used? $\left(0.91 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}\right.$ per $1.0 \mathrm{ppm} \mathrm{Fe} ; 1.92 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$ per 1.0 ppm Mn$)$

$$
\begin{aligned}
& \mathrm{Fe} \quad(0.2 \mathrm{mg} / \mathrm{L})(0.91 \mathrm{mg} / \mathrm{L})=0.182 \mathrm{mg} / \mathrm{L} \\
& \mathrm{Mn} \quad(3.1 \mathrm{mg} / \mathrm{L})(1.92 \mathrm{mg} / \mathrm{L})=5.952 \mathrm{mg} / \mathrm{L} \\
& \text { Total }=(0.182 \mathrm{mg} / \mathrm{L}+5.952 \mathrm{mg} / \mathrm{L})=6.134 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

f. Carus Chemicals recommends a 3% permanganate solution mixed at a ratio of 0.25 lbs per 1 gallon of water. How many $\mathrm{mg} \mathrm{KMnO}{ }_{4}$ are there per 100 mL of solution?

$$
(29.96 \mathrm{mg} / \mathrm{mL})(100 \mathrm{~mL})=2996 \mathrm{mg} \mathrm{KmnO} 4
$$

Pre-treatment and Lab
g. Carus Chemicals recommends a 3\% permanganate solution mixed at a ratio of 0.25 lbs per 1 gallon of water. If 67 gallons of KMnO_{4} are made at this ratio, how many pounds of chemical are required?

$$
\begin{gathered}
(0.25 \mathrm{lb} / \mathrm{gal})(67 \mathrm{gal}) \\
=16.75 \mathrm{lb}
\end{gathered}
$$

h. The water plant is treating 14.5 MGD and the operator has determined that the KMnO_{4} dose should be $3.9 \mathrm{mg} / \mathrm{L}$. How many $\mathrm{mL} / \mathrm{min}$ must be pumped to obtain this dose? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lbs} / \mathrm{gal}$.)

$$
\begin{aligned}
\mathrm{mL} / \mathrm{min} & =\frac{(3.9 \mathrm{mg} /)(45500000 \mathrm{ged})(3.785 / \mathrm{gal})}{(29.96 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{mmI} / \mathrm{day})} \\
& =4961.29 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

i. The water plant is treating 6.5 MGD and the operator has determined that the KMnO_{4} dose should be $3.2 \mathrm{mg} / \mathrm{L}$. How many $\mathrm{mL} / \mathrm{min}$ must be pumped to obtain this dose? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lbs} / \mathrm{gal}$.)

$$
\begin{aligned}
\mathrm{mL} / \mathrm{min} & =\frac{(3.2 \mathrm{mg} / \mathrm{L})(6.500000 \mathrm{gpd})(3.785 \mathrm{~L} / \mathrm{gal})}{(29.96 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} / \text { day })} \\
& =2224.02 \mathrm{~mL} / \mathrm{min}
\end{aligned}
$$

j. Your raw water contains $2.2 \mathrm{mg} / \mathrm{L}$ of iron and $0.7 \mathrm{mg} / \mathrm{L}$ of manganese. You have determined to feed $0.5 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$ to overcome a taste and odor problem caused by an algal bloom in addition to the amounts required to oxidize the iron and manganese. How many $\mathrm{mL} / \mathrm{min}$ should the liquid feeders be set to feed in order to treat 5.4 MGD ? The plant flow is split evenly between two separate flash mixers. The KMnO_{4} is being introduced into each rapid mix by its own metering pump. ? (The KMnO_{4} was made at the recommended $0.25 \mathrm{lbs} / \mathrm{gal} ; 0.91 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$ per $1.0 \mathrm{ppm} \mathrm{Fe} ; 1.92 \mathrm{mg} / \mathrm{L} \mathrm{KMnO}_{4}$ per 1.0 ppm Mn)

$$
\begin{aligned}
& \mathrm{Fe} \quad(2.2 \mathrm{mg} / \mathrm{L})(0.91 \mathrm{mg} / \mathrm{L})=2.002 \mathrm{mg} / \mathrm{L} \\
& \mathrm{Mn} \quad(0.7 \mathrm{mg} / \mathrm{L})(1.92 \mathrm{mg} / \mathrm{L})=1.344 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

$$
\text { Total }=2.002 \mathrm{mg} / \mathrm{L}+1.344 \mathrm{mg} / \mathrm{L}+0.5 \mathrm{mg} / \mathrm{L}=3.846 \mathrm{mg} / \mathrm{L}
$$

$$
f b w=5.4 \mathrm{mGD} / 2 \text { mixers }=2.7 \mathrm{mG} D
$$

$$
\mathrm{mL} / \mathrm{min}=\frac{(3.846 \mathrm{mg} / \mathrm{L})(2700000 \mathrm{gpd})(3.7854 / \mathrm{gal})}{(29.96 \mathrm{mg} / \mathrm{mL})(1440 \mathrm{~min} / \mathrm{day})}
$$

$$
=911.03^{\mathrm{m} /} / \mathrm{min}
$$

Softening

1. On a water sample the total alkalinity was $75 \mathrm{mg} / \mathrm{L}$ and the total hardness was $99 \mathrm{mg} / \mathrm{L}$. What are the carbonate and noncarbonate hardness concentrations in

$$
\begin{aligned}
& \mathrm{mg} / \mathrm{L} \text { ? } \quad T H=99 \quad T A=75 \quad \text { so } T H>T A \\
& \text { non carbonate }=T H-T A=99 \mathrm{mg} / \mathrm{L}-75 \mathrm{mg} / \mathrm{L}=24 \mathrm{mg} / \mathrm{L} \\
& \text { carbonate }=T A=75 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

2. It takes 5.4 mL of $0.02 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ to reach a pH of 8.3 and a total of 11.7 mL to reach the Methyl Orange end-point in a 100 mL sample. What is the carbonate, bicarbonate, and hydroxyl alkalinity in mg / L as CaCO_{3} ?

$$
T=117
$$

$$
\begin{aligned}
& P<1 / 2 T \\
& B \rightarrow T-(2)(P) \\
& C \rightarrow(2)(P)= \\
& H \rightarrow O \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

$$
P=\frac{(A)(N)(50000)}{\text { sample vol }} \quad T=\frac{(B)(N)(50000)}{\text { sample vol }} \quad B \rightarrow T-(2)(P)=9 \mathrm{ma} / \mathrm{h}
$$

$$
P=\frac{(5.4 \mathrm{~mL})(0.02 \mathrm{~N})(50000)}{100 \mathrm{~mL}} \quad T=\frac{(11.7 \mathrm{mg} / \mathrm{L})(0.02)(50000)}{100 \mathrm{~mL}} \quad C \rightarrow(2)(P)=108 \mathrm{mg} / \mathrm{L}
$$

$$
P=54 \mathrm{mg} / \mathrm{L}
$$

3. How many pounds per day of quicklime are required to treat 4.2 MGD with a dose of $175 \mathrm{mg} / \mathrm{L}$? The quicklime is 85% pure.

$$
\begin{aligned}
\mathrm{ib} / \text { day } & =\frac{(\text { dose })(\text { flow, MGD })\left(8.34^{\mathrm{b}} / \text { gal }\right)}{\text { chem. purity }} \\
& =\frac{(175 \mathrm{mg} / \mathrm{L})(4.2 M G D)(8.34)}{0.85} \\
& =7211.65 \mathrm{lb} / \text { day }
\end{aligned}
$$

Applied Math for Water
Softening
2. It takes 3.2 mL of $0.02 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ to reach a pH of 8.3 and a total of 10.1 mL to reach the What is the carbonate and noncarbonate hardness concentrations in mg / L ?

$$
\begin{array}{rl}
T A=98 \mathrm{mg} / \mathrm{L} ; T H & =112 \mathrm{mg} / \mathrm{L}, \text { so } T H>T A \\
\text { non carbonate } T H-T A & T H 12-98 \\
& =14 \mathrm{mg} / \mathrm{L} \\
\text { carbonate } T A & =98 \mathrm{mg} / \mathrm{L}
\end{array}
$$ Methyl Orange end-point in a 100 mL sample. What is the carbonate, bicarbonate and

hydroxyl alkalinity in mg / L as CaCO_{3} ?

$$
\begin{array}{rlrl}
\text { Phenol alk }= & \frac{(A)(N)(50,000)}{\text { Sample Vol, mL }}=\quad & \quad \text { bicarbonate } \rightarrow T-2 P=(101)(2)(32)=3 \mathrm{mg} / \mathrm{L} \\
& =\frac{(3.2 \mathrm{~mL})(0.02 \mathrm{~N})(50000)}{100 \mathrm{~mL}}=32 \mathrm{mg} / \mathrm{L} \quad \text { carbonate } \rightarrow(2 \mathrm{P})=(2)(32)=64 \mathrm{mg} / \mathrm{L} \\
\text { hydroxide }=0
\end{array}
$$

3. It takes 4.3 mL of $0.02 \mathrm{NH}_{2} \mathrm{SO}_{4}$ to reach a pH of 8.3 and a total of 8.2 mL to reach the Methyl Orange end-point in a 100 mL sample. What is the carbonate, bicarbonate and hydroxyl alkalinity in mg / L as CaCO_{3} ?

$$
P_{A}=\frac{(4.3 \mathrm{~mL})(0.02 \mathrm{~N})(50000)}{100 \mathrm{~mL}}=43 \mathrm{mg} / \mathrm{L} \quad T_{A}=\frac{(8.2 \mathrm{~mL})(0.02 \mathrm{~N})(50000)}{100 \mathrm{~mL}}=82 \mathrm{mg} / \mathrm{L}
$$

P_{A} is greater than $1 / 2 T_{A}$
bicarbonate $=0 \quad$ hydroxide $=(2)(P)-T=(2)(43)-82=4 \mathrm{mg} / \mathrm{L}$
carbonate $=(2)(T)-(2)(P)=(2)(82)-(2)(43)=78 \mathrm{mg} / \mathrm{L}$
4. How many pounds/day of quicklime (CaO) is required to treat 6.4 MGD with a dose of 148
mg / L. The quicklime is 85% pure.

$$
\begin{aligned}
\mathrm{lb} / \mathrm{day}^{\prime} & =\frac{(\text { dose })(f l o w \mathrm{mGD})(8.34 \mathrm{lb} / \mathrm{gal})}{\% \text { purity }} \\
& =\frac{(148 \mathrm{mg} / \mathrm{L})(6.4 \mathrm{mGD})(8.34 \mathrm{lb} / \mathrm{gal})}{0.85} \\
& =9293.7 \mathrm{lb} / \text { day softening }
\end{aligned}
$$

5. How many pounds/day of soda ash $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ would be required to treat 7.3 MGD with a dose of $29.8 \mathrm{mg} / \mathrm{L}$?

$$
\begin{aligned}
\mathrm{b} / \mathrm{day} & =(29.8 \mathrm{mg} / \mathrm{L})(7.3 \mathrm{mGD})(8.34 \mathrm{bb} / \mathrm{gal}) \\
& =1814.28 \mathrm{lb} / \mathrm{day}
\end{aligned}
$$

6. It has been calculated that $112.5 \mathrm{mg} / \mathrm{L}$ quicklime (CaO) and $38.6 \mathrm{mg} / \mathrm{L}$ soda ash $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ are required in treating a certain water. The quicklime to be used is 92% pure; the soda ash is 100% pure, and the plant flow is 1.6 MGD. How many pounds per day of quicklime and soda ash should be used?
$\mathrm{lb} /$ day $=\frac{(112.5 \mathrm{mg} / \mathrm{c})(1.6 \mathrm{mGD})(8.34 \mathrm{lb} / \mathrm{gal})}{0.92}=1631.74 \mathrm{lb} /$ day quick lime
 sodaash

Answers:

1. $98 \mathrm{mg} / \mathrm{L}$ Carbonate hardness
$14 \mathrm{mg} / \mathrm{L}$ Noncarbonate hardness
2. Carbonate $=64 \mathrm{mg} / \mathrm{L}_{\text {as } \mathrm{CaCO}_{3}}$

Bicarbonate $=37 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Hydroxyl $=0 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
3. Carbonate $=78 \mathrm{mg} / \mathrm{L}_{\text {as }} \mathrm{CaCO}_{3}$

Bicarbonate $=0 \mathrm{mg} / \mathrm{L}^{\text {as }} \mathrm{CaCO}_{3}$
Hydroxyl $=4 \mathrm{mg} / \mathrm{L}^{\text {as }} \mathrm{CaCO}_{3}$
4. $9,294 \mathrm{lbs} /$ day
5. $1,814 \mathrm{lbs} /$ day
6. $1,632 \mathrm{lbs} /$ day quicklime
$515 \mathrm{lbs} /$ day soda ash

Temperature Conversions

1. $215^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
{ }^{\circ} \mathrm{C} & =(0.556)(F-32) \\
& =(0.556)(215-32) \\
& =(0.556)(183)=101.75^{\circ} \mathrm{C}
\end{aligned}
$$

2. $34^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$

$$
\begin{aligned}
{ }^{\circ} F & =(1.8)\left({ }^{\circ} \mathrm{C}\right)+32 \\
& =(1.8)(34)+32 \\
& =61.2+32 \\
& =93.2^{\circ} \mathrm{F}
\end{aligned}
$$

Temperature Conversions

Convert these temperatures:
Remember formulas on page 1 in your formula book
${ }^{\circ} \mathrm{C}=0.556\left({ }^{\circ} \mathrm{F}-32\right)$
${ }^{\circ} \mathrm{F}=1.8\left({ }^{\circ} \mathrm{C}\right)+32$

1. $160^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
{ }^{\circ} \mathrm{C} & =0.556(160-32) \\
& =71.2^{\circ} \mathrm{C}
\end{aligned}
$$

2. $70^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
{ }^{\circ} \mathrm{C} & =0.556(70-32) \\
& =21.1^{\circ} \mathrm{C}
\end{aligned}
$$

3. $35^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$

$$
\begin{aligned}
{ }^{\circ} F & =1.8(35)+32 \\
& =95^{\circ} \mathrm{F}
\end{aligned}
$$

4. $45.5^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$

$$
\begin{aligned}
0 F & =1.8(45.5)+32 \\
& =113.90 \mathrm{~F}
\end{aligned}
$$

Answers:

1. $71.1^{\circ} \mathrm{C}$
2. $21.1^{\circ} \mathrm{C}$
3. $95^{\circ} \mathrm{F}$
4. $113.9^{\circ} \mathrm{F}$
