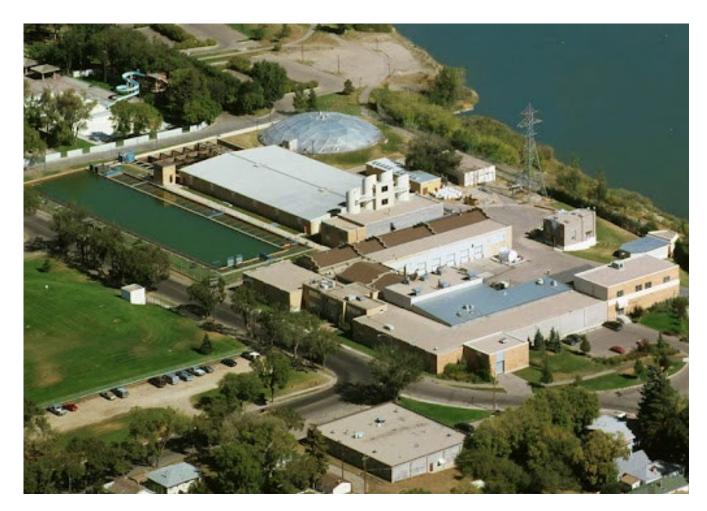


Best Practices for Air and Gas Flow Measurement in WTP and WWTP Operations


Virtual Water Expo – September 2022

Air & Gas Mass Flow Meters | Gas & Liquid Flow Switches, Level Switches

Fluid Components International & Reps Have Supported Flow Measurement in Water & Wastewater Industry for 50+ Years

Common Customer Concerns Related to Piping

Gas Flow Measurements

Inadequate Straight Run Inaccurate meter readings compared to published specifications

Permanent Pressure Loss

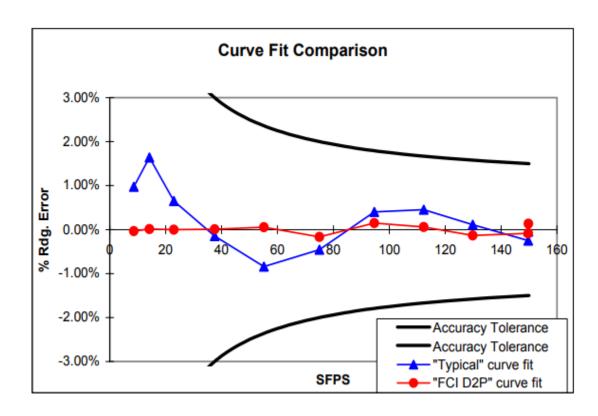
Is my chosen technology wasting energy and driving up my operational costs?

The Ideal World is Based on Ideal Lab Conditions

Actual Gas Calibration Enable .5% Reading and Below Across 100 Turndowns

"The capability to match actual fluid calibrations with automated data collection routines & high accuracy flow reference standards results in instrument calibrations that are consistently better than 0.5% of reading."

*Advances in Thermal Dispersion Mass Flow Meter Accuracy by Dan McQueen



Ideal Lab Conditions Fully Developed Flow Profile = Most Accurate Measurement

Plenty of Straight Run, Clean Dry Gas, Reference Meters of Higher Accuracy

Point of Maximum Velocity of Fully Developed Profile

Where the most accurate measurement is made

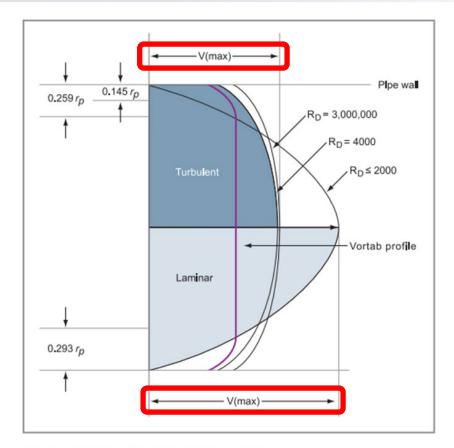
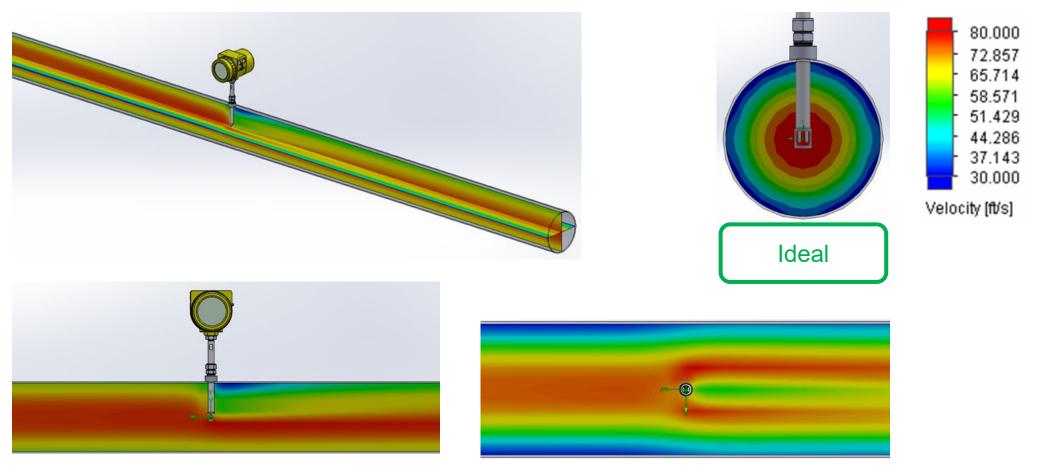


Figure 1. Laminar vs. turbulent flow profiles

The laminar profile takes on a parabolic shape where the relationship between the average velocity and centerline velocity is quite dramatic when compared to the turbulent flow profile.


Source: Richard Miller, Flow Measurement Engineering Handbook; Vortab profile added by FCI

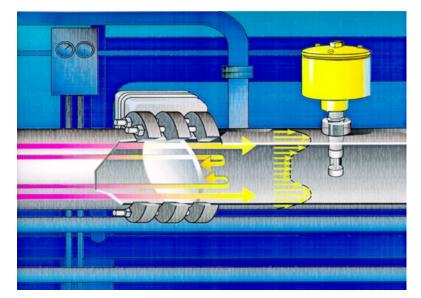
Velocity Profiles

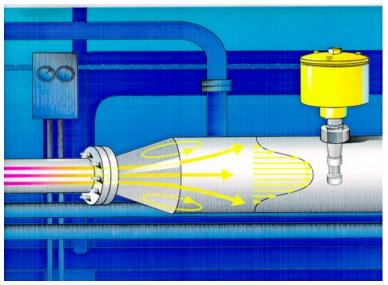
Ideal Straight Run Conditions: 20 Pipe Diameters Upstream/10D Downstream

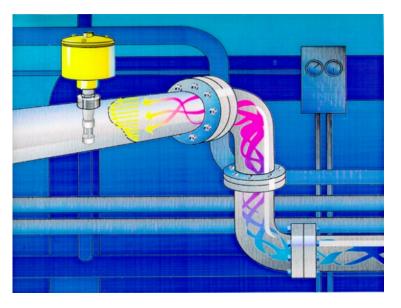
Mirrors factory calibration conditions – Fully Developed Velocity Profile

"Real World" Rarely Matches Ideal Lab Conditions

Metering sometimes an afterthought,

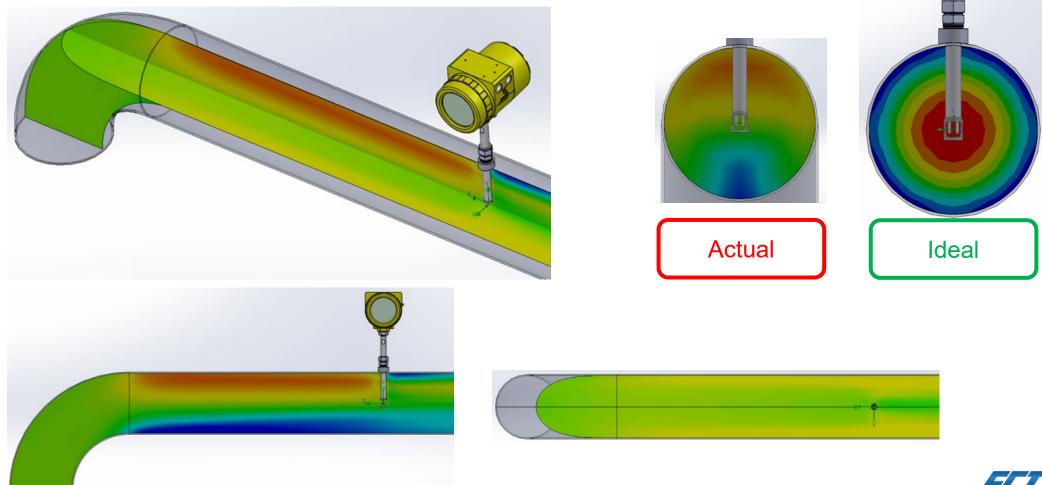

Elbows, Valves, Inadequate Straight Run, Other Obstructions Are Common

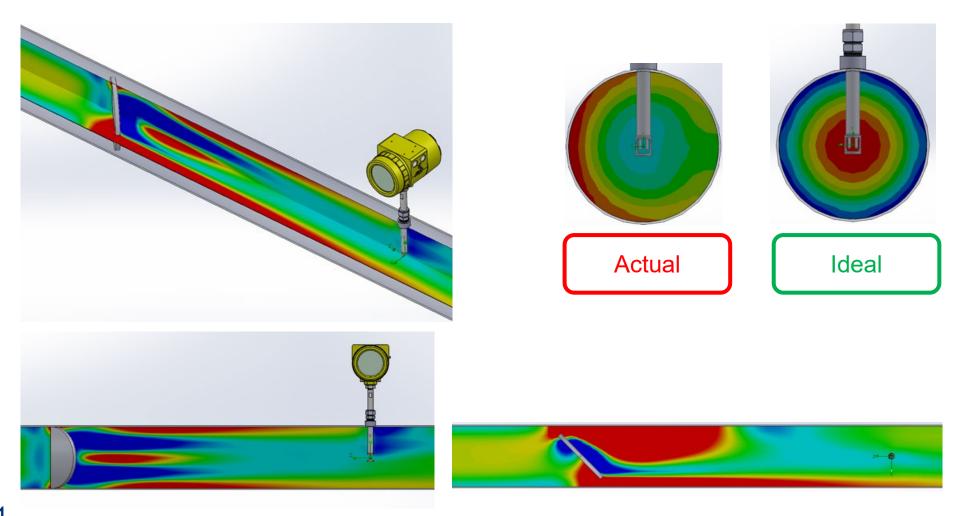




Upstream / Downstream Obstructions

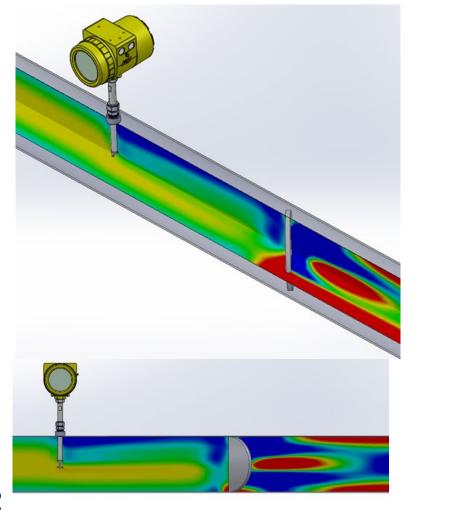
Piping constraints will prevent achieving fully developed flow profiles

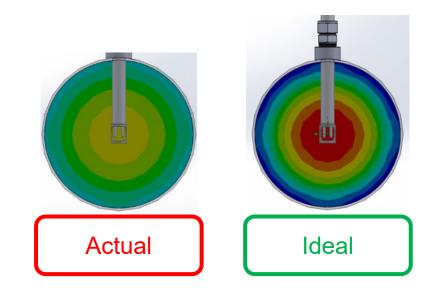


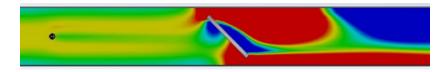


An Elbow 4D Upstream Introduces 4.3% Additional Inaccuracy

Impact on Accuracy: 4.3%

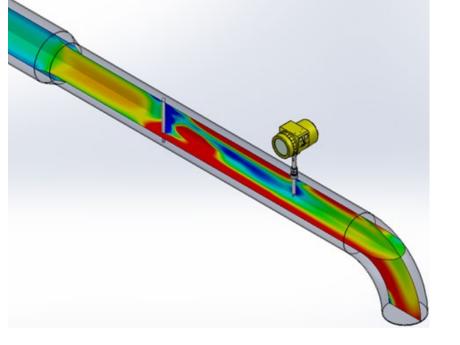

Butterfly Valve (50% Open) 5D Upstream Introduces 15% Inaccuracy

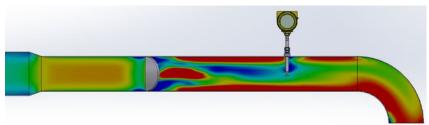


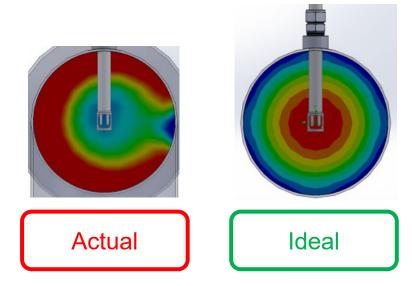


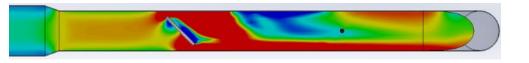
Same Valve 3D Downstream Introduces 1.7% Inaccuracy

Obstruction: Butterfly Valve 3 Pipe Diameters Downstream (50% Open)

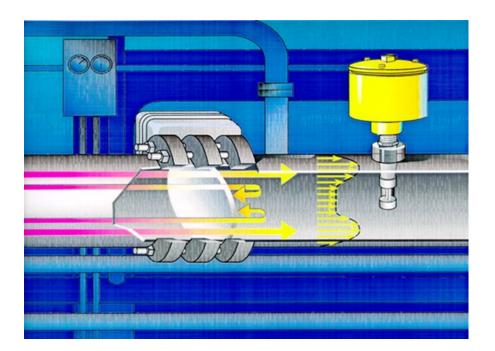






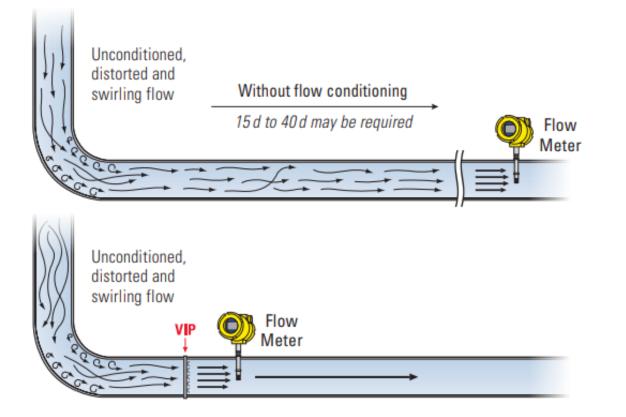

Multiple Common Obstructions Introduce 18% Inaccuracy Obstructions: Convergence 7D Up, Butterfly Valve 4D Up (50%), Elbow 2D Down

Impact on Accuracy: 18% (worst case)



Upstream Modulating Valve Adds 8.76% Uncertainty

Aeration / Blower Applications – Common to have Modulating Valve Upstream


Media	Air - 100%					
Line Description	6.065 Inches I.D. pipe	e. (6 inch sch. 40).				
Pipe Diagram	9D	90 2D bv	7D	X 3D	90	6D
	90=90 Deg	Elbow; bv=Butter	fly Valve Or Dampo	er; X = Install	location;	
	Min	Norma		Max		<u>Units</u>
Flow	300	15000		30000		SCFH
Temperature	40	70		200		deg F
Pressure	5	8		10		psig
Standard Condition	s 14.70 psia and	70 deg F				
Calibration Options						
Analog Output 1	4-20 mA = 0 to	30000 SCFH (Set fo	or Flow)			
Analog Output 2	4-20 mA = 0 to	150 deg F (Set for	Temperature)			
Recommended Mo	del ST80					
Base Accuracy	1.00% rdg. + 0.	50% of full scale.				
App Uncertainty Es	t. 8.76% rdg. + 0.	50% of full scale.				
Repeatability	0.50% rdg.					

Application Parameters

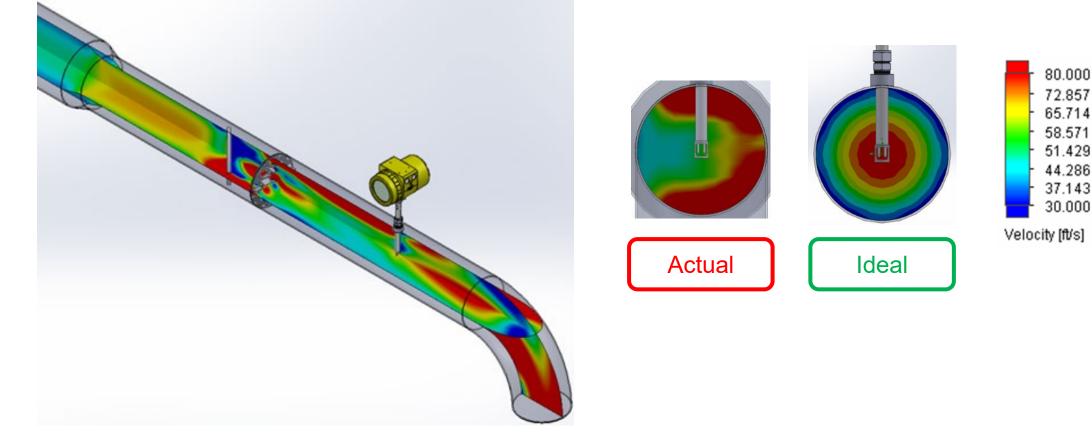
Flow Conditioners Create a Swirl Free, Uniform Velocity Flow Profile

Benefit: Improved accuracy in less than ideal conditions

Example: Lack of Ideal Straight Run

Same piping constraints but now utilizing a flow conditioner

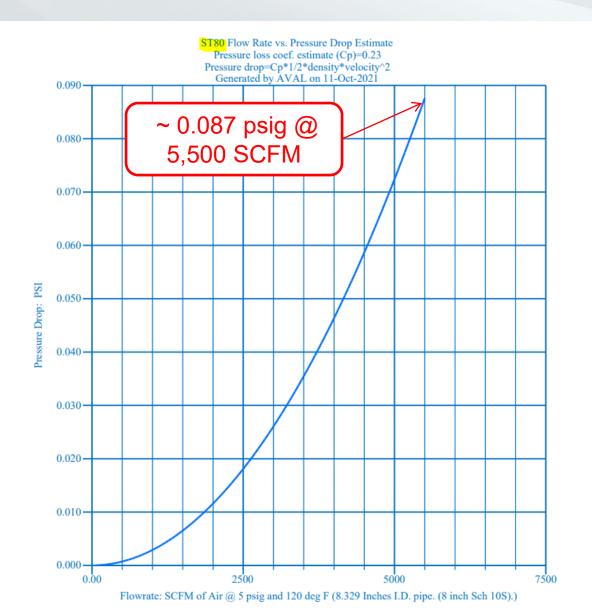
Application Parame	eters				
Media	Air - 100%				
Line Description	6.065 Inches I.D. pipe	. (6 inch sch. 40).			
Pipe Diagram	9D	90 2D bv	4D	X 3D	90 6D
	0=90 Deg Elbow; bv=Bu raight run)	tterfly Valve Or Da	mper; =Vip3;)	X = Install location;	VIP covers 3D (VIP & 3D
	Min	Normal		Max	<u>Units</u>
Flow	300	15000		30000	SCFH
Temperature	40	70		200	deg F
Pressure	5	8		10	psig
Standard Condition	s 14.70 psia and 7	70 deg F			
Calibration Options	VIP				
Analog Output 1	4-20 mA = 0 to	30000 SCFH (Set fo	r Flow)		
Analog Output 2	4-20 mA = 0 to 3	150 deg F (Set for T	remperature)		
Recommended Mo	del ST80				
Base Accuracy	1.00% rdg. + 0.5	0% of full scale.			
App Uncertainty Es	t. 1.04% rdg. + 0.5	0% of full scale.			
Repeatability	0.50% rdg.		-	<u>-</u>	



Velocity Profiles

Obstructions: Convergence 7D Up, Butterfly Valve 4D Up (50%), Elbow 2D Down

- Inaccuracy without flow conditioner: 18% (worst case)
- Inaccuracy utilizing flow conditioner: 0.8% (worst case)


A Look at Permanent Pressure Loss

Limited Piping Configuration – No Flow Conditioning

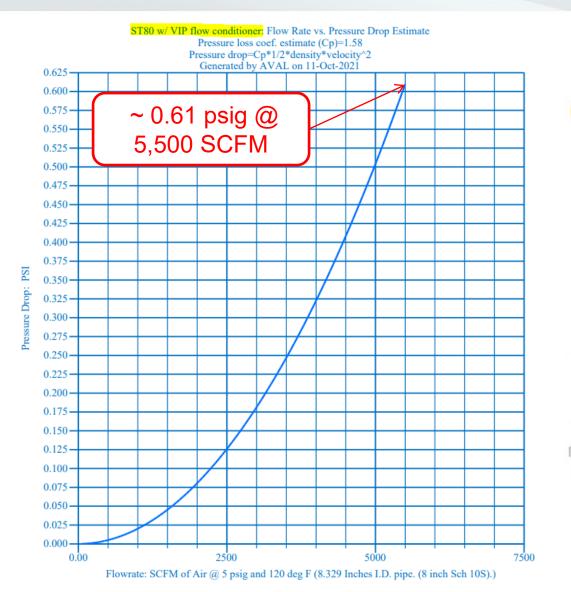
Application Parame	eters						
Media	Air - 100%						
Line Description	8.329 Inches I.D. pipe.	(8 inch Sch 10S).					
Pipe Diagram	13D	cn	2D bv	3D X	X 4D	90	5D
	cn=Convergence; bv=	Butterfly Valve Or	Damper;	X = Install	ocation; 90=	90 Deg	Elbow
	Min	Normal		Max	<u>K</u>		<u>Units</u>
Flow	55	2250		550	0		SCFM
Temperature	40	120		200			deg F
Pressure	2	5		10			psig
Standard Condition	ns 14.70 psia and 70) deg F					
Calibration Options None							
Analog Output 1	4-20 mA = 0 to 55	500 SCFM (Set for F	low)				
Analog Output 2	4-20 mA = 0 to 25	50 deg F (Set for Te	mperatur	e)			
Recommended Mo							
Base Accuracy	1.00% rdg. + 0.50	% of full scale.					
App Uncertainty Es	:t. 17.43% rdg. + 0.5	0% of full scale.					
Repeatability	0.50% rdg.						

Permanent Pressure Loss – Insertion Style Flow Meter

Permanent Pressure Loss – Meter with Flow Conditioner

Limited Piping Configuration – Flow Conditioner Utilized

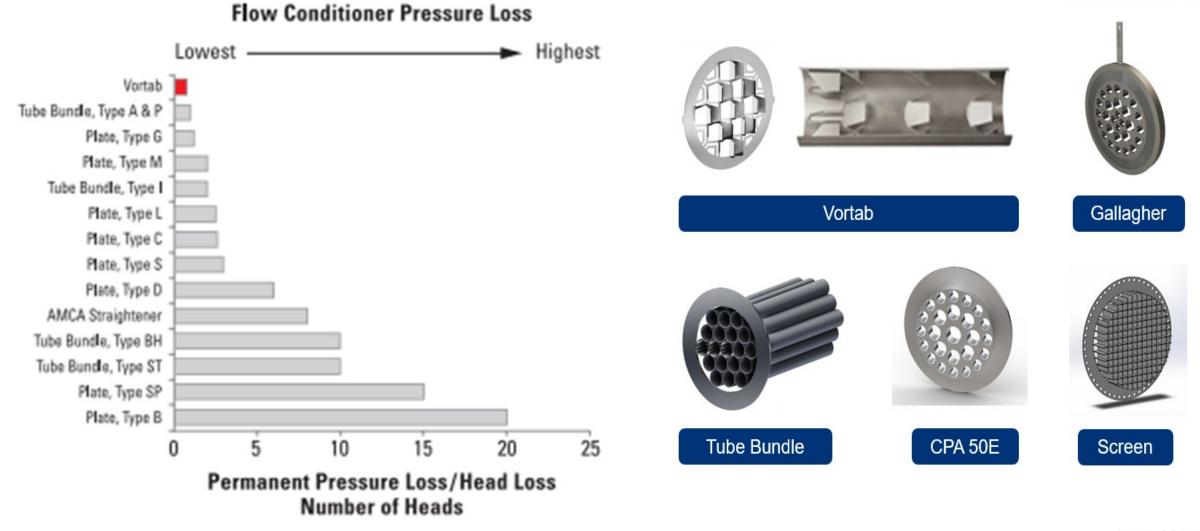
Application Parame	eters								
Media	Air - 100%								
Line Description	8.329 Inches I.D. pipe	. (8 inch Sch 10S).							
Pipe Diagram	13D	cr	n 2D	bv	X	4D	90	5D	8
	n=Convergence; bv=But overs 3D (VIP & 3D stra		nper; <mark>=V</mark>	<mark>ip3</mark> ; X = Ins	tall lo	cation; 9	0=90 D	eg Elbow;	VIP
	Min	Normal		<u>N</u>	lax			<u>Units</u>	
Flow	55	2250		5	500			SCFM	
Temperature	40	120		2	00			deg F	
Pressure	2	5		1	0			psig	
Standard Condition	14.70 psia and 7	70 deg F							
Calibration Options	S VIP								
Analog Output 1	4-20 mA = 0 to !	5500 SCFM (Set for	Flow)						
Analog Output 2	4-20 mA = 0 to 2	250 deg F (Set for Te	emperat	ure)					
Recommended Mo	del ST80								
Base Accuracy	1.00% rdg. + 0.5	0% of full scale.							
App Uncertainty Es	t. 1.00% rdg. + 0.5	0% of full scale.							
Repeatability	0.50% rdg.								



Flow Conditioner Adds .523 PSIG Permanent Pressure Loss

Flow Conditioner Accounts for 87% of Pressure Loss

 Flow conditioner accounts for roughly 0.523 psig @ 5,500 SCFM


Question Raised: Do Different Flow Conditioning Technologies Cause Greater Pressure Loss?

Common Designs Can Add 33%-90% Additional Pressure Loss Compared to Minimum Achievable Head Loss Design

22

Work with Your Suppliers

Properly address your primary measurement requirement(s)

Inadequate Straight Run

- 1. Know Accuracy Requirements of the Application
- 2. Work with Knowledgeable Suppliers to Understand Potential Impact on Accuracy
 - 3. If Needed, Look at Impact of Utilizing a Flow Conditioner

Permanent Pressure Loss

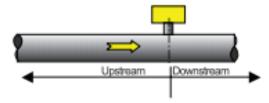
- 1. Insertion Meter Technology is Advantageous Over Those that Utilize Restrictions
 - 2. Flow Conditioner Pressure Loss Varies by Design

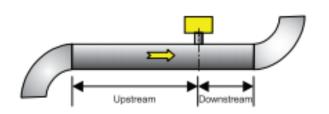
23

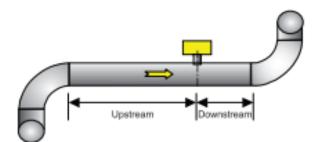
Beyond the Specifications

We are Here to Assist!

- Local Rep Review Application Requirements
 - www.fluidcomponents.com/sales/sales-offices
- Additional Material
 - FCI e-Book: Air/Gas Flow Measurement Solutions Handbook
 - Request a copy today!
- Get Your Free Municipal application guide
- Join us on LinkedIn


www.FluidComponents.com





Recommended Straight Run = Fully Developed Flow Profiles

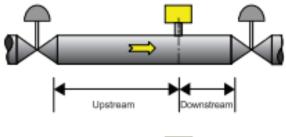
Default Recommendation for Required Straight-runs with Undefined Obstructions

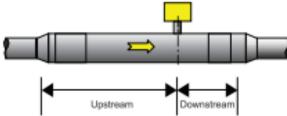
Pipe Size	Upstream	Downstream
< 6 inches [150 mm]	20 x Pipe ID	10 x Pipe ID
≥ 6 inches [150 mm]	15 x Pipe ID	7.5 x Pipe ID
with Vortab flow conditioner	6 x Pipe ID	2 x Pipe ID

Recommendation for 45° or 90° Elbows in Plane

Pipe Size	Upstream	Downstream
< 6 inches [150 mm]	15 x Pipe ID	7.5 x Pipe ID
≥ 6 inches [150 mm]	10 x Pipe ID	5 x Pipe ID
with Vortab flow conditioner	6 x Pipe ID	1 x Pipe ID

Recommendation for 45° or 90° Elbows OUT of Plane (Swirl Effect)


Pipe Size
< 6 inches [150 mm]
≥ 6 inches [150 mm]
with Vortab flow conditioner


Upstream
20 x Pipe ID
15 x Pipe ID
6 x Pipe ID


Downstream 10 x Pipe ID 5 x Pipe ID 2 x Pipe ID

Recommended Straight Run = Fully Developed Flow Profiles

Recommendation for Flow Controlling Valves Upstream or Downstream

Pipe Size < 6 inches [150 mm] ≥ 6 inches [150 mm] with Vortab flow conditioner

Recommendation for Pipe Adaptor Upstream or Downstream

Pipe Size	
< 6 inches [150 mm]	
≥ 6 inches [150 mm]	
with Vortab flow conditioner	

Upstream 20 x Pipe ID 15 x Pipe ID 9 x Pipe ID

Upstream

20 x Pipe ID

15 x Pipe ID

9 x Pipe ID

Recommendation for Pipe Reducers Upstream or Downstream

Pipe Size	
< 6 inches [150 mm]	
≥ 6 inches [150 mm]	
with Vortab flow condition	ner

Upstream
15 x Pipe ID
10 x Pipe ID
6 x Pipe ID

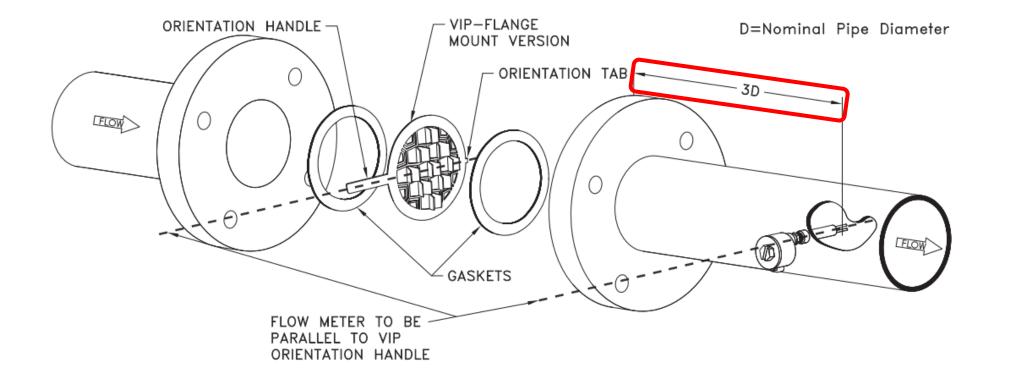
Downstream 10 x Pipe ID 5 x Pipe ID 2 x Pipe ID

Downstream 10 x Pipe ID 5 x Pipe ID 2 x Pipe ID

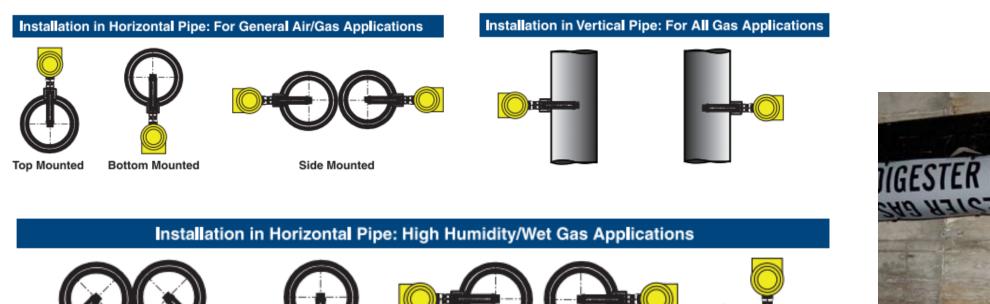
Downstream 5 x Pipe ID 3 x Pipe ID 1 x Pipe ID

Total Cost of Ownership

Thermal v DP/MV with Orifice


	Differential Pressure	Multivariable	Thermal
Transmitter	\$1,500	\$4,000	\$4,200
Isolation Valve Manifold (5-valve)	\$300	\$300	-
Isolation Ball Valve (Full Port)	-	-	\$175
Pressure Transmitter	\$1,000	Integral	n/a
Temperature Transmitter/RTD	\$450	Integral	Integral
Thermowell	\$350	\$350	-
Primary Flow Element - Orifice Plate (6-inch)	\$200	\$200	-
Impulse Tubing/Fittings	\$50	\$50	-
300 lb. Weld Neck Orifice Flange Union	\$1,200	\$1,200	-
Threadolet/Half Coupling	-	-	\$25
Separate AC/DC Instrument Power	-	-	\$100
Hardware Subtotal	\$5,050	\$6,100	\$4,375
Installation Costs	\$840	\$600	\$240
Maintenance Costs, Annual	\$420	\$240	\$120
Energy Loss, Annual	\$33,750	\$33,750	\$8,665
Initial 1-Year Cost of Ownership Total	\$38,860	\$39,490	\$13,400

- Energy loss based on a blower producing 8 psig @ 250 KW, 8,000 hours of operation at a cost of \$0.15 /KWH
- Pressure loss at Max Flow: DP/MV ~ 25" w.c., Thermal ~ 8" w.c.


Flow Conditioning

Pay Attention to the Installation Details

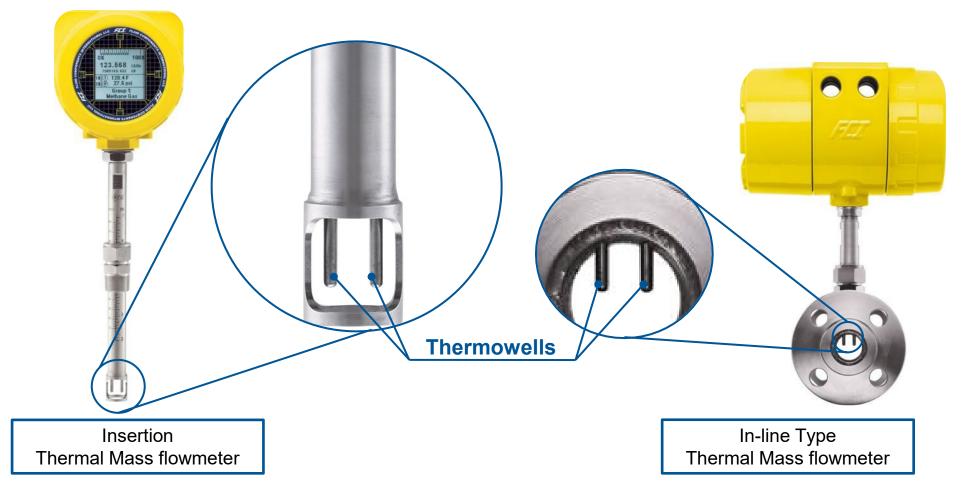
Installation Recommendations – Dry v "Wet" Gases

Angled at 45° from Horizontal

Bottom Mounted

Side Mounted

"Wet Gas" Solutions


- Wet Gas
 - Relative Humidity >100% and/or flow velocity >10 fps
 - Up to 10% Entrained
 Moisture (not Dual-Phase)
 - A challenge for any flow technology

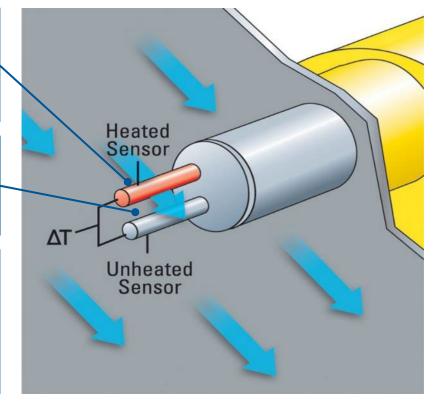
Thermal Technology [Gas Flow Meters] Basic Sensor Design

Flow element consists of (2) thermowells [aka tips] welded to an extension tube

Thermal Technology [Gas Flow Meters]

Temperature Difference is Proportional to Mass Flow of the Medium

Active sensor:


Temperature sensor (Pt1000) plus Heater elements installed in one thermowell

Reference sensor:

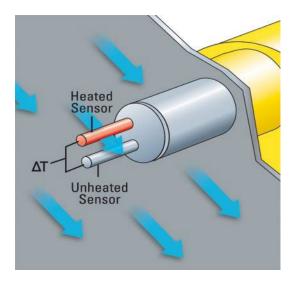
Temperature sensor (Pt1000) installed in one thermowell

Signal processing:

Electronics supplies **constant power** to Heater element and senses the Temperature difference between Active and Reference flow sensor

Thermal Technology [Gas Flow Meters]

Simplified Mass Flow Equation


Heat loss equation converts to:

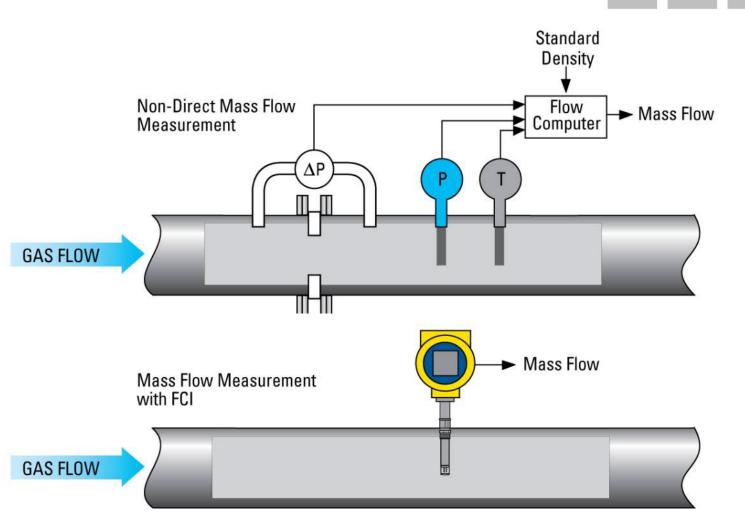
$$\Delta T \propto \rho \times v \times A = M \longrightarrow$$

Legend

- ΔT = Temperature Difference
- ρ = Density (actual)
- v = Velocity (actual)
- A = Area of the pipe
- M = Mass flow

Meters Indicate Mass Flow in: Lbm/Hour or Standard Cubic Feet/Hour [SCFH] or Standard Feet/Second [SFPS]

Flow Meter Technologies


Mass or Volumetric

Volumetric flow meters

- Differential Pressure/Multivariable with primary flow elements
 - Orifice Plates
 - Averaging pitot tube
 - Venturi
 - V-cone
- Ultrasonic
- Vortex shedding
- Turbine
- Variable Area (VA)

Mass flow meters

- Thermal Dispersion
- Coriolis

