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Design and operation of activated sludge 
systems for carbon and nitrogen removal

- Approach used: ASM1 mechanistic model

 Based on mass balances: transfer and transformation terms
 Aims to obtain: reactor volumes, recycles, SRT, oxygen 
requirements, sludge production…
 Takes into account WW variation: seasonal scenarios (temp., 
loads, etc.)

- Key factors for simulation:
 Initial data: wastewater characteristics and bacterial coefficients
 Model selection: ASM1, ASM2, ASM2d, ASM3
 Simulation criteria and methods
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Design and operation of activated sludge 
systems for carbon and nitrogen removal

- Raw wastewater characteristics in dry and wet weather conditions:
Traditionally: QDW, QWW, COD-BOD, TSS, NH4-N, PO4-P
Useful: filtered COD, org N, org P, variability

- Requirements in the effluent:
Total N < 10 or 15 mg N/L
Effluent COD, TSS
Useful for simulation: NH4

+-N, NO3
--N and PO4

3--P

- Summer and Winter Temperatures (key factor in biological-based systems)
- Minimum SRT or predefined for stable sludge (SRT is related to cell wash-out
- Aeration tank configuration (reactors, carrousel, SBR)
Others desirable:
- Sludge line returns -Industrial inputs - Maximum KLa
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Mass Balances
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Design of WWTPs

 Simulation software do NOT provide the design 
automatically

 The optimization of the design is required through an 
iterative process in dynamic simulation

 The criteria used in the iterative process are based on 
the knowledge of cause-effect relationships (design-
behavior parameters)

 Alternative: evaluation through simulation of designs 
made in spreadsheets



6

Carbon removal
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Carbon removal
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Idem for M(XIN)  The Mass of inorganic Materials

- Linear link to SRT
- SRT/HRT is the acumulation factor for particulates

M(XT) = M(XBH) + M(Xo) + M(XI) + M (XIN)

M (XS) ≈ 0

- SRT is the independent variable
- Stability of the sludge increases
with SRT

Design criteria 2: the selected SRT
determines the M(Xj), where j is HB, O, I, 

IN and M(XT) = V·XT

Carbon removal
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Carbon removal
 M(XT) = f (SRT)
 For preselected XT: XT Design M(XT) is imposed by WW characteristics, 
microbial kinetics and SRT 
 SRT determines V (2nd design criteria) and HRT
 V = M(XT) / XT design
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Carbon removal
Sludge Production (PX) =
 Sensitive to: XI0, XINO, kd, temp, fP, Y

 PX decreases with SRT due to
decay

SRT
)X(M T Oxygen Requirements (ROb)

ROb = V·OUR = 

(1-YH)·Q0·bCOD + (1-fp)·kd·M (XBH)

ROb increases with SRT due to decay

Overall mass balance for carbon (C) 
is fulfilled
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Carbon Removal

Reactor V selection

SS sim ≠ SS req

SRT selection

XT sim ≠ XT req

Lo
op

1

Lo
op

 2

DYNAMIC SIMULATION→ STEADY STATE

Concept Loop 1:

SS,ef only depends on SRT
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Carbon removal

Volume selection

SS sim ≠SS req

SRT selection

XT sim ≠ XT req
Lo

op
 1

Lo
op

 2

DYNAMIC SIMULATION→ STEADY STATE

Concept Loop 2:

SRT determines 

M(XT)=V·XT= P(XT) SRT

Concept Loop 1:

SS,ef only depends on SRT
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Nitrification
To meet SNH,ef = 1 mgN/L
For constant Inf. Aerobic SRT ≈ 5 days.
For variable Inf. Aerobic SRT  ≈ 5 *1,4 (safety factor) ≈ 7 

days.                         
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Nitrification capacity

Overall N mass balance
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Carbon Removal +Nitrification
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Carbon Removal + Nitrification

ROn = 4.57· QO · CN
ROT = ROb + ROn

High contribution of nitrification to oxygen requirements
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Nitrification
Selection of No.  reactors in series

Selection of total V

Avg NH4-N sim ≠ Avg NH4-N req

Selection of SRT

XT sim ≠ XT req

KLa sim ≠ KLa req

Lo
op

 1

Lo
op

 2

Lo
op

 3

DYNAMIC SIMULATION→ STEADY STATE

SIMULATION OF VARIABLE INFLUENT

Concept Loop 1:

Safety factor due to 
variable influent
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Nitrification
Selection of No.  reactors in series

Selection of total V

Avg NH4-N sim ≠ Avg NH4-N req

Selection of SRT

XT sim ≠ XT req

KLa sim ≠ KLa req

Lo
op

 1

Lo
op

 2

Lo
op

 3

DYNAMIC SIMULATION→ STEADY STATE

SIMULATION OF VARIABLE INFLUENT

Concept Loop 1:

Safety coefficient due to 
variable influent

Concept Loop 3:

Fulfillment of max. KLa
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Predenitrification-Nitrification

- Effluent Requirements
• NT: 10; 15 mg N/L.
• SNH,ef ≈ 1-2 mg N/L.
• SNO,ef ≈ 5-6; 10-11 mgN/L.

- Design Parameters
• FX: Anoxic fraction
• SRTgl = SRTae+ SRTanx = SRTae+SRTgl · FX
• SRTae ≈ 7 days (13º C)
• AO: Optimun internal recycle fraction (A) 
• S: External recycle fraction (≈1)

- From overall N balance: SNO,ef= CN-DP
• DP= DP1+DP2
• DP1: Removal of NOx due to SS
• DP2: Removal of NOx due to XS
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Predenitrification-Nitrification
 For A ≤ AO  Not all the denitrification potential of the 

influent WW is used

 For A > AO
SNO,ef = CN-DP
SNO,ax > 0
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- SNO,ef = CN – DP
- CN = f (TKNinf)
- Maximum DP = f (SSinf,av, XSinf, SRTanx)
- SNO,ef = f [(COD/TKN)inf, SRTax]
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Nitrogen Removal

Select total V

Select SRT

Select aerobic fraction (1-FX)

NO3-N AX sim ≠ NO3-N AX req

Select internal recirculation (IR)

NH4-N sim ≠ NH4-N req

NO3-N sim ≠ NO3-N req

KLa sim ≠ KLa req

Lo
op

 1

Lo
op

 2

Lo
op

 3

Lo
op

 4

XT sim ≠ XT req

Select reactor configuration. D-N system
Lo

op
 5

DYNAMIC SIMULATION→ STEADY STATE

Concept Loop 1:
The IR has to deplete
the DP of FX
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Nitrogen removal

Select total V

Select SRT

Select aerobic fraction (1-FX)

NO3-N AX sim ≠ NO3-N AX req

Select internal recirculation (IR)

NH4-N sim ≠NH4-N req

NO3-N sim ≠ NO3-N req

KLa sim ≠ KLa req

Lo
op

 1

Lo
op

 2

Lo
op

 3

Lo
op

 4

XT sim ≠ XT req

Select reactor configuration. D-N system

Lo
op

 5

DYNAMIC SIMULATION→ STEADY STATE

Concept Loop 2:
The aerobic SRT has 
to achieve the required 
nitrification

Concept Loop 1:
The IR has to deplete
DP of FX
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Nitrogen removal
Select total V

Select SRT

Select aerobic fraction (1-FX)

NO3-N AX sim ≠ NO3-N AX req

Select internal recirculation (IR)

NH4-N sim ≠ NH4-N req

NO3-N sim ≠ NO3-N req

KLa sim ≠ KLa req

Lo
op

 1

Lo
op

 2

Lo
op

 3

Lo
op

 4

XT sim ≠ XT req

Select reactor configuration. D-N system

Lo
op

 5

DYNAMIC SIMULATION→ STEADY STATE

Concept Loop 3:
Global SRT must achieve both
required nitrification and
denitrification
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Nitrogen removal
Select total V

Select SRT

Select aerobic fraction (1-FX)

NO3-N AX sim ≠ NO3-N AX req

Select internal recirculation (IR)

NH4-N sim ≠ NH4-N req

NO3-N sim ≠ NO3-N req

KLa sim ≠ KLa req

Lo
op

 1

Lo
op

 2

Lo
op

 3

Lo
op

 4

XT sim ≠ XT req

Select reactor configuration. D-N system

Lo
op

 5

DYNAMIC SIMULATION→ STEADY STATE

MXj, PX, RO: results from simulation
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Conclusions
 Design through simulation provides with a high added value

o Makes process optimization easier

o More detailed information about the reactors

o Configuration flexibility and system interaction

o Makes knowledge acquisition easier

 Key: to have a high and clear knowledge on…

o Initial data

o Mathematical model to be applied

o Design parameters – behavior relationships

o The criteria for the iterative simulation process
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Operation Variables
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Introduction: Objectives and Variables

Objectives of WWTP Operation and Control 
1- To maintain the plant operative

 Maintain an active biomass within the biological reactors
 Maintain operative the basic unit processes (pretreatment, 

activated sludge tanks, settlers, digesters, etc.)

2- To fulfil the effluent quality requirements
 COD, N (NH4, NO3), P

3- To respond successfully to possible perturbations
 Overloads (hydraulic or concentration), toxicity, seasonal 

variations in load and temperature

4- To reduce operation costs
 Aeration
 Sludge treatment
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Introduction: Objectives and Variables
Operational Variables in a WWTP (DN)

1- Hydraulic variables
 Influent Flow: Equalisation tanks, Step-feed
 Wastage flow
 Recirculation of Settled Sludge
 Internal Recirculation of Nitrates

2- External supply of substances
 Physical/chemical P removal 
 Addition of extra C for denitrification

3- Aeration
 Supply of air or oxygen
 Facultative zones in the reactors

 

Anoxic 
Zone 

Oxic 
Zone 

D N 
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Introduction: Objectives and Variables

Limits for Plant Operation
Variable Lower limit Upper limit 

Influent Flow Hydraulic capacity of the sewers 
and the equalisation tanks 

Hydraulic capacity of the 
clarifier 

Wastage Rate SRT required 
(Nitrification) 

SRT required 
(Solids flux to the settler) 

Sludge 
Recirculation 

Sludge blanket level 
Retention time in the settler 

Hydraulic load 
Dilution of the sludge 

Nitrates 
Recirculation 

Nitrates demand Denitrification capacity 

Chemicals Addition P requirements in the effluent Economical cost 

Carbon Addition Denitrification capacity Economical cost 
Excess of C load 

Air flow Respiration rate Economical cost 
Excess of stirring  
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Operational variables
 Wastage Rate: Solids Retention Time
 SRT: average time the solids stay in the process

 Steady-state concept (sludge age)
 SRT = (mass of solids) / (output flux of solids)
 SRT ≈ Reactors Volume / Wastage rate

 Crucial process parameter: Significant influence in
 The bacterial populations that are or not retained within 

the process (wash-out of those whose max < SRT
 The MLSS in the reactors
 The sludge production (relevant operation cost)
 Endogenous respiration rate
 TSS fractions (XBH, XO, etc…)
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Operational variables
Wastage Rate: Solids Retention Time
Influence of SRT in nitrification

Determines the minimum SRT for stable nitrification
Significant influence of process temperature
Important: response time for recovering nitrification
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Operational variables
Wastage Rate: Solids Retention Time

Influence of SRT in MLSS
 The relationship is almost linear
 Additional influence of Tª: reduction of sludge production in 

summer
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Operational variables

Wastage Rate: Solids Retention Time
Influence of SRT in TSS fractions

Progressive stabilisation of the biomass at  high SRT
Linear accumulation of inert solids (Use of Vr)
Reduction in the active fraction of the sludge
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Operational variables
Wastage Rate: Solids Retention Time

Influence of SRT in Sludge Production
Very significant influence
Relevant for the operation costs (sludge handling)
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Operational variables
Wastage Rate: Solids Retention Time

Influence of SRT in O2 requirements
Increase of oxygen requirements (endogenous respiration)
For low SRT the reduction in oxygen requirements is 

associated to deterioration of effluent quality

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

10 12 14 16 18 20 22 24 26 28

SRT (Días )

O
xí

ge
no

 d
is

ue
lto

 re
qu

er
id

o 
(K

g/
dí

a)

13º C

17º C

21º C

R
O

b
(k

gO
2/d

)



37

Sludge Recirculation
1- Objective

 Regulation of the sludge mass in the settler and maintain enough
biomass in the process

2- Effects
 Low influence in the biological processes
 Significant influence in effluent quality (solids)

3- Operational restrictions
 Sludge blanket height
 Retention time of the settled sludge
 Hydraulic perturbations in the clarification
 Dilution of the sludge

4- Conventional operation
 Constant flow
 Flow proportional to the influent
 Regulation of the sludge blanket height

Operational variables
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Sludge Recirculation

Operational variables
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Nitrate Recirculation
Objective

Supply Nitrates to the anoxic zones for denitrification

Operational restrictions
Flow high enough to supply Nitrates for denitrification
Avoid inhibition of the denitrification for excess of oxygen
Optimal recirculation depends at each moment on the 

operational conditions and influent load

Conventional operation
Flow proportional to the influent

Operational variables

Zone
Anoxic

Zone
Oxic

D N
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Operational variables
Nitrate recirculation
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Operational variables
Aeration

1- Objective
 Supply DO for maintaining the activity in the aerobic process

2- Operational restrictions
 Air Flow high enough to maintain DO and solids in suspension

(low DO reduces biological activity in aerobic processes)
 Avoid excess of aeration:

 No proportional increment in the biological activity
 Increase the operational expenses (O2 emitted to the 

atmosphere)
 Risk of excess of stirring intensity  floc damage

 Important point: efficiency in oxygen transfer to the water
3- Conventional operation

 Constant DOSP = 2.0 mg/l
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Operational variables

Aeration
Oxygen consumption

 Associated with biological oxidation of COD and Ammonium & 
endogenous activity

 Oxygen requirements can not be reduced without affecting water 
quality in the effluent

 Optimum use of denitrification minimize O2 requirements

Oxygen supply
 Supplied by air flow (KLa) with an efficiency regulated by the 

distance to saturation (DOSAT-DO)
 Maximum efficiency at minimum DO concentration
 But low DO concentration reduces biological activity

OURODODaKODOD
V
Q

dt
dOD

SATLe  )()(
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Operational variables

Aeration
Optimum operation:

 How to supply required DO with minimum air flow?
 Minimum (constant) DO that guarantees ammonium 

requirements in the effluent
 It includes some kind of “predictive” strategy (repeatability in 

the influent load profile)
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