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6 Introduction

As a major provider of modelling products eWater has adopted a policy (eWater, 2010) 
which recognises its responsibility to foster a best practice approach to the use of 
its products.

There is also now a growing expectation in Australia (and elsewhere) that there should 
be a consistent approach to applying models used to support water management 
decisions across the nation, with the aims (amongst others) of:

• Improving modelling practice;

• Removing inconsistencies between model applications, including in adjoining 
catchments where the same model code is used in both, and in situations such as 
managed river systems that interact with one another;

• Providing quality assurance, including evaluation of uncertainty;

• Improving decision making, including improving the use of science to improve the 
quality and robustness of decisions made and outcomes; 

• Improving communication with end-users of model results: water managers, 
decision makers and the wider community; and

• Providing a process that is transparent, robust and repeatable.

A common thread through other water-related modelling guidelines (discussed 
further in Chapter 4 (page 57)) is an emphasis on Quality Assurance as a 
way to achieving Best Practice Modelling. Considering this point, the user needs 
outlined above and the potentially wide range of modelling domains relevant to water 
management for which guidelines could be developed, an appropriate approach is 
to develop a hierarchy, or family, of guidelines. At the highest level are overarching 
guidelines that provide a generic procedure to underpin delivery of quality assured, 
best modelling practice outcomes. This procedure would provide a framework for 
a consistent set of supporting domain-specific guidelines which, in turn, would be 
supported by a set of model specific guidelines. The level of detail increases from the 
highest level to the lowest. The guidelines in this document represent the highest level 
in that architecture.

This document is not meant to be prescriptive, nor to re-invent material and 
concepts that are better explained or already available elsewhere. Hence, these high 
level guidelines draw as appropriate on other material already available from the 
international literature (eg Bay-Delta Modeling Forum (2000), CREM (2008), Jakeman 
et al, (2006), Middlemis et al, (2000), Packman and Old (2005), Scholten et al (2007), 
USEPA (2002), Van Waveren, et al (2000), Water New Zealand (2009)) and on 
the Internet. 

Best Practice Modelling can be defined as a series of quality assurance principles and 
actions to ensure that model development, implementation and application are the best 
achievable, commensurate with the intended purpose (eWater, 2010). 

Background
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What is in practice “best achievable, commensurate with the intended purpose” may 
be subject to data availability, time, budget and other resourcing constraints. Hence, 
what is meant by the term “Best Practice Modelling” can vary. Not only does it depend 
on the circumstances of the project, particularly fitness for purpose, but it also depends 
to a great degree on interpretation in peer review. This, in turn, will be influenced 
by the general state of knowledge and technology in the modelling field, which can 
be expected to progressively develop over time (such as new remote sensing data 
sources coming on line, and new computing hardware), as well as data, time, budget 
and resourcing constraints. Best Practice Modelling provides for a strategic approach 
to modelling which enables the trade-offs that may be imposed by these constraints 
to be better managed, and assists in identifying priorities for addressing model and 
data limitations. 

This document – hereafter referred to as “this guidance” – has been prepared by 
eWater to provide guidance on the application of modelling tools (software or other) 
to solve problems and on providing decision support to end-users of model results. It 
proposes a high level generic procedure that is intended to result in quality assured 
model applications. The overall decision framework is illustrated in Figure 1.

This guidance is intended to provide a framework and common structure for consistent 
sets of guidelines for various modelling domains and eWater products relevant to 
water management (in the broadest sense of the term), although in principle it could 
be relevant to other modelling domains and other modelling products. It covers risk 
assessment, decision support, and communication and interaction between modellers 
and end-users of model results as well as technical aspects of modelling. However, this 
guidance does not address quality-assured development of modelling software as other 
eWater procedures cover this aspect. 

The target audience for this guidance is chiefly practising modellers with appropriate 
background; ie it is not a textbook. It is also intended for managers, reviewers and 
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8 Introduction

decision makers, and stakeholders more generally, to indicate how model application 
should be approached, to assist in managing expectations of what quantity and quality 
of information is achievable and meaningful for a given modelling project, and to assist 
in assessing whether the modelling is fit for purpose.

Consistent with eWater’s identified responsibilities to its partners, and the 
expectations of water managers in Australia and elsewhere, the aim is to support a 
best practice approach to modelling and achieving consistent practice, especially 
when implementing a suite of models (such as in the context of the Murray-Darling 
Basin). Based on Refsgaard et al (2005a), this guidance may be classified as public 
interaction guidelines.

This guidance provides for an integrated approach that enables interactions and 
feedbacks between all domains relevant to water management (eg hydrological, 
ecological, engineering, social, economic and environmental) to be considered. It 
provides for outputs of analyses in these domains to feed into multi-objective decision 
analysis, which links outputs with views and preferences of multiple stakeholders 
and enables decisions to be made with the aim of satisfying the objectives of all 
sectors. In addition, the procedure in this guidance is intended to be flexible enough 
to accommodate variations in the meaning of the term “Best Practice Modelling” and 
also allow for continuous improvement as the state of knowledge and technology in the 
modelling field develops and improves.

Note Stakeholders are individuals, organisations or groups with an interest 
in a project and its outcomes; these can include the organisation 
commissioning the project (the client), water managers, decision makers, 
community groups and individual members of the public.

The rest of this document is organised as follows: Chapter 2 (page 9) provides 
guidance on quality assured model application, and is the core of this document. 
Chapter 3 (page 49) provides supplementary material on model choice, 
Chapter 4 (page 57) provides information on further reading and a case study 
is described in Chapter 5 (page 61). A glossary of some key terms, which draws 
on a number of sources including the eWater Glossary on the Internet (www.ewater.
com.au/glossary/), is provided in Chapter 6 (page 73). Chapter 7 (page 81) 
contains a list of references.

http://www.ewater.com.au/glossary/
http://www.ewater.com.au/glossary/
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10 Procedure for Quality Assured Model Application

The generic procedure proposed for quality assured model application is adapted 
from Blackmore et al (2009) and is summarised in Figure 2. The project administration 
phase shown has requirements relevant to all steps in the other three phases. The 
figure shows feedback occurring between the phases and between steps within each 
phase but it has been simplified in that there will also be feedback between certain 
steps in different phases. 

While there is a logic to the sequencing of this procedure, circumstances may arise 
where the needs of a given project are best met by considering certain steps out of 
sequence and this guidance does not seek to constrain the flexibility to do this where 
it is needed. In particular it is quite likely that not all steps in the project administration 
phase will need to be considered until many of the steps in the problem definition 
phase, at least, have been considered. Likewise, feedbacks between every step 
within each phase will not always be needed, though it is likely that some review of the 
outcomes of each phase in terms of the other phases, will greatly enhance the benefits 
of this process.

It is also recognised that it will not be necessary or appropriate to go through all steps 
in the procedure in detail in every project; this may be particularly true when the work 
is part of an ongoing long term modelling program. However, every step should at 
least be thought about and conclusions documented. Indeed, this guidance advocates 
a “horses for courses” approach, in that the extent to which the proposed quality 
assurance procedure needs to be implemented will vary depending on the scope and 
intended purpose of the project, risks associated with project outcomes and, to some 
extent, on the magnitude of the project as well.

It is essential that some elements of this phase are undertaken at the very start of any 
project. Critical among these is the appointment of a project manager who is assigned 
responsibility for the delivery of the project. Decisions on budgets and timeframes are 
also likely to be made early in the life of the project, although if these can be deferred 
until later in the problem definition phase better outcomes may be able to be obtained 
from the project.

Governance arrangements that are appropriate will vary depending on the size and 
significance of the project. As a general rule, any project requires a project manager 
and a project director; for small projects, the project manager may also be the person 
who does the work. The project director has an overseeing and review function, and 
this will be particularly important in small projects where there may be no other formal 
review mechanism in place. 

For major projects, or projects that are important or potentially sensitive, a Steering 
Committee with stakeholder representation should be set up. The role of this 
committee is to provide overall direction and it should also help in gaining stakeholder 
acceptance of the project. The project director may delegate technical review of some 
or all elements of the project to a technical reference panel or its equivalent. It is the 
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responsibility of the project director and/or steering committee to appoint technical 
reviewers who have an appropriate level of technical expertise to review the work 
undertaken. Project directors should review technical work only in areas where they 
themselves have an adequate level of technical competence.

Project management can be described as a process based on use of management 
and project domain relevant skills and knowledge to organise, plan, control, monitor, 
evaluate and deliver a project to achieve the project objectives on time, on budget 
and to agreed quality and performance levels. Detailed requirements for project 
management are commonly contained in corporate project management procedures 
and these should be followed where available. Where these are not available there 
are numerous publications and other sources of information on project management 
procedures; prominent among these are the PRINCE2 methodology (Office of 
Government Commerce, 2009) and a Guide to the Project Management Body of 
Knowledge (Project Management Institute, 2008). Hence, discussion of project 
management in this guidance is confined to aspects particularly relevant to model 
application for water management projects. 

Elements of project management include developing a project control plan, achieving 
agreement on milestones, defining performance metrics and criteria and monitoring 
progress against all these. Two important aspects are to manage any changes in the 
scope of work as the project progresses, and to regularly update estimates of the cost 
of completion. Relevant stakeholders should be alerted to changes in the scope or 
costs, particularly increases, and their implications for the project budget, schedule 
and quality as early as possible. Allied to this is the need to manage stakeholder 
expectations to ensure they do not increase as the project progresses, and also 

Figure 2
Flow chart of 

procedure for quality 
assured model 

application (adapted 
from Blackmore 

et al, 2009)

Project 
Management



12 Procedure for Quality Assured Model Application

to identify and consult about any trade-offs in scope and methodology that may 
be appropriate.

Another need, which also relates to project governance, is to ensure that decisions 
relating to the project and its outcomes, and the reasoning underlying decisions, 
are well documented and made available to all participants. This ensures that all 
participants are working from the same understanding, and that someone coming along 
later can see what decisions were made, what was done to underpin the decisions 
and why. Sufficient detail should be provided to enable the project to be reproduced or 
extended by an independent project team.

Financial and physical resources can limit the options available to stakeholders which 
in turn can influence the problem space. Similarly, the timeframe may also bound 
the problems that can be addressed (ie “what can happen over this time?”) and also 
influence the solution space (ie “what can be done in a specified time?”). This is 
discussed further in Problem Statement (page 17).

Peer review is important for establishing the credibility, reliability and robustness of 
results and the methodology used to obtain the results. It is undertaken by people with 
specialist understanding in fields relevant to the project. It thus differs from stakeholder 
consultation, where people without specialist understanding will also be involved. The 
following levels of peer review can be considered:

• Internal peer review, where the reviewers are from the organisation undertaking 
the project;

• External peer review where the reviewers are appointed by the organisation 
undertaking the project; and 

• External peer review where the reviewers are appointed by a third party, such as 
stakeholders or an external regulator.

Different levels of peer review may be appropriate at different stages of the project and 
for many projects the third level listed above will not be needed at all. However, peer 
review at key points in the project will help ensure it is on track, and remains that way, 
and will minimise if not eliminate the need to repeat work. Evidence of peer review of 
deliverables from the project should always be documented.

Internal peer review should be undertaken by a suitably qualified individual or group 
in the organisation for each step or deliverable. For important steps, such as model 
calibration and scenario analyses, review should be undertaken at intermediate stages 
to ensure results make sense and that any unexpected or counter intuitive results can 
be explained, even if only via informal discussions.

Resourcing, 
Timeframe and 

Budget

Peer Review
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The need for external peer review will depend on a number of factors, which may not 
have any relationship to project size (however measured), such as:

• The confidence or trust that stakeholders or the client have in the internal peer 
review processes;

• Whether there is a regulatory requirement for peer review;

• Whether decisions made based on project outcomes are likely to be legally 
challenged by stakeholders or other parties;

• Whether decisions made based on project outcomes are likely to become part of a 
political agenda, or could be otherwise sensitive; and

• How concerned stakeholders or the client are with the scientific robustness and 
credibility of outcomes versus a more pragmatic attitude to “just get things done”.

Where external peer review is required it should be undertaken at completion of key 
steps and at other appropriate times. If a project is likely to be highly contentious or 
sensitive then it is often prudent for the external peer reviewer to be actively engaged 
early in the process to avoid a situation where peer reviewers need to be appointed 
later by a third party. 

However, there is a danger with external peer review, especially where the project 
involves multiple objectives and many different disciplines. In these cases the project 
management team will have developed a unique understanding of the issues involved 
through working together, which allows them to make judgements on appropriate 
analysis and methods. If external reviewers do not have this understanding, they may 
have difficulty in suggesting or advising on appropriate methods and levels of detail. 
This is particularly true if the reviewers come from specific disciplines. The ambit of the 
review should be defined to match the skills and knowledge of the reviewer.

Peer review is further discussed in relation to Project Governance (page 10), with 
reference to Model Acceptance/Accreditation (page 42), and at various other points 
in this guidance. More detailed guidance on external peer review is available from other 
sources such as CREM (2008, Box C1).

Stakeholder consultation is important for building acceptance of, and ownership in, the 
project. It should start early in the project, ideally at the problem definition stage, with 
further consultation occurring when the project methodology is being developed and 
then during the process of identifying and analysing solution options, and presenting 
results. Early involvement is likely to lead to better outcomes, and active participation 
by stakeholders will give greater benefits for ultimate acceptance than if stakeholders 
just take a passive role.

In addition to building acceptance and ownership, involving stakeholders in problem 
definition and in developing the project methodology will have the added benefit of 
enabling their background knowledge to be captured in the process (this includes 

Stakeholder 
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corporate knowledge and local experience). It should also ensure that the approach is 
relevant to the question being asked, assist in clarifying exactly what that question is, 
and ensure expectations match time frames and budgets.

Management of expectations will be needed throughout the project and ongoing 
consultation will facilitate this. Ongoing consultation will also help ensure that if 
changes in methodology or scope are needed, with or without changes in budget and 
timelines, these needs are understood and accepted.

Clear communication is necessary at all levels and throughout the process. Amongst 
other things, it supports stakeholder consultation. The aim is to ensure that:

• The objectives of the project are agreed and understood by all stakeholders;

• All project participants have the same understanding of what they are doing, have 
the information they need to do their work and are using the same data etc;

• The decision makers have all the information they need in a form that is easy 
to ;understand;

• The project is well documented so that if questions arise later there is a clear 
record of the reasons for decisions;

• Everyone who is affected by or influences the outcome of the project understands 
what is going on and what they need to do to make it work.

To ensure adequate communication, a communication strategy should be developed 
early in the project in consultation with appropriate stakeholders. The communication 
strategy should be commensurate with the sensitivity and risks associated with the 
project and its outcomes. It should at least indicate how, when, where and to whom 
information about the project, particularly results, will be presented. There are a number 
of modes by which this can occur and, from the beginning, it is important to consider 
who will be affected by the decision making, potential audiences more widely, which 
stakeholders to involve in the process and how to best communicate to the range of 
different audiences. Where appropriate, communications specialists can advise on 
these aspects. If successful delivery of the project depends on stakeholder participation 
(such as the actions of individual farmers), then early involvement and transparency are 
likely to lead to better outcomes. 

It is also important to consider privacy and security issues. It may be inappropriate to 
report or otherwise communicate some information for these reasons.

Where presentation of project results is concerned, there are many options available. 
For example, presentation could be passive – such as a final report for decision makers 
to read – or it could be more interactive as in workshops and meetings. Input from 
stakeholders should be sought on how to communicate results during communication 
strategy development, as they will know how best for project outputs to be presented 
to them. 

Information 
Communication 
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Communication can be an iterative process, with an agreement to review the process 
at intervals. The important thing is to enable rigorous, transparent, and defensible 
decision making of the best quality given the tools and information available at the time. 
In addition, it is important to establish the scope and timing of the reporting task early in 
the project.

Documentation plays a number of important roles, which are:

• To keep a record of what was done so that it can be reviewed and reproduced;

• To provide source or background material for further work and research;

• To effectively communicate the results from models; and

• To effectively communicate the decision making process, including decisions 
made, and the reasoning underlying decisions.

Good documentation supports the exchange of information with stakeholders, thereby 
supporting transparency of process and contributing to gaining acceptance of project 
findings. It will also enable someone coming along later to see what decisions were 
made, what was done to underpin the decisions and why, particularly if aspects of the 
project need to be revisited.

Model input data, model results and the version of software (either the version number, 
if a software versioning and archiving system is maintained centrally, or otherwise 
the software itself) used to create the results for adopted scenarios and any other 
scenarios of potentially enduring interest should be archived in a scenario management 
system. All reports from the project, including documentation of decisions relating to 
the project and its outcomes, and the reasoning underlying decisions, also need to be 
archived. Archiving of model output data, the software and input data used to create it, 
and documentation on decisions made is essential for making information from models 
available to stakeholders and also for ensuring repeatability if model runs need to be 
redone or updated.

As an example, the high level architecture of the main components of a system 
implemented in 2010 and the interactions between them are shown in Figure 3. This 
system links models, in this case denoted an Integrated River System Modelling 
Framework (IRSMF), with systems to save model scenarios and results to databases 
that can subsequently be interrogated by reporting tools to produce reports (Podger 
et al, 2010a).

The following conventions apply in Figure 3 (Podger et al, 2010a):

• rounded rectangles are computer applications/programs;

• ovals are information stores (eg files on disk, a Subversion repository, or 
a database);

Documentation

Archiving
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• solid lines depict the flow of information – direction shows where the data 
originates and its destination;

• dashed lines show data retrieval – the Reporting Tools obtain data from the 
Summary DB and the Model Run Results;

• dotted lines show data linkages, an association from one dataset to another (eg 
the information contained in the summary database is linked to the provenance 
details describing the IRSMF configuration used to produce it);

• reports are Excel spreadsheets, combining the “standard reports” predominantly 
used by modellers and the “reporting spreadsheets” typically used by the policy 
planners and the reporting group the system was developed for.

This phase involves defining the purpose and scope of the work, setting performance 
criteria and gaining early stakeholder buy-in and support. It is needed whether the work 
is a new project or an extension or update of previous work. It is also likely that many 
of the steps will be part of an iterative process that could go across the other two main 
phases in this procedure.

Often the project objectives, scope, timeframe and budget are defined up front, via 
project Terms of Reference (or Project Brief). Material in this section and in Project 
Administration (page 10) is relevant to determining the Terms of Reference in the 
first place, but Terms of Reference are rarely sufficiently detailed to allow a project 
to be implemented without further consideration and definition. Consultants typically 
use their Proposal (Bid) for undertaking the project to assist this and many projects 
include an inception phase as well to confirm and further clarify the objectives, scope 
and methodology (and sometimes timeframe and budget as well). The material in this 
section is also relevant to preparation of project proposals and the inception phase of 
projects, as are the parts of the material in Option Modelling (page 24) and Identify 

Figure 3
Overview of 
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example archiving 
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Podger et al, 2010a)
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Preferred Option (page 43) relating to methodology and the material in Project 
Administration (page 10).

The problem to be addressed needs to be clearly articulated. This should involve 
consultation between water managers/policy officers and modellers, at a minimum, 
and, where appropriate, the wider community, especially as in some cases the problem 
will be defined differently by different stakeholders. Getting this step right will minimise 
the risk that the wrong tool will be used for the job.

Note Defining the problem is the most important step in any solution 
finding strategy. 

The problem and possible solutions should be initially considered free of time, resource 
and budget constraints, so that the true nature of the problem and wide-reaching or 
imaginative solutions are not overlooked; then the effect of these constraints on project 
scope and methodology should be clearly explained. This also provides an opportunity 
to demonstrate that more detailed approaches to solving the problem have been 
considered and explain why they were rejected based on scientific, technological, time, 
resource or budget constraints. Where multiple options are available for constraining 
the scope, it is also good practice to explain how priorities were assigned to addressing 
particular issues in the modelling process. Amongst other things, this will enable cost/
expediency issues to be better managed. From these considerations a preliminary 
understanding of solution options and scenarios to be analysed should be obtained.

An extremely valuable question at this early stage is “Is there a role for modelling in the 
project and what is this role?”  Firstly, it should not be assumed that there is inevitably 
a role for modelling. Secondly, the answer to this question provides part of the context 
for many subsidiary questions relating to model choice and implementation. It is 
very important not to approach this question with the view that a particular model or 
modelling tool is the end point.

The objectives of the current project and the goals should be identified in a consultative 
process involving water managers/policy officers and modellers, and also the wider 
community where appropriate. As many water management decisions will often have 
more than one goal it will be important to ensure these are all identified. 

Sometimes it can be useful to express objectives in a hierarchy that shows primary 
objectives, secondary objectives and so on. In this regard, consideration should also be 
given to possible additional future objectives and goals that could be met based on this 
project or on future projects that build upon the model established in this project. The 
decision on which option offers the best solution will be based upon whether, or how 
well, each option meets the agreed objectives.

Problem 
Statement

Objectives



18 Procedure for Quality Assured Model Application

The range of disciplines that needs to be brought to bear to address the problem at 
hand should be identified and agreed between water managers/policy officers and 
modellers and, where appropriate, with the wider community. Social acceptance, 
adaptation, environmental, and economic considerations are also part of the problem 
domain, in addition to issues of water management per se, that impact on the 
effectiveness of solutions. An example of the importance of the way that social and 
economic considerations interact with water system performance modelling would be in 
the consideration of the effectiveness of implementing a rebate scheme for householder 
installation of rain water tanks to reduce potable water consumption: simply providing 
tanks at subsidised cost may not mean that all of those tanks are used effectively by 
all of the householders that receive them to provide the optimum reduction in potable 
water usage that might otherwise be projected by a purely “physical” model of the water 
supply system.

System definition requires identification of: system components, their behaviour and 
appropriate levels of abstraction; the interactions between components, including any 
feedbacks; and system boundaries, forcings, states and outputs. System definition is 
critical to model applicability and should be done in consultation with stakeholders. 
Explicit decisions about what is inside and what is outside the system boundaries is 
critical for all components of the system, including economic and social components 
as well as institutional arrangements and biophysical aspects, and should be guided 
by the problem at hand, state of knowledge and available information and resources. 
System definition also includes consideration of temporal and spatial scales. 

The system definition would usually be documented in the form of a conceptual model 
of the system (see Conceptual Models (page 19)). 

Selection of the appropriate temporal and spatial scales will very often be informed (if 
not determined) by the scale and extents in time and space of available input data. It is 
therefore common at the system definition stage to explore and then list the data that is 
or might be available for the project to aid in defining the spatial and temporal extent of 
the analysis.

Analysis of available data for the purposes of problem definition could be undertaken 
to varying levels of rigour, from a cursory statement of the likely available data based 
upon the experience of the modelling team and stakeholders to a detailed investigation 
of data, literature review into additional data sources and analysis of the gaps and 
quality of available data. It is particularly important that this activity should bring prior 
knowledge (such as corporate knowledge and knowledge from sources such as former 
staff of an organisation who have retired, and long term residents of the project area, 
as necessary) to bear at this point as doing this has the potential to avoid repeating 
previous work (including past mistakes) thereby saving time and effort, and ultimately 
lead to a better solution. There will also be intangible benefits in that making use of 
prior knowledge, particularly local knowledge, will enhance the credibility of the work 

Understanding 
the Problem 
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and make gaining stakeholder acceptance easier. The information could be either 
quantitative or qualitative. However, care needs to be exercised when using it as its 
reliability may be hard to assess. Agreement should be reached with stakeholders 
on how this information should be used; the process could be supported by formal 
protocols where appropriate. Use of prior knowledge should also flow through to 
methodology development, discussed in Methodology Development (page 25). 
Workshops, meetings and background research are among the possible mechanisms 
for accessing this knowledge. A site inspection should also be done at this stage unless 
there are good grounds for not doing so.

Understanding of how the system to be analysed works, the relative importance of 
various components of the system and the functional relationships between these 
components, should be developed into a conceptual model. Assumptions should be 
clearly stated, particularly any key simplifications, and any noteworthy exclusions 
should be identified. 

As different stakeholders may well have different perspectives on how the system 
works and which aspects are important, it is important that all stakeholders are 
consulted and agreement reached on the most appropriate conceptual model 
applicable to the project at hand. Modellers and stakeholders should also consider 
dealing with multiple, alternative conceptual models as this is in most cases the best 
way to address model structural uncertainty (Refsgaard et al., 2006). Developing and 
agreeing on conceptual models is a key aspect of problem definition, and may entail an 
iterative procedure involving at least the other steps in Problem Definition (page 16).

Clarifying the conceptual model, or alternative conceptual models, is important even 
where there is an existing computer based numerical model available. This may show 
up limitations in adopting the existing model and possibly indicate means of mitigating 
these (Jakeman et al, 2006). 

Representations of the conceptual model could include schematics, diagrams, maps, 
plans, drawings, flow charts, graphs, written and verbal descriptions, and equations. As 
stated by Jakeman et al (2006):

“Initially the conceptualisation may be rudimentary, with details postponed until 
the results of knowledge elicitation and data analysis can be exploited. A tentative 
initial conceptualisation and a visualisation such as a block diagram may be a 
great help in showing what else must be found out about the system.”

Relevant points for consideration in the process include the following (Packman and 
Old, 2005):

• Is the conceptual model (domains, boundary conditions, space/time scales, etc.) 
adequately defined, are all relevant processes/interdependencies addressed and 
assumptions clearly stated?

Conceptual 
Models
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• Has the need for alternative conceptual models been assessed?

• Has the soundness of the conceptual model been assessed and does it 
make sense?

• Has this or a similar conceptual model been successfully applied in 
previous studies?

• Is the conceptual model consistent with the project objectives and required 
model complexity?

The corollary to these points is that numerical models adopted need to be consistent 
with the conceptual model.

Performance criteria and indicators that demonstrate compliance with the agreed 
objectives should be identified and agreed between stakeholders and project officers 
(eg modellers). When setting system performance criteria, due consideration should 
be given to socio-political, economic and environmental aspects. Model performance 
criteria and metrics are also important; needs for these are discussed in Methodology 
Development (page 25).

In some cases, in addition to assessing the performance of the system in terms of the 
agreed metrics, certain levels of performance must be met. Some of these criteria are 
set by legislation (such as minimum acceptable water quality standards), others are set 
and agreed on by stakeholders. For example, an objective might be to reduce drinking 
water usage, where a target of a 20% reduction in mean annual per-capita drinking 
water usage by the year 2020 might be agreed by the stakeholders. In these cases, the 
baseline period for establishing the criteria also needs to be defined, for example the 
required reduction might be relative to the mean annual per-capita drinking water usage 
over the period from 2005 to 2009. This then becomes the criterion against which 
the success of different options in achieving the objective in question is assessed. 
Criteria might not be set for other metrics, and it might be sufficient to simply compare 
the performance of different options. For example, one option might be more socially 
acceptable than another, although no absolute level of social acceptance has been set.

Performance criteria and indicators are also needed from a project management 
perspective. These could take many forms and could be fairly broad, such as meeting 
delivery milestones, or could be very specific in terms of accuracy of modelling results.

As well as an interest in the ability of the system to deliver, stakeholders will also be 
concerned about the risk of the system failing to perform. Hence, it is advisable to 
include risks as metrics or criteria as well. Examples of these include urban water 
supply reliability criteria and environmental watering frequencies for wetlands. Other 
examples from environmental management (Maier et al, 2008) include likelihood of 
failure (the complement of reliability), vulnerability (degree of failure) and resilience 
(inverse of the expected duration of failure). Including risk based metrics or criteria will 
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enable an understanding of the risks and implications of failure to be taken into account 
in the option selection process. 

In general, performance criteria and indicators will embody the expectations of the 
stakeholders in terms of what information they will get from the project and the quality 
of this information, to at least some extent. It will be important, therefore, to ensure 
expectations are realistic. A common understanding of expectations of what information 
can be delivered by the project should be established during stakeholder consultation 
early in the project, preferably at the problem definition stage, and should be confirmed 
and agreed in writing. Ongoing communication and consultation with stakeholders will 
be needed, as discussed in Stakeholder Consultation (page 13), to reinforce this 
understanding and avoid the often encountered problem that stakeholder expectations 
tend to rise during the life of a project. 

Another issue to consider in selecting metrics is HOW they will be evaluated. If there 
are alternative metrics which could suit the purpose, the one with an evaluation method 
that is familiar to the project team - even data from previous evaluations – might 
be more expedient. While models should not dictate metrics, there needs to be a 
reasonable means of evaluation (and data available).

Decision variables include anything that the stakeholders can adjust to influence the 
performance of the system. For this reason it is important to identify and agree decision 
variables during stakeholder consultation early in the project, preferably at the problem 
definition stage and in conjunction with establishing stakeholder’s expectations and 
performance metrics and criteria. 

Decision variables might include social and economic instruments and incentives, 
as well as institutional arrangements and the biophysical components of the system. 
Different solutions are generated by considering different states of decision variables.

Note “The notion of uncertainty includes both subjective and objective aspects. 
Becoming confident or establishing lack of confidence is an act of 
subjective judgement about the validity of some information. However, 
the judgement might be supported and informed by the evaluation of 
‘objective’ facts and other forms of evidence.” (Refsgaard et al, 2005b.)  
As a general principle, transparency and good reporting are essential for 
satisfactory uncertainty assessment.

Uncertainty

Uncertainty needs to be considered in the context that the models are being applied 
to support a decision making process that involves selecting a “preferred” course of 
action by weighing performance against competing objectives (Blackmore et al, 2009). 
“While in some circumstances it might be sufficient to make decisions based on fixed 
(often mean) values, very different choices might be made if the extent of uncertainty 
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on inputs to the decision process and its impact on outcomes were better understood.” 
(Blackmore et al, 2009).  

There are many sources of uncertainty relevant to decision making processes. For 
models themselves, and application of models, relevant sources of uncertainty include: 

• the science underlying the model;

• model assumptions and simplifications of what the model is representing;

• model input data including parameters, constants and driving data sets;

• code uncertainty such as numerical approximations and undetected software bugs;

• stochastic uncertainty (this is addressed under “variability” below);

• variance in model ensemble results (where an ensemble is used) and multiple 
parameter realisations (where obtained); and

• other unknown sources. 

Additional study and collecting more information allows error that stems from the types 
of uncertainty other than stochastic uncertainty – these are referred to collectively as 
epistemic uncertainty - to be minimised/reduced (or eliminated). In contrast, stochastic 
uncertainty – more commonly referred to as variability (see glossary in Chapter 6 
(page 73)) - is a natural phenomenon and is irreducible but can be better 
characterised or represented with further study (CREM, 2008).

The existence of variability ensures the future cannot be predicted exactly. Predictions 
can be expressed in terms of probabilities of exceedance or non- exceedance of 
certain outcomes (events), such as floods, and can be expressed either quantitatively 
or qualitatively (eg see Refsgaard et al, 2005b, p18). 

With no epistemic uncertainty, the probability of a defined event (and the converse, 
which is the magnitude of an event of a defined probability) has a single value. The 
effect of epistemic uncertainty is that there will be a range of estimates of the probability 
of exceedance or non- exceedance of a given event, and the actual probability will 
lie within this range with some level of confidence (or that there will be a range of 
estimates of the magnitude of an event of a defined probability of exceedance or 
non- exceedance, and the actual magnitude will lie within this range with some level 
of confidence). This is analogous to the classic flood frequency analysis problem 
in hydrology where the expected magnitude of a flood of a given probability of 
exceedance is calculated, such as the 100-year flood, and confidence limits describing 
the possible range of magnitudes are also calculated.

Expressing and quantifying uncertainty arising from application of models has a number 
of benefits, including that this:

• Provides input to socio-economic evaluations
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• Supports prioritising data collection

• Enables articulation of limitations of modelling

Uncertainty needs to be considered at a number of places in the modelling process. 
Sources of uncertainty should be identified and assessed during the problem definition 
phase, and more detailed consideration and analysis of uncertainty should be 
undertaken during the option modelling phase. In the comparison of options phase (see 
Identify Preferred Option (page 43)), where the aim is to identify the preferred option, 
uncertainty considerations should be factored into the risk assessment and other 
analyses undertaken.

In the problem definition phase, it is particularly important to take uncertainty into 
account when deciding metrics and performance criteria, although it may only be 
possible to provide a qualitative assessment at this stage. Uncertainty considerations 
are also relevant to identification of decision variables and to system definition, 
where uncertainty will have an effect on decisions about aspects such as spatial and 
temporal scales.

In the option modelling phase, uncertainty analyses should be undertaken as an 
adjunct to model calibration and validation. The calibration and validation performance 
measures are an important component of this, as are the results of any sensitivity 
analyses. Uncertainty is an important input to determining whether a model is fit for 
purpose and therefore to getting the model accepted by stakeholders; and to gaining 
accreditation where this is required. It is also an important consideration when exploring 
solution options, as uncertainties might alter choices; and always results should be 
reported to no more significant figures than can be justified given the uncertainties 
that apply. Uncertainty analysis in the modelling phase is discussed in Sensitivity/
Uncertainty Analysis (page 39).

A practical example of a comprehensive uncertainty analysis is available in a report 
by Van Dijk, et al (2008). The report describes the analysis of uncertainty in hydrologic 
river system models based on a multiple lines of evidence approach. It also describes 
the analysis of uncertainty in scenarios modelled, relative to the uncertainty in the 
models, and the amplification of change and uncertainty in the river systems modelled.

Risk

Good management decisions do not only focus on the way a system performs when all 
is going well. They also take into account the risk of the system failing, and its inherent 
resilience. Risk has two components, frequency (or likelihood) and consequence (or 
impact), which together inform our expectation of undesirable outcomes, and how 
to manage for these. Models are useful tools for supporting the evaluation of risk 
scenarios and testing the performance of risk management strategies (Blackmore, 
et al, 2009). 
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Risk can be defined as anything that may have a negative impact on the ability to 
achieve objectives. The process of Risk Assessment involves consideration of both 
likelihood and consequence, and is described in the Australian/ISO Standard for Risk 
Management, ISO31000:2009 (AS/NZS, 2009). Communication and consultation are 
critical to the success of the risk assessment process.

Understanding uncertainty is an essential part of risk assessment, as without 
uncertainty (including stochastic uncertainty) there is no risk (Blackmore, et al, 2009). 
Uncertainty can be expressed in terms of a probability distribution function provided 
sufficient information can be obtained from model results and other relevant sources to 
define the distribution. Otherwise likelihoods can be expressed qualitatively (eg high, 
medium and low) and are often derived from expert knowledge or risk workshops. 

A potential consequence of uncertainty is that control measures could be developed 
which are partially or completely ineffectual. For example, a conceptual model of 
salinity processes may have been developed that is partially or completely incorrect 
due to limitations of knowledge about the system being studied. This could lead to 
partially or completely incorrect estimates of likelihood and/or consequences, and 
hence risk, and in turn lead to identification of partially or completely ineffective 
control measures.

However, modelling uncertainty considerations and model results are only part of the 
risk assessment process, as relevant social, economic and environmental factors 
need to be taken into account as well. These add to the dimensionality of the risk 
assessment process, but they can be accommodated satisfactorily in risk matrices or 
risk curves. Information on these factors should be sought from all relevant sources, 
including the opinions of experts and other stakeholders, and published data and 
knowledge, in addition to results from models and any other analyses. Bringing in 
additional information can mitigate potentially misleading effects of uncertainty as well.

This step is a valuable preliminary to deciding on a project methodology; in some cases 
it might even lead to a review of the project objectives and metrics. It should consist of 
a simplified preliminary appraisal of the likely results from the planned modelling, with 
sufficient rigour that the preliminary results could be used as an independent check on 
the results from the modelling. Where the modelling results differ from the preliminary 
assessment then further investigation would be required to determine if the model was 
behaving correctly. If a project is an extension or update of previous work, or there is 
a precedent of similar work elsewhere and consistency is required, this step may not 
always be needed.

This phase is essentially about developing a modelling methodology, building and 
calibrating models then running scenarios covering solution options of interest. It also 
includes presenting results from the modelling.  

Preliminary 
Assessments

Option 
Modelling 
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In some situations there may be a package of actions that could be undertaken. These 
may be made up of a number of individual options and each potential combination 
of individual options would in itself be an option. In this situation, development of the 
required package from the more attractive of these options would occur in the next 
phase of the project. Hence, the role of this phase is to provide results for each option 
that can be used in evaluations in the next phase to find the “best” (optimum) individual 
option or package of actions.

Note “Decision making is a dynamic, anthropogenic process that is, at most, 
informed by scientific analysis. While simulation models can provide 
valuable assistance, the accuracy of their outputs and the way in which 
the outputs are presented and used can substantially alter the decision 
being made and the value of the outcome” (Blackmore et al, 2009).

General principles

Determination of project methodology needs to be based on consideration of the scope 
of the project as a whole, and its objectives and metrics. That is, the needs of the next 
phase, where the aim is to identify the preferred option, need to be considered as well 
as the needs for analysis in this phase (see Identify Preferred Option (page 43)). 
System Definition (page 18), the findings of the preliminary assessment (Preliminary 
Assessments (page 24)) and conclusions drawn at the problem definition stage 
(Problem Statement (page 17) will be relevant in this regard. The output from this 
step should at least be a methodology statement all stakeholders can see, if not a 
methodology report.

In this step it will be important to have resolved any differences of views on the 
conceptual model of the system that various project participants may have, otherwise 
gaining agreement on, and acceptance of, the methodology will be difficult. This may 
lead to changes in conceptualisations of the problem or how the system to be modelled 
works (either by modellers or by stakeholders), and it could lead to revision of the 
scope of work as well. Hence, one or more feedbacks to, or iterations with, steps in the 
Problem Definition phase (Problem Definition (page 16)) may be needed before the 
methodology can be finalised. The approach adopted will depend to some extent on 
whether the project is an extension of previous work or it is a new project but, in either 
case, stakeholder input and agreement, and peer review as discussed in Peer Review 
(page 12), should be obtained. 

The behaviour and performance of the system can be analysed in many different ways, 
ranging from complex, geographically explicit computer models, through simple lumped 
models to surveys, consultation and expert opinion. It is the appropriateness of the 
approach to provide a relevant level of understanding to address the original questions 
posed that matters, not necessarily its ability to mimic reality. It is easy to waste time 
and resources modelling to a higher resolution or level of accuracy than is necessary. 

Methodology 
Development
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For example, sometimes decision makers do not want a numerical result, they might 
just want qualitative information such as on a scale from low to high, in which case 
a computer-based model may not be needed (although, taking the term “model” in a 
broader sense, some other sort of model is likely to be needed in any case). 

Uncertainty in all its forms, methodology for investigating it (see Sensitivity/Uncertainty 
Analysis (page 39)), and the likely implications of uncertainty for interpreting 
analytical results, should also be considered during this step. Where it is apparent 
that uncertainty levels could be unacceptably high and suitable alternative models 
are available, particularly in the context of catchment rainfall-runoff modelling, use 
of a multiple model ensemble to explore uncertainty could be considered. While this 
approach can have benefits it also has costs in that it increases the workload as every 
model in the ensemble has to be calibrated, validated and applied to each scenario 
to be analysed. Current indications are that for catchment rainfall-runoff modelling, 
in Australia at least, ensemble modelling provides improvements that are useful in a 
small scale or research context but the benefits are not sufficient to warrant the extra 
effort involved for large scale applications (eg basin to national scales) due to capacity 
constraints, especially where the models must be run frequently (Vaze et al, 2011). 
Uncertainty is discussed further in Uncertainty and Risk (page 21). 

Where project participants have access to an existing model that is suitable for the 
problem at hand, or they are familiar with the use of a particular model, or models, 
for addressing similar problems, then it is generally advisable to use these, adapting 
the models and methodology as necessary. However, it needs to be ensured that this 
course of action is appropriate for the problem at hand, with support from stakeholder 
consultation and peer review.

The subject of model choice, with respect to numerical, computer-based models, is 
discussed in Chapter 3 (page 49). The critical point in this regard is that whatever 
the choice, there must be sufficient data available to support model calibration, 
validation and application to option modelling.

Assuming the adopted methodology entails use of one or more numerical, computer-
based models, there are other aspects that need to be considered. These are 
discussed below. 

Model calibration considerations

Model calibration measures and statistics should be decided at this stage and they 
should be relevant to project (and model) objectives. More than one measure/
statistic should be used and placing too much reliance on one should be avoided as 
this may distort or bias results. Measures and statistics should be chosen that best 
reflect the intended use of the model; this will be particularly important for defining 
the objective function if optimisation is to be used in calibration. For example, if it is 
a flood hydrograph model then high flows are the main interest; if it is a yield model, 
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flow patterns are the main interest, with more emphasis on low flows; in both cases the 
mass balance is a key consideration.

An acceptable level of calibration, expressed in terms of values of these adopted 
measures/statistics, should also be decided at this stage and this will guide the 
calibration process; this will also be guided by considerations of acceptable levels 
of modelling uncertainty (discussed further in Sensitivity/Uncertainty Analysis 
(page 39)). Leaving these decisions to the calibration step is too late as it will 
potentially lead to the calibration process dictating what the model can be used for, 
which could be inconsistent with the project objectives. If an acceptable calibration 
cannot be achieved then it may be that the chosen model is not useful, and it may be 
necessary to make another choice or make some other adjustment to the methodology.

An important, and difficult, question is how to translate soft objectives and stakeholder 
wishes (eg a desire for a “healthy river”) into model performance metrics and criteria. 
Workshops, meetings and other discussions may be needed to attempt to resolve 
this question. Even then it may not always be possible to achieve a resolution initially; 
subsequent Sensitivity/Uncertainty Analysis (page 39) and scenario analysis 
(Find and Test/Explore Options (page 40)) may assist in reaching a solution. The 
temptation to avoid considering this aspect and use generic criteria, say from literature, 
in a “one size fits all” approach should be avoided as far as possible. Apart from any 
other problems this may cause for gaining acceptability of model results, this would 
ignore the fact that all model applications are unique with respect to data availability, 
hydrological regime and modelling purpose and hence the criteria should vary from one 
application to another.

Equally importantly, the period of record of historical data to be used for model 
calibration should be chosen at this point. Ideally, the period of record chosen should be 
representative of the range of variability of input data that could occur; also, preferably, 
some of the data should be reserved for use in validation testing of the calibration. 
However, in reality there is not always enough data to match the ideal in which case 
compromise will be necessary, and care will need to be exercised in interpreting model 
results. There could be several reasons for this insufficiency, such as the total period of 
record being short and changes in physical or management characteristics being great 
enough to render early data inappropriate for use in model calibration. 

A related issue is that it is also important to ensure that data sets used for calibration 
and validation are consistent with data sets available for option modelling, especially 
when hindcasting, otherwise bias will be introduced into results. For example, in 
rainfall-runoff modelling there may be data from several rainfall stations with a good 
spread of elevations available for the calibration period, but data from only one station 
at low elevation available for long term hindcasting. In cases such as this only the 
data from the long term station should be used for calibration, although the long term 
data could be conditioned using the recent data to derive improved estimates of 
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representative catchment rainfall patterns over the long term (eg conditioning could 
involve adjusting the average of the long term data or some other regression based 
technique). The resultant calibrated parameter set should then be compatible with the 
data available for long term hindcasting. 

The key is to ensure that the calibration provides as sound a foundation for 
extrapolation, when modelling solution options, as possible. Otherwise the range of 
validity, where the model can be trusted, will be limited.

Option modelling considerations

Initial agreement on likely solution options and scenarios to be modelled should be 
obtained, firming up the preliminary understanding from the problem statement stage, 
recognising these may get changed later in the light of results obtained (discussed 
further in Find and Test/Explore Options (page 40)). This will minimise the chances 
of building models that cannot analyse the desired scenarios, or worse, having to force 
scenarios to fit the modelling tool. 

Where relevant, the baseline period for establishing performance criteria needs to 
be defined. For example, the requirement could be to achieve a 20% reduction in 
observed mean annual per capita drinking water usage for the period 2005-2009, 
by 2020.

Requirements such as this, and whether solution options are going to be analysed 
based on hindcasting or forecasting, will have a bearing on the modelling period 
adopted. For example, when hindcasting it may be necessary to use over 100 years of 
input data to provide a sufficiently representative sample of conditions that could occur 
and influence performance of solution options. When forecasting it may be sufficient 
to use shorter periods (as little as ten years may be enough for the above example 
performance criterion) and also use multiple replicates to obtain multiple realisations of 
the forecast outcome from which statistics such as exceedance probabilities of levels of 
performance can be derived for input into risk analyses; alternatively a long single data 
sequence (say, 1,000 years or more) could be used depending on requirements. When 
using a long single sequence like this, it needs to be kept in mind that making the data 
set longer may not necessarily provide much, or any, additional information from the 
point of view of evaluation of options against performance criteria and statistics (eg 
estimates of the mean, standard deviation, exceedance probabilities of events, and 
reliabilities of supply).

Note The main point is that models are being used to examine alternatives or 
options so that a problem can be understood and solved which therefore 
requires a clear specification of the problem and that the models used are 
fit for purpose.
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Overview

Data clean up can be by far the most time consuming step in a project. The importance 
of this step cannot be overemphasised. 

Data should be obtained from all relevant data bases and other sources, including 
prior knowledge (as discussed in System Definition (page 18)) and original records 
where necessary. Data needs to be critically reviewed, irrespective of its source, and 
suspect data items need to be adjusted or removed. Statistical tests are available 
to check for outliers and other idiosyncrasies such as non-stationarity (discussed 
further in Stationarity and change detection (page 30)), and these should be utilised 
where needed.

The overriding issue is that of data uncertainty, and all the following discussion in this 
section relates to it; data uncertainty is inextricably linked with data quality. It must 
be considered in any analysis of uncertainty or sensitivity analyses, as discussed in 
Sensitivity/Uncertainty Analysis (page 39), as it potentially has the largest impact on 
model results of all the sources of uncertainty.

Infilling data gaps and data generation

If there are data gaps, especially in time series data, then these should be filled using 
recognised techniques and expertise. Data from a variety of other sources could be 
used where appropriate, such as via Multiple Lines of Evidence, data assimilation and 
data fusion approaches. Other data sources include: regionalised data, which could be 
transposed from outside the project area or from another part of the project area using 
an appropriate technique; results from other models (eg infill or replace streamflow data 
with rainfall-runoff model results); remote sensing and other spatial data; published 
literature and local knowledge. They also include palæo-hydrological data which can be 
valuable for extending or generating time series data as it can provide insights into long 
term behavioural cycles and other characteristics that cannot be obtained from other 
sources, thereby providing a more representative data set and statistics than can be 
obtained from instrumental records alone.

When filling gaps in time series data, it should be ensured that the statistical 
characteristics of the data after infilling are not changed inappropriately. This includes 
statistics such as the mean, standard deviation and skewness, and also event 
frequencies and high and low spell lengths (eg wet and dry days); for some data 
types, such as streamflow, serial correlation should also be checked. A number of 
techniques are available to test for this. For example, starting with a complete data set, 
by arbitrarily removing progressively greater parts of it and recalculating statistics it is 
possible to test to see when the new statistics are significantly different from those for 
the complete data set. Regression analysis should be used to compare the data set 
to be filled with the source data set, or sets, for filling; if correlation is sufficiently poor 
then other sources of data for infilling should be sought or the mean of the data to be 
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filled should be used instead. If a data set under consideration to be filled has a high 
proportion missing, such that its statistics are not reliable, then it may be preferable to 
discard it and use another data set; an indication of what proportion is “high” can also 
be found from testing with a suitable complete data set and removing progressively 
greater parts of it.

Generating time series data based on the statistical and other behavioural 
characteristics of historical data is essential where modelling is to be applied in 
forecasting mode, and there are many techniques available for doing this. Techniques 
such as analysing the statistics of observed data and data inferred from other sources, 
such as palæo-hydrological data, for the same period can help show whether mixing 
data from various sources for the purpose of data generation is appropriate or not. In 
circumstances where it is desired to start a model run at a date in the past and then 
model through the present and into the future, it may be appropriate to add generated 
data onto the end of observed or otherwise inferred data to make mixed data sets 
for input to models. Otherwise combining generated and other time series data is 
not recommended.

Infilled, extended and transposed data needs to be re-reviewed to ensure it is 
reasonable, bearing in mind that there could be a trade-off between completeness of 
data set and data quality involved. Data that is inferred from other sources (eg remote 
sensing or other models) and observed data will usually be of different quality. Mixing 
data from different sources into one data set (eg mixed modelled and “observed” 
streamflow data) is not preferred if data being used in model calibration or validation, 
although there will sometimes be little choice but to use mixed data. However, mixed 
data sets may be suitable where they being used as input for analysing “historical” 
scenarios; perhaps with results based on observations weighted differently to results 
based on modelled data.

If key data is missing and no suitable substitute is available then it may be necessary 
to modify the project methodology. In particular, it may influence the model time step 
adopted or the length of the period of historical data that can be used as input to model 
runs for calibration, validation or hindcasting, or even the choice of model.

Stationarity and change detection

It also needs to be remembered that data sets may not be stationary for a variety of 
reasons, even where the location or area where data is collected does not change (eg 
changes in measurement techniques or instrumentation; land use and management 
- especially vegetation; stream channel geometry; long term trending in groundwater; 
long term climate variability and/or climate change). Non-stationarity may limit 
the length of the period of historical data that can be used as input to model runs, 
particularly for model calibration and validation where results may be sensitive to this. 
However, if the purpose of the modelling exercise is to model effects of changes such 
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as changes in vegetation or trends in groundwater levels then it is valuable to have 
access to data that is non-stationary due to it reflecting the changes of interest.

As is pointed out by WMO (2009; Chapter 6): “Detection of changes in long time series 
of hydrological data is an issue of considerable scientific and practical importance. It 
is fundamental for planning of future water resources and flood protection. If changes 
are occurring within hydrological systems, existing procedures for designing structures 
such as reservoirs, dams and dykes will have to be revised; otherwise systems will be 
over or under-designed and will either not serve their purpose adequately or will be 
more costly than necessary. … Change in time series can occur in numerous ways: 
gradually (a trend), abruptly (a step change) or in a more complex form.”  The case for 
taking non-stationarity into account in water management is also made by Milly et al 
(2008). Climatic drivers of non-stationarity and implications for the assessment of flood 
risk in Australia are discussed by Westra et al (2010); the discussion is highly relevant 
to water management as a whole.

A number of parametric and non-parametric statistical tests for change detection are 
available. General guidance on the methodology of change detection in time series of 
hydrological records is given in sources such as WMO (2009; Chapters 5 and 6) and 
Kundzewicz and Robson (2004). Yue and Pilon (2004) offer guidance on the selection 
of a test for non-normally distributed data by comparison of test power. Other facets 
of detectability of trends are dealt with by Radziejewski and Kundzewicz (2004), who 
examine how strong a change (gradual trend or abrupt jump) must be and how long it 
must persist in order to be detected by different tests.

This step entails defining the layout of the model for a given application in detail: its 
boundaries and its internal layout in a spatial sense (such as the layout of links and 
nodes for a link-node model; catchment boundaries and internal subdivision (if any) 
for a rainfall-runoff model), determination of parameter values that are fixed and 
initial estimates of parameter values for calibration. The layout developed should not 
only be suited to the intended purpose for the current project, including being able to 
accommodate scenarios planned to be run, but should also take into account possible 
future applications; this should minimise need to redo the work and more importantly, 
it will avoid issues of inconsistencies between results from different versions of the 
same model. For example, in setting up a model of a river system for modelling water 
quantities, it could be borne in mind that modelling of water quality may be needed 
in the future which may necessitate more detail and use of more rigorous modelling 
techniques and/or a shorter modelling time step than needed for modelling water 
quantity alone.

All relevant constraints that apply should also be taken into account (in part, this 
relates to the model parsimony issue discussed in Model Parsimony (page 50)). 
Data limitations are a common constraint but there are others, and some of these 
may have conflicting effects. For example, in some cases model detail may need to 

Setting up and 
Building a Model
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be greater than can be justified technically, such as in cases where there are socio-
political sensitivities or issues of model credibility with stakeholders that can only be 
resolved in this manner; however, even in cases such as this the additional detail must 
be supported by suitable data. For example, in river system modelling, where a system 
with existing water resource and irrigation developments are to be modelled, irrigation 
enterprises are usually grouped together for representation in the model. This is done 
for a variety of reasons, including model and data limitations, and privacy issues. 
However, on occasions, gaining stakeholder acceptance of the model and the results 
it produces may require representing each irrigation enterprise individually. In this 
situation the onus may be on the stakeholders to provide the data needed; obviously, it 
will also be important to ensure the modelling software has the necessary functionality.

Overview

Model calibration entails adjusting model parameter values until satisfactory agreement 
is obtained between model results and observed data, as expressed in terms of the 
calibration measures and statistics chosen when developing the project methodology. 
Adjustments can be made manually, via an automated optimisation technique, or by a 
combination of these. 

Irrespective of the approach adopted, a more robust and reliable result will be obtained 
if the modeller has, or develops, a sound understanding (ie a good feel) for the model 
and the behavioural characteristics of the system being modelled. This includes 
thinking critically about all results obtained and reviewing these (especially where 
automated optimisation is used), checking that results are being obtained for the right 
reasons, and ensuring parameter values are realistic. The modeller should have a 
rough idea of the expected results and from this should do order of magnitude checking 
and/or sanity checking of results – the preliminary assessment will assist with this. 

Sometimes the model may produce some results that appear to be counter-intuitive. It 
will be particularly important to check these results and understand the interactions that 
may have brought them about, and then determine whether the results are valid or not. 
At the very least it will be necessary to fully explain such results to stakeholders.

General issues

While the aim is obviously to produce a calibration that is sufficient for the purpose 
of the model, it is possible to over calibrate, and this should be avoided as it could 
severely impair the usefulness of the model for analysing solution options. In general, 
over-fitting is more likely to be an issue when there is limited calibration data available 
than when representative data sets are available (or when the model has more 
parameters requiring calibration – degrees of freedom – than the available data can 
support; this relates to the issue of model parsimony discussed in Model Parsimony 
(page 50)). Having a good feel for the model and the system being modelled, critical 

Calibrate Model
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review of results, and model validation testing are all useful for avoiding or overcoming 
this problem.

Where calibration data sets are used that are non-stationary, for whatever reason (see 
Gather and Clean–up Data (page 29)), care needs to be exercised in interpreting 
results. For example, there may be apparent trends in model performance (eg ability 
to reproduce low flows) that are an artefact of systematic changes in the data and it 
would be inappropriate to try and redress these. In this situation, greatest weight should 
be given to the most reliable data and to the data which represents system conditions 
most relevant to the needs of the project. On the other hand, some apparent trends 
in model performance may be due to artefacts of the model and its parameter values, 
such as drawing down a modelled storage during calibration runs (a situation that may 
not be valid or applicable when analysing solution options), which could distort the 
calibration statistics.

Modellers should also beware of the non-uniqueness (or “equifinality”) problem – see 
Model Parsimony (page 50) for more discussion on this topic. Usually there are more 
parameters (unknowns) than there are known data sets to calibrate to (in algebraic 
terms, there are usually fewer equations than there are unknowns), therefore more than 
one combination of parameter values is likely to give good results for the calibration 
measures and statistics. However, not all combinations will necessarily be realistic, or 
valid, and it is important to check on this, particularly to avoid “getting the right result 
for the wrong reason”: in which case any scenario information derived by the model is 
likely to be in error. The validation step will assist with this, but this does not negate the 
need for, or the importance of, critical review by the modeller. This is especially true 
when optimisation is used to assist with model calibration. 

As indicated in Methodology Development (page 25), calibration is more than 
just minimising a goodness-of-fit statistic and other metrics and checks should be 
used to ensure the model provides reliable results. An additional metric could be 
as simple as also minimising differences between observed and modelled mass 
balances. As discussed in relation to optimisation below, if there is additional data 
available to constrain the model then advantage should be taken of this as well. It 
might also influence the choice of model (see Chapter 3 (page 49)). Using this 
additional data could be expected to reduce problems of equifinality and lead to a more 
robust calibration.

Role of optimisation

There are varying views as to which stage of model calibration optimisation should be 
applied. These range from automatic calibration – letting the optimisation procedure do 
it all – through to optimise first and then manually fine tune, calibrate manually first and 
then use optimisation to fine tune, and not use optimisation at all. 
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The most important step in the use of optimisation is defining the objective function, 
and this is based on the calibration measures and statistics. Hence, deciding the 
calibration measures and statistics is particularly important when optimisation is 
being used. 

Of similar importance is defining the bounds of the allowable ranges of parameter 
values. Model responses are more sensitive to the values of some parameters than 
others and it is particularly important that the ranges of the more sensitive parameters 
are bounded realistically; for the others it may not matter very much. Here, there could 
be considerable benefits from the use of data assimilation and data fusion techniques. 
In catchment rainfall-runoff modelling, these have provided the ability to close the water 
balance at catchment scale by use of spatially integrated data sets. For example, the 
use of independent estimates of actual areal evapo-transpiration when calibrating 
one of these models provides the ability to constrain modelled processes by use of 
multiple objective functions; this has the benefit of assisting the identification of suitable 
parameter sets and reducing the influence of uncertainty in observed time series data 
(R. Nathan, pers. comm., 2010).

Automated optimisation can be a valuable tool for assisting and expediting model 
calibration but it should not be used blindly. It should be avoided unless the modeller 
has a very good feel for the model and the behavioural characteristics of the system 
being modelled; placing realistic bounds on parameter value ranges is essential if this 
approach is to be employed. Without a good feel for the model or the system being 
modelled, manual adjustment of parameter values towards achieving a calibration 
should be undertaken first. This is also true if the approach of optimising first and 
fine tuning manually is being considered; this approach is also not advisable unless 
the modeller has a very good feel for the model and the behavioural characteristics 
of the system being modelled, as the same problems of defining parameter value 
ranges apply.

The logistics of manual calibration versus optimisation may influence the choice 
of approach and these logistics will be affected by the number, sensitivity and 
interdependence of parameters. The end result may be multiple sets of parameter 
values, due to the “equifinality” problem discussed above.

Single and multi-stage approaches

For single disciplinary models, particularly where only one modelled variable is of 
interest (eg streamflow), then single stage calibration will be appropriate. Single stage 
calibration may also be appropriate in integrated modelling where more than one 
modelled variable is of interest; such as single stage calibration of an integrated surface 
and groundwater model for streamflow and groundwater level, by optimisation. A pre-
requisite for this is that the coupling between the domains must be fully integrated and 
not sequential. A challenge in this situation is how to weight the multiple performance 
criteria in the objective function used in optimisation.
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However, for integrated models such as river system models or where more than 
one modelled variable is of interest, and some variables are dependent on others (eg 
streamflow and salinity), a staged approach to calibration may be necessary which 
would be based on considerations of independence (eg calibration for streamflow 
would precede calibration for salinity). 

This may entail forcing some dependent variables, such as by reading them in rather 
than allowing them to be modelled, holding their value constant or ignoring them, while 
calibration is undertaken for other variables, or temporarily breaking the model into 
segments and calibrating the variable of interest for each segment separately. Once 
calibration for a given variable is completed then the model could be allowed to run 
with these while other variables are calibrated. Examples include calibrating the routing 
procedure separately for each reach of a multiple reach river model, and reading 
a sequence of historical water demands in as data while calibrating water supply 
storage behaviour. 

A potential danger with this approach is that errors will compound and parameter 
values obtained from calibrations undertaken in later stages in the process could be 
very distorted. This highlights the importance of critical review at every stage to ensure 
that results are being achieved for the right reasons and that parameter values make 
sense. If necessary, earlier stages in the calibration process may have to be revisited 
and some trade-offs in quality made in order to achieve a satisfactory outcome overall. 
This is another reason for avoiding over-calibration: a point which was discussed earlier 
(mentioned under “General issues” above).

Review

While the need for the modeller to critically review model results after every model run 
has already been discussed, more formal peer review should also be undertaken and it 
should be undertaken more often than just at the end of the model calibration process. 
Needs for peer review are discussed more fully in Peer Review (page 12).

Note The key is not only to “think before you compute” but also to think while 
you compute (… and think after you compute).

The term “validation”, as applied to models, typically means confirmation to some 
degree that the calibration of the model is acceptable for the intended purpose. 
Sometimes this is termed “verification” but this is erroneous and the term should never 
be used as it is not logically possible. Terms such as “model evaluation”, of which part 
is testing against data, expectations, etc, and “corroboration” may be better alternatives 
– what is being tested in this step is usefulness, not truth (A. Western pers. comm., 
2010; CREM, 2008, p41; Oreskes et al, 1994; Silberstein, 2006). Refsgaard and 
Henriksen (2004) define model validation as: “Substantiation that a model within its 

Validate Model
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domain of applicability possesses a satisfactory range of accuracy consistent with the 
intended application of the model”.

Refsgaard (2001) proposes four types of validation tests; these are proposed in the 
context of catchment rainfall-runoff modelling but in principle they are relevant to other 
hydrological modelling domains as well. The tests are relevant to different situations 
with data availability for model calibration and validation, and whether impacts of some 
changes in catchment conditions have to be modelled or not. Caveats about data 
stationarity and consistency, discussed in relation to model calibration (Calibrate Model 
(page 32)) also apply here. The four types of validation tests are:

• Split sample test: this is the most commonly used test and it is applicable where 
there is sufficient data for model calibration and validation, and where catchment 
conditions to be modelled are unchanging. The available record is split into two 
parts; the model is calibrated using one part and validated using the other, and 
both calibration and validation should give acceptable results.

• Proxy basin test: this test is applicable when there is insufficient data for calibration 
and validation on the catchment of interest. If, for example, streamflow has to be 
predicted for an ungauged catchment and there are gauged catchments within 
the region then two gauged catchments should be selected. The model should 
be calibrated on one catchment and validated on the other, and vice versa. Only 
if the two validation results are acceptable and similar can even a basic level of 
credibility be attached to the ability of the model to simulate streamflow from the 
ungauged catchment adequately. This test should be supported by other checks 
(some of which are mentioned at the end of this list) which should help improve 
credibility, including ensuring that the transposition of parameter values does not 
occur outside the region of applicability (such as by checking the catchments are 
at least generally similar hydrologically and their rainfall regimes are comparable); 
if it is possible to derive an approximate estimate of average depth of runoff 
for the ungauged catchment based on data from surrounding catchments and 
downstream gauging stations, then this is also a useful check. Several approaches 
are available for choosing catchments for use in regionalisation of parameter 
values, of which the nearest neighbour technique is the most common; if 
necessary independent expert advice should be sought on the most appropriate.

• Differential split sample test: this test should be applied when a model is to be 
used to simulate streamflows or other variables (such as soil moisture patterns) 
in a given gauged catchment under conditions different to those corresponding 
to the available data. The testing is structured on the basis that the model should 
have a demonstrable ability to perform through the transition from current to 
proposed future conditions. The test may have several variants depending on 
the specific nature of the modelling study. If, for example, the requirement is to 
model the effects of a change in climate regime, two periods with different values 
of the climate variables of interest should be identified in the historical record, 
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such as one with a high average rainfall and another with a low average rainfall. If 
the requirement is to model streamflow in a wet climate scenario then the model 
should be calibrated on a dry period and validated on a wet period (If in this case 
the ability to model the transition is not needed then the model could be calibrated 
and validated on wet periods). Other test variants can be defined for the prediction 
of changes in land use, effects of groundwater abstractions and other such 
changes.

• Proxy basin differential split sample test: this is the most difficult test for a 
hydrological model as it is applied to cases where there is no data available for 
calibration and where the purpose is modelling effects of conditions that are 
subject to change. The test is a combination of the two previous tests.

Refsgaard (2001) also points out that if the accuracy of the model for the validation 
period is significantly worse than for the calibration period, this is an indication of 
over-fitting; there could be a problem with model structure causing the parameters to 
be specific to the conditions used for calibration (or it could be simply that parameter 
values are over calibrated). The ratio of accuracy during the calibration period to 
accuracy during the validation period is sometimes used as a measure of the degree 
of over-fitting (Refsgaard, 2001). Keeping the number of parameters as low as 
possible will help minimise the potential for problems such as this when calibrating and 
validating models.

For integrated water management models, the type of validation testing that will be 
appropriate is likely to vary from one component to another, depending on whether that 
component is modelling an aspect of the system which is subject to change or not, and 
availability of data for calibration. 

Irrespective of the validation tests used, other approaches such as uncertainty 
analysis, sensitivity testing (discussed in Sensitivity/Uncertainty Analysis (page 39)), 
checks based on independent data (such as checks on the average water balance 
based on remote sensing and other spatial data), cross-validation with other models 
and techniques such as “leave-one-out” calibration and validation using multiple 
gauged catchments should be applied as well. It may also be appropriate to seek 
understanding from domains beyond modelling to provide independent checks on 
model calibration, such as remote sensing or application of tracer methodologies. 

Irrespective of which approaches to model validation are adopted, peer review is an 
important part of the process, as discussed in Peer Review (page 12).

Part of best practice is to explain how and to what level of detail model evaluations 
that have been undertaken can be interpreted. This involves careful assessments 
of: the level of agreement between model and measurement to the degree possible; 
the level of uncertainty in the processed measurements (eg if comparing against 
water quality constituent loads there will be significant uncertainty in the observation); 
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and how comparable the model predictions and observations are; as well as 
acknowledgement that accurate aggregated performance does not guarantee accurate 
disaggregated performance. 

In other words, it should be possible to explain how data is informing the modelling 
and to be explicit about what particular model-data comparisons actually show. 
For example, the fact that a distributed, catchment rainfall-runoff and water quality 
constituent export model gets the catchment scale runoff about right does not mean 
the runoff from each land use is right and similarly for water quality constituent loads 
etc. Such an explanation would provide insight on the relationship between model and 
data to the stakeholders, and insight on what can and cannot be concluded on the 
basis of model-data comparison; it also forces the modeller to critically examine the 
relationships between the model and the data. This point should be initially considered 
when the project methodology is being developed, as indicated in Methodology 
Development (page 25), but explanations and conclusions will not be able to be 
finalised until this step and uncertainty or sensitivity analysis (discussed in Sensitivity/
Uncertainty Analysis (page 39)) are undertaken.

As above, the issue here is that the model predictions are correct for the right 
reasons, at the appropriate scale. This clearly matters where the decision making 
depends on those reasons being right. In the example above, catchment scale data 
is unlikely to provide useful information on land use change effects at a local scale 
given confounding influences of riparian, instream and other factors, although useful 
information may possibly be obtained for the catchment outlet. Such evaluations need 
to consider both hard and soft data sources.

A related issue is that of models being used beyond their originally intended purpose 
(field of competence, or domain of applicability) and this needs to be managed. This 
applies particularly to situations where an existing model is to be applied in a new 
project but it is also important when a new model is planned to be applied. For this 
reason, the possibility of the model being misused should be anticipated and uses for 
which the model is suited and those for which it is not suited should be clearly stated 
when reporting on model calibration and validation. The reporting could be based on 
a categorisation system, such as that used in the Danish guidelines (Refsgaard et al, 
2010) which includes three categories (Refsgaard, pers. comm., 2010): (a) fields of 
documented applicability; (b) fields of potential applicability; and (c) fields where model 
is not likely to be applicable; validation tests are a pre-requisite for establishing fields of 
documented applicability. In some cases the bounds of what a model can and cannot 
do may be dependent on the skills of the individual modeller, and this needs to be 
borne in mind when evaluating fields of applicability.

More detailed guidance on model validation is available from other sources; such as 
CREM (2008, Appendix C, where this is called “corroboration”).
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Uncertainty and sensitivity analysis are closely related; however, while uncertainty is 
parameter specific, sensitivity is algorithm-specific with respect to model “variables.”  
By investigating the “relative sensitivity” of model parameters, a user can become 
knowledgeable of the relative importance of various parameters in the model. By 
knowing the “uncertainty” associated with parameter values and the “sensitivity” of the 
model to specific parameters, a user will be more informed regarding the confidence 
that can be placed in model results. (CREM, 2008.)  Background information on 
uncertainty is available in Uncertainty and Risk (page 21).

Uncertainty analysis

There has been increasing acceptance of the need to include uncertainty analysis in 
hydrologic and hydraulic modelling applications, although the approach is not new 
(eg Stedinger and Taylor, 1982; Stedinger et al, 1985). Many methodologies and tools 
suitable for supporting uncertainty assessment have been developed and some useful 
reviews of these are available (eg Matott et al, 2009; Pappenberger and Beven, 2006; 
Refsgaard et al, 2005b; Refsgaard et al, 2006; and Refsgaard et al, 2007). These 
note that no single methodology is suitable for addressing all the different aspects of 
uncertainty assessment. A number of relevant methods are discussed in downloadable 
files available on the website of the Uncertainty Analysis in Environmental Modelling 
Workshop, 2004 (www.es.lancs.ac.uk/hfdg/uncertainty_workshop/uncert_methods.
htm), and by Matott et al (2009), Refsgaard et al (2005b, Chapter 4), and Refsgaard 
et al (2007). Core information from Matott et al (2009), with links to more information 
and a number of tools, is available at www.epa.gov/athens/research/modeling/
modelevaluation/index.html. Potentially relevant approaches include ensemble 
modelling (discussed further in Methodology Development (page 25)). Van Dijk 
et al (2008) present results of practical application of a number of uncertainty analysis 
techniques in the context of river system modelling.

The selection of an adequate methodology depends on (Refsgaard et al, 2005b): 

• Where in the modelling process the analysis is to be carried out. 

• The type, nature and source of uncertainty. 

• The priority that addressing each of the identified sources of uncertainty has, 
according to their importance for the decision-making process (“policy relevance”). 

• The available resources and level of ambition with respect to completeness of 
the analysis. 

Unfortunately, choice of methodology is not necessarily straightforward, guidance 
on selection of methods and applications is limited (Pappenberger and Beven, 
2006) and there is a “lack of a coherent terminology and a systematic approach …” 
Montanari (2007). However, some guidance regarding the selection of appropriate 
methodologies/tools for different purposes, as well as more detailed guidance 
on uncertainty analysis for model applications overall, is provided in Matott et al 
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(2009), Refsgaard et al (2005b) and in Refsgaard et al (2007). In addition, Brugnach 
et al (2008) provide guidance on strategies for addressing uncertainty when the 
model purpose is, respectively: exploratory analysis, communication and learning. 
Their discussion includes a number of examples from the broad environmental 
modelling domain.

It is also noteworthy that the USEPA (CREM, 2008) recommend sensitivity analysis as 
the principal evaluation tool for characterising the sources of uncertainty, ranging from 
the most important to the least important, in environmental models. Sensitivity analysis 
is discussed further below.

Sensitivity analysis

Sensitivity analysis is a popular technique for use in evaluating uncertainty in models. 
It is the study of how the response of a model is affected by changes in a model’s input 
data or parameter values. Sensitivity analysis will enable uncertainties in model output 
to be systematically apportioned to different sources of uncertainty in the model inputs 
(particularly parameter values), and modellers and stakeholders will gain insight into 
the relative importance of these in the model. It is usually undertaken as an adjunct to 
model calibration and validation.

Most commonly, sensitivity analysis entails varying the value of one or more model 
parameters in a systematic way and then reporting and evaluating the changes in 
key model outputs. However, it can also entail changing input data sets, such as 
making systematic adjustments to input rainfall data, and perhaps varying certain 
constants as well where these are not well defined. As an example, in catchment 
rainfall-runoff modelling it is not unusual for the greatest sensitivity to be shown to 
uncertainties in the input rainfall data, and for sensitivities to certain parameter values 
to be relatively less, although perhaps still significant as well. More detailed guidance 
on sensitivity analysis for model applications is available from other sources; such as 
CREM (2008,Appendix C).

Options, which could be a single action or a package of actions, for addressing the 
problem at issue need to be identified and agreed between stakeholders and project 
officers, and expressed in terms of scenarios to be modelled. This may entail one 
or more workshops involving all interested parties in an iterative process involving 
identifying new options or modifying options previously identified, analysis and 
reporting back on results. Several iterations may be necessary to ensure each option is 
thoroughly explored to the satisfaction of all stakeholders. In some cases a new option 
may be identified that requires a change in model set up, in which case it may be 
necessary to revisit the model calibration and validation steps as well.

Initial identification of the options likely to be of interest, and how they are to be 
analysed, should be undertaken at the problem definition stage (see Problem 
Statement (page 17)) with firming up occurring when the project methodology is 

Find and Test/
Explore Options
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being developed (Methodology Development (page 25)). By the time the model is 
calibrated and validated, and ready to analyse scenarios, it is necessary to be able to 
define scenarios in sufficient detail for them to be modelled.

Irrespective of whether modelling to predict scenario performance is based on 
hindcasting (using historical data) or forecasting (using generated or otherwise derived 
data representing the future), model results should only be interpreted in a statistical 
sense. In particular, when hindcasting, too much weight should not be placed on 
comparing modelled behaviour between scenarios or with observed data on given 
historical dates. On the other hand, close inspection and comparison of individual 
results between scenarios or with observed data is valuable for finding apparent 
anomalies and explaining or rectifying these. In general, more and better statistical 
information can be extracted from model results when forecasting is used than when 
hindcasting is used, particularly about extreme events, especially when a number of 
replicates of input data sets are used. The issue of hindcasting versus forecasting is 
further discussed in Factors Influencing Model Selection (page 53).

Great care is needed when interpreting results for scenarios when the period of 
record available for model calibration is not representative of the range of hydrological 
conditions that could occur (usually because the record is short). In this situation, 
scenario modelling is likely to involve taking the model outside the range of conditions 
for which it was calibrated. While undesirable, this is sometimes unavoidable but 
it needs to be remembered results may not always be reliable and uncertainty 
considerations will be paramount. This has been highlighted by the difficulties 
encountered in simulating the exceptionally low streamflows that occurred during the 
ten years of drought in south eastern Australia, ending in 2010, using models calibrated 
with data from periods which were not as dry. Similar difficulties arise when attempting 
to model flood conditions which are outside the range covered by the data.

If risk-based measures are being used in the decision process, then scenarios should 
include those needed for the risk assessment process, including extreme events. 
Where Monte Carlo or other methods are being used that involve sampling from a 
specified distribution, scenario selection may not be needed.

Results for each scenario should be reviewed by the modeller, if no-one else, to ensure 
they make sense. If results are counter-intuitive or have some unexpected features, 
but are found to be valid, these can often be the most informative and the reasons 
for these need to be explained; this requires that the modeller has a good feel for 
expected model responses and the characteristics of the system being modelled. If the 
conclusion is that such results are not valid then it may be necessary to revisit certain 
steps in the modelling procedure, potentially including the model set up, calibration and 
validation, but most likely the parameterisation for the relevant scenario. Where results 
for certain individual scenarios are seen to be critical to achieving a solution, formal 
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peer review may be needed, as discussed in Peer Review (page 12), to improve 
confidence in them by all interested parties.

Results of scenario analyses should be reported to stakeholders using approaches 
that facilitate their understanding and acceptance, as discussed in Information 
Communication (page 14). The reporting could provide some comments on the 
performance of each scenario, including some preliminary comparisons between 
scenarios, from a technical point of view but detailed comparisons should wait until the 
next phase of the project (Identify Preferred Option (page 43)). However, scenario 
analyses may involve some trial model runs by the modeller to adjust or fine tune a 
given scenario before a useful result is obtained and, if only for reasons of clarity, it may 
not be necessary or desirable to report the results of all the trial runs.

Suitable approaches for reporting results may include workshops and bringing in 
external expert opinion to facilitate performance assessment of options. Results may 
be further processed, as would be needed where the output from scenario analysis 
informs a risk assessment process. 

When presenting and communicating interim results it may be adequate to do this in 
an informal manner, such as via presentations, or in a form that facilitates the “next 
step”. For final results formal documentation should be prepared, commensurate with 
need and potential audiences. Care needs to be taken in reporting to ensure results are 
commensurate with the capabilities of the model. For example, when hindcasting using 
historical hydrological data as input, a model will produce results for given historical 
dates but model limitations may mean that reporting results in a statistical sense is all 
that is appropriate. In addition, care needs to be taken to avoid reporting results in a 
manner that inappropriately influences decision making or goes beyond the terms of 
reference (agreed scope) of the project.

The aim of model acceptance is to gain agreement that the model is fit for purpose. 
Model accreditation is seen as a regulatory issue, with its own process needs, and 
as the province of governmental agencies. The quality assurance procedure in this 
guidance should support the accreditation process but does not purport to be a model 
accreditation procedure in its own right.

The fitness for purpose of a model will often be subject to caveats due to constraints, 
such as limitations on data availability, which could in turn affect the accuracy of results. 
These caveats, and implications for reliability of results, should be clearly stated in all 
reporting (for a practical example, see Podger et al, 2010b).

Model acceptance entails peer review which could be external or “in-house”, or both, 
as discussed in Peer Review (page 12). Where stakeholder acceptance is being 
sought, it involves review by stakeholders as well. This latter could be achieved via 
the project governance process where a project steering committee with stakeholder 
representation has been set up. In the normal course of events, stakeholder review 
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would then consist of considering the findings of the peer review process including 
recommendations from the technical reference panel, where one exists. In some 
circumstances, stakeholders may prefer to have an independent peer review 
conducted, either by a panel of experts of their own choosing or by a panel agreed with 
the project principals.

In the event that acceptance is not achieved then, depending on the seriousness of 
deficiencies identified, it may be necessary to revisit the model calibration, model 
set up and the project methodology, and even go back and revisit the whole problem 
definition step.

Increasingly, water management models are being used in decision making contexts 
that involve selecting a “best” course of action (ie the preferred option) by weighing 
performance against competing objectives. Typically these include socio-political, 
economic and a variety of environmental considerations.

For the process of comparing options and selecting the preferred option to be robust 
and reliable, and to minimise the chances of making a poor selection, model results 
and other sources of knowledge need to be placed into a decision making context. 
The process should explicitly take into account the issue of uncertainty (eg Maier et al, 
2008; Myšiak et al, 2008). An example process is illustrated in Figure 4 (feedback loops 
are left out to avoid overly cluttering the figure). 

There are many techniques that can be used, either individually or in combination, to 
help select the best option. Optimisation and multiple criteria analysis (MCA) are two 
such techniques which are being used increasingly. Others include expert opinion, 
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uncertainty analysis and risk assessment. Optimisation and MCA are discussed further 
below while uncertainty and risk are discussed in Uncertainty and Risk (page 21).

Optimisation

Selecting the “best” option from a multitude of possible solutions, in the face of 
many possibly conflicting objectives, is a challenge faced by many water managers. 
For example, in the urban planning area the question might be asked “how many 
houses should be connected to a stormwater reuse system to give the most effective 
performance in terms of water supply reliability, energy consumption and capital 
cost?”, or, in river management, “how can we operate our dams so that the months per 
year over which water levels are less than 20% of total system storage, the months 
per year over which water restrictions apply, and the operating cost, are optimized?”  
Without guidance and a rigorous process in place, viable options can be overlooked 
and “guesses” can result in sub-optimal solutions. Computational approaches to 
optimisation can provide comprehensive consideration to the whole decision space 
(thus avoiding missed opportunities), rejecting solutions that are obviously less 
satisfactory than (ie inferior to) others and generating a Pareto front of optimal solutions 
that satisfy multiple objectives. Figure 5 shows an example of a Pareto front where the 
requirement is to minimise both costs and adverse environmental impacts. Solutions 
selected from the Pareto front can then be taken to the decision makers to consider for 
final selection (Blackmore et al, 2009). 

A variety of multi-objective optimisation techniques are available, such as genetic 
algorithms and simulated annealing. More information on these techniques and 
applications can be found in numerous sources including Collette and Siarry (2003), 
Loucks and Van Beek (2005), Simonovic (2009), Soncini-Sessa et al (2007) and 
Vàzquez and Rosato (2006). In some sources the discussion also includes some 
guidance on choice of method (eg Collette and Siarry, 2003). However, given the wide 
range of techniques available and the range of contexts where they could be applied, it 
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is recommended that expert advice should be sought as to the appropriate technique to 
use for a given application.

Multiple Criteria Assessment (MCA)

Multiple criteria analysis (MCA) is a well established methodology for ranking or scoring 
the overall performance of decision options against multiple objectives. The approach 
has widespread and growing application in the field of water management (Hajkowicz 
and Collins, 2007) and is potentially capable of improving the transparency, auditability 
and analytical rigour of water management decisions. The MCA framework ranks or 
scores the performance of alternative decision options against multiple criteria based 
on a set of performance measures, which are the raw scores for each decision option 
against each criterion. It can be represented by an evaluation matrix of the form shown 
in Figure 6.

A variety of MCA algorithms can be used to either rank or score the decision options. 
The application of a large number of techniques in 113 water related MCA studies for a 
variety of purposes in 34 countries is reviewed by Hajkowicz and Collins (2007). Fuzzy 
set analysis, paired comparison and outranking methods were found to be the most 
commonly applied techniques. However, it is clear that the choice of appropriate MCA 
technique to use is potentially very wide. Therefore, expert advice should be sought as 
to the appropriate technique to use for a given application.

More information on MCA techniques and applications can be found in numerous 
sources including Collette and Siarry (2003), Loucks and Van Beek (2005), Simonovic 
(2009), Soncini-Sessa et al (2007) and Vàzquez and Rosato (2006). In some sources 
the discussion also includes some guidance on choice of method (eg Collette and 
Siarry, 2003, and Soncini-Sessa et al, 2007).

Performance criteria for use in the context of a decision making process should be 
decided in consultation with stakeholders at the start of the project, and preferably 
during the problem definition phase of the project, as discussed in System Definition 

Figure 6
Evaluation matrix 

for multiple criteria 
analysis (after 

Hajkowicz, 2005)

Performance 
Criteria



46 Procedure for Quality Assured Model Application

(page 18). Where techniques such as optimisation and multiple criteria analysis 
(MCA) are used, setting performance criteria will include defining metrics such as 
objective functions for optimisation and weightings for factors included in MCA.

Where MCA is concerned, performance criteria should be chosen that are relevant to 
current needs. Hajkowicz and Collins (2007) list examples from water management 
related studies they reviewed. These include various combinations of: cost (including 
net present value); economic considerations (including employment, income, 
productivity); technical feasibility; biodiversity and wildlife protection; water quality 
enhancement; water supply reliability; fairness and equity; political and legal feasibility; 
energy supply; and human health. Hajkowicz and Collins (2007) also note that there 
are few methods to help with selection of performance criteria and decision options; 
this reinforces the guidance in Techniques for Selecting the “Best” Option (page 43) 
that expert advice should be sought when using MCA. However, irrespective of method 
adopted, stakeholder involvement should be obtained, such as via a workshop. 

For optimisation, criteria expressed in quantitative terms are needed. For example, 
some of the listed criteria including cost, some economic factors, water quality 
enhancements and reliability of water supply could be expressed in quantitative terms, 
where the concept of reliability of supply could be expanded to include considerations 
such as delivery of environmental flows.

A critical aspect of the iterative process that should be followed to identify the preferred 
option will be to review these criteria in the light of results from models and other lines 
of evidence, and amend them as necessary. Factors that should be considered when 
setting performance criteria are further discussed in System Definition (page 18).

The methods used to analyse system performance should be closely linked to the 
agreed performance measures. Often, available models and methods determine which 
measures are evaluated, but whatever methods are used, they should be only as 
complicated as necessary to answer the question in hand. 

Using a process such as the one illustrated in Figure 4, water-management 
stakeholders can identify and address problems by iterating around a cycle that defines 
objectives based on the initial problem statement and determines what metrics will be 
used to ascertain that the objective has been achieved within the context of a well-
defined system. Different proposed solutions are then evaluated in terms of the agreed 
metrics and criteria (with uncertainty explicitly taken into account) and the outcomes are 
compared to select the “best” solution (Blackmore et al, 2009).

At the core of the process illustrated in Figure 4 are simulation models. The models 
use input data sets (that include uncertainty) to predict system performance (P1 – Pn in 
Figure 4). With uncertainty protocols included in the models, multiple runs (for example, 
Monte Carlo simulation) can provide evaluation of the consequences and probabilities 
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of events. Model outputs can also be used to inform a wider risk assessment, including 
providing a better understanding of “worst case” scenarios, for example.

Different aspects of performance are then optimised, and a Pareto surface of optimal 
solutions is generated. From this, a shortlist of possible solutions is selected, any 
additional analysis is undertaken if required, and knowledge of how each option will 
perform is considered in the MCA process for the selection of a preferred option. If 
probability distribution functions (or any understanding of likelihood) are available 
for the model input data, risks associated with each of the shortlisted options can be 
calculated (R1 – Rn in Figure 4), and considered as performance measures in the 
MCA. Additional data and knowledge might be needed to assess all the risks that are of 
interest to the stakeholders, and stakeholders’ views and personal experience provide 
additional input to the multi-criteria assessment. An understanding of the quality of the 
evidence used to support each step of the process enhances the value of the decision 
support (Blackmore et al, 2009).

It should be noted that the level of rigour with which each element of the process 
shown in Figure 4 is applied, and therefore choice of approach to use, can vary with 
circumstances. Considerations such as cost-effectiveness of more rigorous analyses, 
and consequences if a less than optimal selection is made, are among relevant factors 
influencing choice of approaches.

In some cases it may be sufficient to work through the process “intuitively”/interactively 
such as in a workshop with stakeholders and relying only on expert opinion (eg 
via a Citizens Jury – Jefferson Center, 2004), but even in this situation a simple 
multiple criteria assessment, where weightings have been considered and agreed 
by stakeholders, will improve the quality of the final outcome. Formal mathematical 
techniques such as optimisation, uncertainty analysis and MCA will greatly improve 
outcomes, but should be carefully explained so that they do not alienate stakeholders, 
and might be inappropriate for evaluating sociological aspects. Whatever method is 
used, the important thing is to document outcomes and reasons for them.

Results of the comparison of options should be reported to, and discussed with, 
stakeholders using techniques that facilitates their understanding and acceptance (see 
Information Communication (page 14)). Information should be provided in a form 
that makes the task of integrating or combining it with additional information from other 
sources (ie additional to all the data used in this project and the project results) which 
may have a bearing on the final decision as to the preferred option to adopt.
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Models may be used to support activities in a number of contexts and the types of 
models and the requirements for model application may vary greatly. Generic guidance 
on model choice is provided in the first of two CRC for Catchment Hydrology reports 
on this subject (CRC for Catchment Hydrology, undated) and guidance relevant to two 
water quality modelling domains is provided in CRC for Catchment Hydrology (2005).

When selecting a model, the objectives of applying the model and all relevant 
constraints that apply should be taken into account. It is often difficult to identify 
and assess the relative advantages and disadvantages of models that are potential 
candidates for application for a given purpose. In addition, the decision to adopt 
a certain model for a given purpose may have wider implications; for example, 
adoption of a certain model for water resources planning and management may have 
implications for short and medium term hydrological forecast modelling, and also for 
future directions of research in modelling. 

Hence, it is likely that pragmatic choices will have to be made when choosing which 
model or models, and the appropriate level of model complexity, to adopt. As models 
gain complexity, or expand the processes represented, the demand for data to calibrate 
and validate them increases (Silberstein, 2006), and this data is often not available or 
inadequate. Hence, a balance has to be struck between model complexity, availability 
of data for model calibration and validation, and model predictive performance (CRC 
for Catchment Hydrology, undated). The conceptual relationship between these three 
factors is illustrated in Figure 7 (after Grayson and Blöschl, 2001), where the optimum 
combination lies along the “ridge” that runs upwards from about the intersection of 
the data availability and model complexity axes (highlighted by the dot on the red line 
running across the figure); this relates to the well known issue of model parsimony 
discussed below.

The issue of model parsimony, and the related problems of model equifinality (“non-
uniqueness” in groundwater modelling terminology; Grayson and Blöschl, 2001), 
parameter identifiability and scale, are extensively discussed in the international 
literature. These apply in principle to all modelling domains relevant to water 
management (eg Blöschl, 2006; Oreskes et al, 1994), including groundwater modelling 
as well as surface water modelling, notwithstanding that groundwater modelling 
presents some intrinsically different challenges to surface water modelling. In the field 
of surface water modelling, much of the discussion is with reference to catchment 
modelling (eg Beven, 1989; Beven, 1993; Beven, 1995; Croke and Jakeman, 2001; 
Grayson and Blöschl, 2001 (Section 3.3.5, Chapter 3); Hairsine and Sander, 2009; 
Jakeman et al, 2006; Kirchner, 2006; Perrin et al, 2001; Silberstein, 2006; Son and 
Sivapalan, 2007; Young et al, 2006). Review and practical guidance in the context of 
groundwater modelling is provided by Hill and Tiedeman (2007), for example.

Overview

Model 
Parsimony
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Unfortunately this principle is often overlooked. As stated by Jakeman et al (2006): 

“Model structures with too many parameters are still endemic. Models with 
too many degrees of freedom incur serious risks. Among them are: fitting to 
inconsistent or irrelevant “noise” components of records; severely diminished 
predictive power; ill defined, near-redundant parameter combinations; and 
obscuring of significant behaviour by the spurious variation allowed by too much 
freedom. Even so, model testing for redundancies and possible model reduction 
are seldom reported. Data paucity should limit the model complexity. For example, 
in modelling of flow and transport for prediction, spatial data on landscape 
attributes may be useful to structure and discretise a model in fine detail, but detail 
is unwarranted if the flux measurements available for model calibration cannot 
support it”.

(Noting that data for calibration could include other data such as storage, soil moisture, 
vegetation patterns and other data derived from fluxes, as well as fluxes). Figure 7 
illustrates the point, where the shaded area shows the zone where models are too 
complex and with insufficient data, such that an optimum set of parameter values 
cannot be defined with confidence (CRC for Catchment Hydrology, undated).

Uncertainty and the trade-off between uncertainty and model complexity is the nub 
of the issue. This is particularly true when the requirement is to minimise predictive 
uncertainty, for example, of a time series of streamflows, but may be less so when the 
requirement is to gain a qualitative understanding of an aspect of system behaviour. 
With reference to predictive uncertainty, Silberstein (2006) shows that the complexity of 
the model adopted should be just enough to minimise uncertainty, but any more or less 
complexity will increase uncertainty. Ultimately, with increasing complexity, a point will 
be reached where model complexity becomes so much greater than can be justified, 
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given the uncertainty constraints which apply, that calibration and interpretation of 
results of model application become intractable problems (ie due to the equifinality 
problem). Hence, often a simple model will be more appropriate than a complex model 
and the results from it, even if superficially less detailed, will be more meaningful. 

Conversely, there is a limit to model simplicity and this limit is reached when the model 
fails to adequately explain the observations (Perrin et al, 2001). If the model fails to 
explain observations this may be due to incorrect process specification, incomplete 
process specification (lack of feedbacks), or data limitations. The model should be 
just complex enough to capture important forcings and feedbacks that can dominate 
behaviour, but no more. The appropriate level of complexity in a given system varies 
depending on the modelling time step and this needs to be commensurate with the 
response characteristics of key factors of interest; eg if environmental flows are of 
interest and these are sensitive to daily flow patterns then modelling of these should be 
at a daily time step. A balance therefore needs to be struck between model identifiability 
and simplicity to avoid over-simplification, even though use of a simplified model may 
be attractive in order to minimise data requirements. This also highlights the importance 
of conceptual model development, discussed in Conceptual Models (page 19), for 
identifying the important feedbacks and controls so that (at least) the limitations of a 
modelling approach can be evaluated, or the need for greater investment in data or 
alternative model approaches can be considered. In cases where sufficient data is 
not available ,or feasible to collect, to avoid using an over-simplified model then the 
limitations of this need to be clearly communicated (L.E. Band, pers. comm., 2010).

In relation to catchment models, much of the discussion concerns “physically-based” 
models and distributed models. With reference to “physically-based” models, Beven 
(1989) argued:

“… that there are fundamental problems in the application of physically-based 
models for practical prediction in hydrology. These problems result from limitations 
of the model equations relative to a heterogeneous reality; the lack of a theory 
of subgrid scale integration; practical constraints on solution methodologies; and 
problems of dimensionality in parameter calibration.” 

Beven (1993) also stated: 

“Difficulties in defining truly mechanistic model structures and difficulties of model 
calibration and validation suggest that the application of distributed hydrological 
models is more an exercise in prophecy than prediction.”  

That is, problems arise when oversimplified process representations are used which 
fix important feedbacks as constant, calibrated parameters; examples include a lack 
of phenology, ignoring the role of stomatal controls and inadequate terrain resolution 
(L.E. Band, pers. comm., 2010). The lines of argument put forward by Beven (1989 and 
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1993) are supported by Grayson and Blöschl (2001), Hairsine and Sander (2009), and 
Kirchner (2006), amongst others.

In the context of groundwater modelling, Hill and Tiedeman (2007) discuss the trade-
off between model fit and prediction accuracy with respect to the number of model 
parameters requiring calibration and also show there is an optimum, in a similar 
fashion to Silberstein (2006). To assist with finding this optimum all model fit statistics 
proposed by Hill and Tiedeman (2007: Section 6.3.2) include a penalty as the number 
of parameters requiring calibration increases.

Siberstein (2006) also discusses the issue of using models as a substitute for data 
collection and argues:

“that improvement in the management of our environment and water resources 
will not come with improved models in the absence of improved data collection 
because we cannot manage what we do not measure.” 

Put another way: lack of data may justify using a simple model, but doing this does not 
make up for the lack of data.

WMO (2009) include the following factors and criteria as being relevant when selecting 
a model:

a) The general modelling objective; eg hydrological forecasting, assessing 
human influences on the natural hydrological regime or climate change impact 
assessment, or a combination of these.

b) The type of system to be modelled; eg small catchment, aquifer, river reach, 
reservoir or large river basin.

c) The hydrological element(s) to be modelled; eg floods, daily average 
discharges, monthly average discharges, groundwater levels, water quality, and 
emergent areas such as environmental watering and aquatic ecosystem health, 
amongst others.

d) The climatic and physiographic characteristics of the system to be modelled.

e) Data availability with regard to type, length and quality of data versus data 
requirements for model calibration and operation.

f) Model simplicity, as far as hydrological complexity and ease of application 
are concerned.

g) The possible need for transposing model parameter values from 
smaller catchments/hydrological units/systems to larger ones (or other 
ungauged ones).

h) The ability of the model to be updated conveniently on the basis of current 
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hydrometeorological conditions.

Based on these, the following factors are relevant:

• The level of modelling expertise available. If necessary, additional skills may have 
to be brought in (eg through hiring consultants with appropriate expertise).

• Uncertainty issues, discussed in Sensitivity/Uncertainty Analysis (page 39), 
the broad purpose of modelling (eg obtain quantitative predictive results with 
uncertainty minimised or provide qualitative understanding) and the balance that 
needs to be struck between model parsimony and adequately representing key 
responses, as discussed in Model Parsimony (page 50). 

• The time interval for which results are wanted (eg daily, monthly or seasonal), 
also discussed in Model Parsimony (page 50). A rule of thumb, which applies 
particularly to catchment rainfall-runoff modelling, is that to obtain reliable monthly 
time series results the modelling should be undertaken at a daily time step; for 
reliable daily time series results, modelling should be undertaken at a sub-daily 
time step (preferably no more than hourly) although it is recognised this is not 
often practicable. For reliable annual or seasonal time series results, modelling at 
a monthly time step may suffice. However, if only statistical results are required 
(eg flow duration curve and event frequencies) then modelling at the time step for 
which the results are required may be sufficient (eg modelling at a daily time step 
should be sufficient for obtaining daily statistics). 

• Whether the model is going to be used on its own, or if it is going to be used in 
conjunction with other models. For example, if one or more models need to be 
linked together to obtain the results required then there may be incompatibilities 
that will have to be reconciled. Even where two implementations of the same 
modelling tool are involved (for example, connecting a model of an upstream 
catchment to a model of a downstream catchment), the need to avoid or 
reconcile incompatibilities may become a constraint on project methodology. 
Where models for different domains are involved (such as for modelling surface 
water and groundwater), and the way they operate is fundamentally different, 
then some innovative approaches may have to be adopted to avoid problems 
of incompatibility. In some cases, such as with surface water and groundwater 
models, there is generally more flexibility in the ways surface water models can 
be applied and the solution may lie in adapting the project methodology to suit the 
more constrained groundwater model.

• Freedom of choice may be limited by a desire to minimise problems of different 
models for much the same purpose in the same project area, or to avoid problems 
of different models in adjoining project areas, particularly where the models may 
need to be linked in some way in the future or results compared in some way.

• Whether a deterministic or a stochastic modelling approach is required. While 
most model applications are deterministic, the use of an approach where model 
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inputs or parameter values, or both, are varied stochastically (ie involving use of 
random numbers) can sometimes be appropriate. An issue with using truly random 
numbers is that results are not repeatable which makes interpreting results and 
communications with stakeholders more difficult. To some extent these problems 
can be overcome by using pseudo-random numbers which will give a repeatable 
sequence if a fixed seed number is used. This partly negates the rationale for 
using a stochastic approach but the approach still enables provision to be made for 
modelling the components of system behaviour that cannot be explained via the 
deterministic approach.

• Whether simulation or optimisation, or a combination of both, is needed.

• Whether the model is to be used for hindcasting (see glossary, Chapter 6 
(page 73)) or forecasting (see glossary) when being applied in predictive mode; 
this is a decision that may be affected by other considerations such as whether a 
surface water model is to be linked to a groundwater model. Hindcasting involves 
the use of historical data as input (and must be used in model calibration and 
validation). When forecasting, the appropriate data source(s) will depend on 
whether the application is for short term, medium range or long range hydrological 
forecasting. Short term and medium range hydrological forecasting typically entail 
use of current, real time, data together with some predicted data such as a flood 
recession, while long range hydrological forecasting typically involves the use of 
stochastically generated input data based on a prescribed set of statistics or data 
synthesised from another model to represent possible future conditions. In water 
planning, the choice of hindcasting or long range hydrological forecasting has 
implications for modelling scenarios with trends or step changes in them, including 
scenarios considering trends in groundwater conditions, climate change, growth in 
urban water demands, land use/cover changes such as fires and forestry impacts, 
and new structural features coming on-line at various times. Modelling these is 
easier and more transparent when long range forecasting is used but interpreting 
and communicating results may be more difficult (use of long term forecasting may 
also overcome some of the compatibility issues discussed above). Irrespective 
of whether hindcasting or forecasting is used, model results should only be 
interpreted and reported in a statistical context.
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Guidelines for modelling have been developed by a number of organisations. To 
varying degrees, these cover technical issues of development, implementation and 
use of models (mainly domain specific), and also issues relating to interaction between 
modellers and end users of model information, where the content may be more 
general. However, all are basically quality assurance procedures.

Guidelines relevant to surface water modelling found include USEPA Guidelines 
(USEPA, 2002 and CREM, 2008), Californian Guidelines (Bay-Delta Modeling Forum, 
2000), Dutch guidelines (Van Waveren, et al, 2000) and European Union Guidelines 
(Scholten et al, 2007). The USEPA guidelines are completely generic, and are relevant 
to domains such as air quality and public health modelling as well as to water related 
domains. The CREM document does not describe a quality assurance process as such, 
but it complements the USEPA guidelines with information, scientific background and 
best practice guidance on model development, evaluation and application (Packman 
and Old, 2005). The Californian guidelines are water-specific, but are sufficiently 
generic to be relevant to just about any surface water or groundwater modelling 
domain. The Dutch guidelines are also generic but cover a number of specific 
modelling domains as well, although they do not address river system modelling for 
planning purposes. Their development involved all the main players in the Dutch 
water management field (Refsgaard and Henriksen, 2004). It is notable that all these 
guidelines are generally seen as promoting “good practice” rather than “best practice”. 

The European Union Guidelines were developed under the HarmoniQuA project 
and are based on input from pre-existing guidelines such as the Dutch Guidelines 
and MDBC Groundwater Flow Modelling Guideline (Middlemis et al, 2000), amongst 
others. The HarmoniQuA project has delivered a range of other products including a 
range of software to support users (see harmoniqua.wau.nl/public/Products/software.
htm), particularly MoST (Scholten et al, 2007). The guidelines are in the form of a 
Knowledge Base that can be downloaded as an integrated part of the MoST software 
or as a standalone text file (see harmoniqua.wau.nl/ and www.harmoni-ca.info/toolbox/
index.php). In common with the Dutch Guidelines, these guidelines are generic but 
have elements that are specific to a number of domains as well. The main elements 
of the guidelines are also described in a paper which discusses the possibilities for 
establishing a European quality assurance standard for modelling (Packman and 
Old, 2005).

Of the groundwater guidelines available, the most widely cited internationally is the 
MDBC Groundwater Flow Modelling Guideline (Middlemis et al, 2000). The drivers 
for these were a perception among end-users that model capabilities may have been 
over-sold, and that there is a lack of consistency in approaches, communication and 
understanding among and between modellers and water resources managers, often 
resulting in considerable uncertainty for decision making. 

http://harmoniqua.wau.nl/public/Products/software.htm)
http://harmoniqua.wau.nl/public/Products/software.htm)
http://harmoniqua.wau.nl/
http://www.harmoni-ca.info/toolbox/index.php
http://www.harmoni-ca.info/toolbox/index.php
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Other groundwater modelling guidelines available include those produced by Hill and 
Tiedeman (2007); these have developed from short courses conducted since 1991. In 
particular, guidance is provided on:

• Sensitivity analysis to evaluate the information content of data;

• Data assessment to identify (a) existing measurements that dominate model 
development and predictions and (b) potential measurements likely to improve the 
reliability of predictions;

• Calibration to develop models that are consistent with the data in an optimal 
manner; and

• Uncertainty evaluation to quantify and communicate errors in simulated results that 
are often used to make important societal decisions.

A good summary of the steps in the procedure advocated (Hill and Tiedeman, 2007: 
Table 10.1), a review of previous work, worked examples and exercises are provided 
as well.

Refsgaard et al (2005a) identify three types of quality assurance guidelines for 
modelling:

1. Internal technical guidelines – examples cited include user manuals for 
particular models;

2. Public technical guidelines – often containing the same substance as internal 
technical guidelines but they differ in the sense that they have been prepared 
through a consultative and consensus building process involving many persons 
and organisations;

3. Public interactive (sic) guidelines - established through a public consultative 
and consensus building process, like the public technical guidelines but 
differing in that they have an additional focus on regulating the interaction 
between the modeller and the water manager, who often have the roles of 
consultant and client, respectively.

Examples of public interactive guidelines cited in Refsgaard et al (2005a) include 
the MDBC Groundwater Flow Modelling Guideline (Middlemis et al, 2000), the Dutch 
guidelines (Van Waveren, et al, 2000) and the Californian Guidelines (Bay-Delta 
Modeling Forum, 2000). 

Other relevant documents available include:

• a HarmoniQuA project review of the state of the art in quality assurance in 
modelling related to river basin management (Refsgaard, 2002); 

• a position paper on steps needed for quality assurance in the development and 
evaluation of environmental models (Jakeman et al, 2006), and an evaluation 
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by Robson et al (2008) of the usefulness of these steps in the context of 
the development and application of process-based biogeochemical models 
of estuaries; 

• a book chapter on best practice modelling (Crout et al, 2008); 

• book chapters on environmental decision making (Maier et al, 2008; Soncini-Sessa 
et al, 2007) and policy implementation under uncertainty (Myšiak et al, 2008); 

• text books on modelling for water management (eg Loucks and Van Beek, 2005; 
Simonovic, 2009); and

• National Modelling Guidelines for Water Distribution Network Modelling from New 
Zealand (Water New Zealand, 2009). 

The focus of the position paper by Jakeman et al (2006) is mainly on catchment 
modelling although the ten steps only go as far as the model evaluation or testing 
phase. Robson et al (2008), in their evaluation of the ten steps, discuss the need to 
include consideration of fitness of the model for supporting the answering of questions 
posed in project requirements. The focus of the New Zealand guidelines (Water New 
Zealand, 2009) is on water distribution networks, but the principles articulated are 
relevant to river system modelling as well.

There is a fair degree of consistency between all the guidelines and the position 
paper of Jakeman et al (2006), in terms of the QA process they promote. However, it 
is notable that only the New Zealand and USEPA guidelines give much prominence 
to the need for data review and clean-up, and the effort that can be needed for this 
step is generally grossly underestimated where it is addressed at all. Apart from the 
New Zealand and the California guidelines, all the QA processes are based on the 
assumption of discrete modelling projects rather than ongoing modelling activities.
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This chapter was prepared by Dave Waters and Chris Carroll. It describes a case 
study applying the eWater Best Practice Modelling decision framework (Figure 1) to an 
on-going real-world modelling project in the Great Barrier Reef (GBR) in Queensland. 
The case study provides an example of best practice, given the understanding of the 
project requirements, and the time, science and methodology limitations which applied 
at the time the project was started. The project team acknowledge issues with the 
modelling have been identified as the project has been rolled out. In accordance with 
the best practice approach, it is intended to address these in the light of lessons from 
the first round of modelling and data improvements, through a process of continuing 
improvement in later rounds of modelling. 

The project itself is an important component of the Queensland Government’s Paddock 
to Reef Integrated Monitoring Modelling (Reef M&M) Program. This program has been 
established to measure and report on progress towards the targets set in the Reef Plan 
(Queensland Department of the Premier and Cabinet, 2009). It combines monitoring 
and modelling at paddock through to catchment and reef scales. The program area 
comprises six Natural Resource Management (NRM) regions (Figure 8). These 
regions include all 35 catchments that drain to the GBR lagoon. Summary statistics for 
these six regions are provided in Table 1 (page 66). More contextual information is 
provided in Problem Definition (page 65).

Figure 8
Location and 

extent of the six 
NRM regions 

(35 catchments) 
being modelled with 
Source Catchments
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The Queensland and Commonwealth government administer the Reef M&M Program 
through an Intergovernmental Organisational Committee (IOC), supported by a Reef 
IOC Monitoring & Evaluation sub-committee, and Reef Coordination Advisory Group 
(CAG), as shown in Figure 9. This Committee is chaired by the Reef Secretariat in 
the Queensland Department of the Premier and Cabinet and consists of state and 
commonwealth scientists, Great Barrier Reef Marine Parks, and Natural Resource 
Management Group representatives. An Independent Science Panel (ISP) provides 
scientific oversight of the overall M&M program. Delivery of the modelling project is 
monitored by the CAG, and the CAG must authorise any variations in this project.

Notes on Figure 9

1. The Reef Science Leader and the Policy M&E Coordinator are representatives 
on the Coordination and Advisory Group and the Program Advisory Group.

2. The Project Manager provides secretariat support to the Steering Committee 
and the Program Advisory Group.

3. Various stakeholders are engaged as appropriate by each level in the 
hierarchy.

Project 
Administration

Project 
Governance

Figure 9
Project Governance 

arrangements 
which include 
Government, 

Scientists and local 
stakeholders
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The Queensland Department of Environment and Natural Resource Management 
(DERM) are responsible for undertaking and delivering the catchment modelling. 
A Reef Science Team Leader and Catchment Modelling Leader provide the project 
management and report to the Reef CAG and the ISP.

Six catchment modellers have been allocated across the six Reef NRM regions (shown 
in Figure 8). Experienced modellers were appointed due to the complexity of the work 
and were appointed for three years as at early 2011. The timeframe for initial model 
development and reporting was extremely short and this has limited the extent to which 
new science could be incorporated during model development. Updated modelling is 
required every year for reporting on Reef Plan water quality targets.

There are three levels of peer review of the reef catchment modelling: internal (within 
the State Government), external (Industry and Research partners) and through the 
Independent Science Panel (ISP), with the ISP appointed through the IOC M&E 
sub-committee.

 A series of reef-wide regional workshops were conducted to develop the overall Reef 
M&M Program. More than 100 scientific and technical personnel from 18 organisations 
were involved in the program design. A Stakeholder reference group is also part of the 
overall reef governance arrangement, as shown in Figure 9. 

For the modelling project, each of the six catchment modellers was allocated a Reef 
NRM region to model, with four based in the actual region. The modellers have a role 
in consulting and communicating with the Natural Resource Management Group for 
the region and capturing local corporate and industry knowledge of regional land uses, 
hydrology and water quality. Outputs from the catchment modelling are reported in an 
Annual Reef Report Card and through technical reports and regional workshops.

For day-to-day model development and documentation of modelling methodology 
a centralised wiki has been established. The wiki was established for the modelling 
team and software developers to ensure a single point of truth for documentation 
and to provide an efficient mechanism for project staff to keep abreast of updates 
and  progress. 

Technical reports will be developed for each regional model which will include the 
detailed modelling methodology, assumptions and results. In addition, a summary 
report will be developed for the entire GBR. The aggregated model outputs from the 
technical reports will be included in the Annual Reef Report Card. 

For long-term documentation and archiving, a Spatial and Scientific Information 
Management for Reef (SSIMR) project has been established for all paddock and 
catchment modelling and monitoring data. This project was funded as the department 
saw the importance of ensuring all data and model runs were easily accessible into the 
future. All catchment modelling input point data and spatial layers, modelled outputs for 

Project 
Management

Resources, 
Timeframe, 

Budget

Peer Review

Stakeholder 
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Communication

Documentation 
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all scenario runs, assumptions and relevant versions of the software and associated 
documentation will be captured and archived through the SSIMR project. All associated 
data and model runs are available to reef collaborators online. 

 

Over the past 150 years the Great Barrier Reef (GBR) catchments have been 
extensively modified for agricultural production and urban settlement, leading to a 
decline in water quality entering the Great Barrier Reef lagoon. A scientific consensus 
statement concluded ‘water discharged from rivers to the GBR continues to be of 
poor water quality in many locations’; and ‘land derived contaminants, including 
suspended sediments, nutrients and pesticides, are present at concentrations to 
cause environmental harm’ (Brodie et al., 2008). In response to these water quality 
concerns the Reef Water Quality Protection Plan (the Reef Plan) was initiated in 2003 
and updated in 2009 through a joint Queensland and Australian government initiative 
(Queensland Department of the Premier and Cabinet, 2009). A clear set of water quality 
and management practice targets are outlined for catchments draining to the Great 
Barrier Reef, with the immediate goal to halt and reverse the decline in water quality 
entering the reef by 2013; and the long-term goal to ensure that by 2020 the quality of 
water entering the Reef from adjacent catchments has no detrimental impact on the 
health and resilience of the Reef.

Catchment modelling is being used to report catchment pollutant loads for each 
catchment draining to the Great Barrier Reef, for:

1. A baseline of 2008/2009 catchment land use and management conditions; and

2. Changes relative to the baseline for each subsequent year from 2010 to 2013 
post investment in improved management practices. 

The Reef M&M Program is a collaborative arrangement between state and 
commonwealth government research organisations, Natural Resource Management 
regional groups, universities and agricultural industry (cane, grains, grazing and 
horticulture). It was identified from the start that all relevant stakeholders must be 
included in the process to address the water quality issues in the GBR. 

One significant feature is that the program is a continuum which seeks to both influence 
and change on-farm management practices, through incentives and policy, with the aim 
that improvements in management practice will result in improvements in water quality 
at the end of catchments discharging to the reef lagoon. Another important aspect of 
the program is that the government are investing a significant amount of money in 
water quality monitoring at a range of scales and modelling to ensure the best available 
data is used to parameterise and validate models. 

Problem 
Definition

Problem 
Statement

Objectives

Problem Domain
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The GBR modelling project covers a large geographical extent from Cape York 
in the north to the Mary Catchment in the south, as shown in Figure 8, an area of 
approximately 405,000 km2. Large climatic variation occurs across the study area 
with average annual rainfall ranging from 500 – 3100 mm. The modelled pollutants 
of concern to the GBR ecosystem are sediments, speciated nutrients and pesticides. 
For the high rainfall areas such as the Wet Tropics and Mackay-Whitsundays regions, 
nutrients and pesticides from canelands are the major pollutants of interest. For the 
Cape, Burdekin, Fitzroy and Mary-Burnett regions, which are predominantly grazing 
and nature conservation areas (> 80%) with small areas of cropping, sediment and 
nutrients from hillslope and gully erosion are a major source of pollutants in comparison 
to the wet tropics catchments. The Burdekin, Fitzroy and Mary-Burnett have major 
storages with significant irrigation extraction. The models are being developed to 
demonstrate the long–term improvement in water quality resulting from investment 
in improved farm management practices such as conservation tillage, riparian 
management and increasing ground cover. The models are constructed to model 
generation, delivery and transport of the major pollutants of interest. The modelling 
takes into consideration the complex interactions of climate, soils, and land use and 
land management. The modelling exercise is building on many years of literature, 
research, and monitoring, modelling and expert knowledge available across the GBR.

Region Catchment 
Area (km2)

Climate 
Zone

Rainfall 
(mm/yr)

Dominant Land Uses

Cape York 42,793 Tropical 800 – 2400 Grazing 52 %, Nature Con. 46 %

Wet Tropics 22,000 Tropical 716 – 3015 Grazing 46 %, Nature Con. 33 %,  
Sugar cane 9 %

Burdekin 138,245 Dry tropics 649 – 1800 Grazing 94 %, Forest & Nature Con. 3 %, 
Sugar cane 1 %

Mackay/
Whitsundays

9021 Dry tropics 600 – 3000 Grazing 47 % , Forest & Nature Con. 
26 %, Sugar 19 %

Fitzroy 142,000 Dry tropics/
sub-tropics

526 – 2065 Grazing 82 %, Forest & Nature Con. 10 %, 
Cropping 7 %

Burnett/Mary 51,722 Sub-tropics 600 – 2000 Grazing 78%, Forest 16 %, Cropping 4 %

The Reef M&M framework requires the ability to link paddock and catchment monitoring 
and modelling outputs from a local, to sub catchment, catchment and through to the 
marine scale. The key components of the conceptual model from paddock to reef are 
captured in Figure 10. These include plot and paddock scale research examining the 
effectiveness of alternative management practices, water quality monitoring  from farm 
to end of catchment, utilising the latest satellite imagery  to track spatial and temporal 
changes in cover to paddock and catchment scale modelling of the response to the 
significant investment in improved on farm management practices.

System 
Definition

Table 1
Summary statistics 
for the six regions 

being modelled with 
Source Catchments

Conceptual 
Models
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The updated Reef Plan (Queensland Department of the Premier and Cabinet, 2009) 
clearly outlines water quality and management practice targets. The specific water 
quality targets are:

By 2013 there will be a:

• minimum 50% reduction in nitrogen and phosphorus loads at the end of 
catchments;

• minimum 50% reduction in pesticide loads at end of catchments;

• minimum of 50% late dry season groundcover on dry tropical grazing land.

By 2020 there will be a:

• Minimum 20% reduction in sediment load at the end of catchment.

The 2008/2009 year is being used as the baseline year. The changes in water quality in 
subsequent years will be modelled and assessed against the baseline year.

The reef targets will be assessed using four lines of evidence (Carroll et al, 2011): 

1. Effectiveness of land management practices;

2. Prevalence of improved land management practices;

Metrics and 
Criteria

Figure 10
Paddock to Reef 

Monitoring & 
Modelling Program



68 Case Study: Great Barrier Reef Catchment

3. Improvements in water quality (long-term monitoring); and

4. Improvements in water quality (modelling).

Identifying farm management practices that reduce sediment, nutrient and pesticide 
loads at a plot/paddock scale is the first step towards improving water quality at the 
larger catchment scale and subsequently in the GBR marine lagoon. It is a “no regrets 
approach” in that even though changes in water quality might not be detected at the 
marine scale in the short-term the changes at the paddock scale will be evident sooner 
and in themselves provide local environmental and economic benefits. 

Ground cover presence and persistence on dry tropical grazing lands, the extent and 
connectivity of intact riparian areas, and the location, persistence and inundation 
frequency of wetlands are important catchment attributes that play a role in the water 
quality leaving paddock and properties, and entering streams and the reef lagoon. Each 
of these attributes has specific management practice targets associated with them 
under the Reef Plan.

In relation to the modelling program, it is acknowledged that there is a high degree of 
uncertainty around the modelling including input data, model structure, measured data. 
The project objectives require the reporting of the “relative” change in pollutant loads 
as opposed to absolute loads entering the reef as a result of implementing improved 
management practices. All the various sources of uncertainty associated with model 
inputs and outputs are not specifically reported, due to tight timelines for year one. 
However, Ellis et al (2009) demonstrated how the PEST (Parameter ESTimation Tool) 
optimisation software could be used in conjunction with Source Catchments to examine 
parameter sensitivity and prediction uncertainty related to flow and pollutant loads. As 
a result PEST is used in the calibration process for the hydrological modelling, and this 
enables further work to be undertaken in subsequent years to provide an estimate of 
the associated uncertainty in pollutant loads. In addition, a Reef M&M funded project 
examining all aspects of uncertainty in model development will commence in 2011 
looking at all aspects of model uncertainty.

Previous modelling used the SedNet/ANNEX model (Cogle et al, 2006; Brodie et al, 
2003; Prosser et al, 2001) to generate long term average annual sediment and nutrient 
loads leaving GBR catchments, and run management practice scenarios to predict 
sediment and nutrient loads. In contrast, Ellis et al (2009) used the Source Catchments 
model (formerly known as WaterCAST) in the Fitzroy catchment to predict the flow 
and load of constituents at any location in the catchment over time, with the ability 
produce reports at varying temporal scales (from daily to annual) and spatial scales 
(from a single sub-catchment to a whole-of-catchment). The Source Catchments model 
has also been applied in the Barron, Burdekin, and Pioneer reef catchments (Carroll 
et al., 2010). Hence, there is a history of modelling and monitoring within the GBR 
region which has formed the basis for preliminary assessment and model validation. 
As part of a process of continuous improvement it is intended to further refine the first 

Decision 
Variables

Uncertainty and 
Risk

Preliminary 
Assessment
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round of Reef M&M Source Catchment modelling through access to new and improved 
data sets.

This section outlines the model methodology used; major features of the model 
configuration are summarised in Table 2.

Model 
Feature

Approach Rationale Limitations

Model output  
timestep

Average 
annual

Whilst Source Catchments generates 
runoff and constituent loads at a daily 
timestep, for reporting purposes, modelled 
pollutant loads are only required as 
average annual. Secondly a number of 
the sediment and nutrient generation 
algorithms incorporated into the model are 
designed to be used as average annual 
outputs, with disaggregation of these 
processes still rudimentary.

Construction of the model 
to estimate average annual 
loads, limits the use of 
the model to examine 
modelled outputs  at a finer 
temporal resolution.

Modelling 
extent

The GBR 
area 
(420,000 
km2) was 
split into 6 
modelling 
areas

The 6 regions were based on the regional 
NRM group boundaries. Consolidating 
to 6 models made model construction  
manageable (albeit lengthy), ensured 
modelled areas aligned with regional NRM 
body reporting areas and enabled direct 
comparison of modelled loads to previous 
modelling in the region.

Aligning to NRM regions 
resulted in models being 
constructed at quite different 
spatial extents (9,000 km2 – 
140,000 km2). This created 
some run time issues for 
the larger catchments with 
many subcatchment – land 
use combinations.

Modelling 
period

1986 – 2009 A fixed climate period was chosen 
from 1986 – 2009. This 24 year period 
included both wet and dry periods which 
are important for hydrology calibration. 
A fixed climate period was chosen for 
all modelling scenarios to normalise for 
climatic influences. In addition the bare 
ground index satellite imagery (used to 
derive yearly cover layers used in the 
SedNet erosion model) was available from 
1986 onwards.

Running the model over 
a much longer period 
may have given a better 
representation of the long 
term variability in loads 

Functional 
units or 
landuse 
category 
selection

9 – 11 
landuse 
categories 
were 
represented 
in the model

Nine common landuse categories were 
used across all regions with two additional 
local categories where required. The land 
use categories were chosen based on 
two criteria (a) They were required for 
reporting purposes and or (b) they were 
the dominant land use by area.

A number of the landuse 
categories included for 
reporting purposes may 
not have been included 
normally if the criteria 
were based purely on their 
relative contribution to end 
of catchment loads. The 
inclusion of 9 – 11 land use 
categories had a significant  
impact on run time for the 
bigger catchments.

Constituents 
modelled

Fine and 
coarse 
sediments, 
nitrogen and 
phosphorus 
species, 
TN  DIN, 
DON, TP, 
DIP, DOP, 
8 frequently 
detected 
herbicides

For reporting purposes, suspended 
sediment, ‘coarse’ sediment, particulate 
and dissolved nutrients and 8 pesticides 
were required to be modelled. Fine and 
coarse sediments and speciated nutrients 
were required for hillslope, gully, stream 
bank and floodplain erosion/deposition/
entrainment processes to be represented 
in the model.

The inclusion of 17 
constituents impacted on 
model run time. Model 
validation was also 
extremely time consuming 
given this number of 
constituents.

Modelling 
Methodology

Table 2
Summary of 

the main model 
features, rationale 

for the approach 
adopted and 

any limitations to 
that approach
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Model 
Feature

Approach Rationale Limitations

Minimum 
stream  
threshold

30 – 50 km2 This stream threshold (which drives 
automated sub catchment creation) 
was chosen primarily to allow use of the 
SedNet stream bank erosion algorithm 
and to correspond to the scale at which 
a number of the erosion algorithms are 
applicable. The fine resolution enables 
reporting of modelled outputs at numerous 
scales. It is also easy to aggregate up 
from a finer scale.

A number of the validation 
data sets were not available 
at this finer scale. The small 
subcatchment threshold 
significantly increased 
model run time in the 
larger catchments.

Rainfall 
runoff model 
selection

Simhyd Previously applied in numerous reef 
catchments successfully. Only requires 
calibration of 6 parameters which 
rationalise the number of rainfall-runoff 
parameters that needed to be optimised 
in calibration. Future work will include 
investigation of a number of alternative 
rainfall runoff models available in Source 
Catchments to look at improving the 
hydrology calibration. 

Simhyd uses only 6 
parameters to represent 
the runoff generation 
process. The small number 
of parameters used in the 
model has highlighted its 
limitations in representing 
ground water losses.

Hydrology 
calibration 

PEST 
parameter 
estimation 
software

The inbuilt Source Catchments calibration 
tool was still under development at the 
time of model building. PEST had been 
previously used for model calibration in 
the Fitzroy catchment. PEST enabled 
calibration of all identified hydrology 
parameters in relation to model outputs. 
Thus, the parameter sets derived were 
immediately ready for use in the Source 
Catchments project.

Simultaneous calibration 
requiring many model runs 
was time consuming. Run 
times were in the order of 
days for the largest projects. 
These will improve as 
computer speed improves.

Input climate 
data

SILO 5km2 
gridded daily 
data

Enabled a consistent approach to climate 
data collation and model input, easily 
updated and is repeatable into the 
future. Pluviometer data only available 
in selected locations and highly variable 
temporal spread.

Interpolated grid data will 
not always capture the 
spatial and temporal rainfall 
variability due to network 
coverage limitations, eg 
where there are significant 
rainfall gradients over small 
areas or orographic effects.

Hydrology 
data

DERM daily 
gauging 
station data

Consistent and quality assured flow data 
for model calibration collected over 10-
40 years at each site. Generally 20-70 
gauges located in each region. Data 
quality assessed based on duration of 
data, quality of rating, percentage of 
missing data.

Can be errors in rating 
curves used to derive runoff 
rates, particular at highly 
flows need to identify these 
prior to calibration.

Routing 
and decay 
modelling 
In-stream and 
storages

Laurenson 
routing 
model used 
for flow 
routing, 
exponential 
decay 
models used 
for nutrients, 
sediment 
trapping 
model for 
storages

Laurenson routing model was chosen as 
it is widely used, previous modelling in the 
region had derived routing  parameters  
for this model and it is a relatively simple 
model to apply.
SedNet defined in stream processing of 
sediments and nutrients have been inbuilt 
where possible.

It was identified that the 
process for determining 
where routing parameters 
should be applied and the 
approach for simultaneous 
calibration with the rainfall 
runoff parameters is an area 
requiring further work.
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Model 
Feature

Approach Rationale Limitations

Sediment, 
nutrient and 
pesticide 
generation 
models

Dynamic 
SedNet, 
Howleaky, 
APSIM

Existing SedNet approaches to 
constituent generation have been adapted 
to operate within the Source Catchments 
framework for sediment and nutrient 
generation in grazing lands. In other 
situations simplified Source Catchments 
models have been employed to provide 
constituent loads (eg concentration 
x runoff). In the case of intensive 
agricultural land uses (such as ‘cropping,’ 
and sugarcane), specialist models such 
as Howleaky (Rattray et al. 2004a) 
and APSIM (Keating et al. 2003) have 
been used to provide daily timeseries 
pollutant loads for combinations of soil, 
climate and management practice, with 
these timeseries applied to the Source 
Catchments projects through purpose built 
import tools.

Combining constituent 
generation (and in stream 
processing methods) from 
a vast array of sources 
and techniques is not easy 
to implement or manage, 
but the flexible nature of  
Source Catchments and its 
modelling framework, TIME 
makes this possible.

Modelling 
of weirs/
storages

Modelling of 
all storages 
> 10,000 ML 
capacity

A minimum capacity of 10,000 ML 
was chosen as the cut off for storages 
to be included in the models and this 
was applied across all regions. This 
rationalised the number of storages 
included in the models while allowing 
major storage impacts to be accounted 
for.

This assumption may 
result in an overestimation 
of modelled runoff in dry 
periods with low flow. This 
will be investigated further in 
year 2.

Modelling of 
extractions, 
losses and 
inflows 

IQQM model 
estimates of 
extractions 
and losses 
were used

Previous DERM IQQM modelling for 
water resource planning purposes are 
the most accurate estimate of extractions 
and losses for major irrigation areas 
considered in this model.

Time series extraction 
data sets were derived 
from IQQM model runs 
under a full development 
scenario. In a number of the 
regulated catchments  “full 
development” may not have 
been reached during the 
time period used for model 
calibration. 
This may result in an 
overestimation of runoff in 
low flow years. 

Model size 
and run times

Automation 
of model 
runs

Model runs have been automated to 
speed up the model running process due 
to the size of the models.

Automation will speed up the 
run process but will reduce 
the time and effort spent to 
examine each component 
in detail.

Modelling 
scenarios

Pre-
European, 
baseline (ie 
2008/09), 
2009/10, 
2010/11 etc

Modelling requirements were to model 
the anthropogenic load (pre European - 
baseline) then the relative change from 
the baseline year each subsequent year.

No clear consensus on a 
pre- European land use. 
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This Glossary contains definitions of a number of terms used in this guidance which 
may not be otherwise generally known, but it is not necessarily comprehensive. For a 
more comprehensive set of definitions, refer to the eWater Glossary, available at:  
www.ewater.com.au/glossary/

Term Definition
Accuracy* Closeness of a measured or computed value to its “true” value, 

where the “true” value is obtained with perfect information. Due to 
the natural heterogeneity and stochasticity of many environmental 
systems, this “true” value exists as a distribution rather than a 
discrete value. In these cases, the “true” value will be a function of 
spatial and temporal aggregation.

Automated 
calibration@

Process of calibration using an optimisation procedure with model 
parameter values constrained to physically defensible ranges 
to find a set of parameter values that minimises a pre-defined 
objective function. The set of parameter values found may or 
may not be unique (see “equifinality”), may represent the global 
optimum or merely a local optimum on the response surface of 
model parameter values, and may or may not be robust and fit for 
purpose (this is also termed “inverse modelling” in some domains, 
eg groundwater).

Boundaries* Boundaries specify the area or volume (spatial boundary) and the 
time period (temporal boundary) to which a model application will 
apply.

Boundary 
conditions*

Sets of values for state variables and their rates along problem 
domain boundaries, sufficient to determine the state of the system 
within the problem domain.

Calibration Process of adjusting the values of model parameters within 
physically defensible ranges until the model performance 
adequately matches observed historical data from one or more 
locations represented by the model (ie a match is obtained that is 
robust and fit for purpose).

Confidence 
interval

The interval which includes the true value [of a data item, whether 
observed or estimated] with a prescribed probability and is 
estimated as a function of the statistics of the sample (WMO, 2008).

Confidence level The probability that the confidence interval includes the true value 
(WMO, 2008).

http://www.ewater.com.au/glossary/
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Term Definition
Credibility@ The confidence that (potential) users have in a model and in the 

information derived from the model such that they are willing to use 
the model and the derived information. Specifically, credibility is a 
function of the performance record of a model and its conformance 
to best available, practicable science.

Data assimilation The combining of diverse data, possibly sampled at different 
times and intervals and different locations, into a unified and 
consistent description of a physical system, such as the state of the 
atmosphere (AMS Glossary, 2010).

Data fusion The use of techniques that combine data from multiple sources 
and gather that information in order to achieve inferences, which 
will be more efficient and potentially more accurate than if they 
were achieved by means of a single source (Source: Wikipedia, 
en.wikipedia.org/wiki/Data_fusion, accessed: 2 Nov. 2010).

Domain 
boundaries

The limits of space and time that bound a model’s domain and 
are specified within the boundary conditions (see also definition of 
“boundary conditions”).

Equifinality The principle that in open systems a given end state can be 
reached by many potential means. In environmental modelling 
studies, and especially in hydrological modelling, two models 
are equifinal if they lead to an equally acceptable or behavioural 
representation of the observed natural processes (Source: 
Wikipedia, en.wikipedia.org/wiki/Equifinality, accessed: 30 June 
2010).

Epistemic 
uncertainty$

Uncertainty due to imperfect knowledge; this form of uncertainty 
can be reduced by further studies such as research and data 
collection.

Forecasting See “Hydrological Forecasting”.

Hindcasting@ Modelling of scenarios representing the past, the present or 
possible future conditions using historical time series data as 
input. [This term is in common use in other fields such as coastal 
hydraulics modelling, where the context is exactly the same as 
here: eg modelling historical ocean wave patterns/regimes for 
different beach and/or coastal engineering scenarios].

Hydrological 
forecasting

WMO (2009) lists three categories:

a) Short term: periods of up to two days

b) Medium range: periods ranging from 2 to 10 days

c) Long range: periods exceeding 10 days

http://en.wikipedia.org/wiki/Data_fusion
http://en.wikipedia.org/wiki/Equifinality
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Term Definition
Internal technical 
guidelines#

Model application guidelines that usually focus on the technical 
aspects of modelling and are mainly intended for use by modellers. 
Examples are QA procedures in particular organisations, manuals 
for software packages which might include hints on how to best use 
the package, and some text books.

Inverse modelling See “automated calibration”.

Levels of 
evidence

A ranking system used [in evidence-based medicine] to describe 
the strength of the results measured in a [clinical trial or] research 
study (Wikipedia, en.wikipedia.org/wiki/Levels_of_evidence, 
accessed: 3 Nov. 2010).

Manual 
calibration@

The process of model calibration where parameter values are 
adjusted manually by trial and error within physically defensible 
ranges, based on the judgement of the modeller, to obtain a match 
between model results and observed data that is robust and fit for 
purpose. The resultant set of parameter values may or may not be 
unique (see “equifinality”) and may or may not represent a local or 
global optimum.

Model* A simplification of reality that is constructed to gain insights into 
selected attributes of a physical, biological, economic, or social 
system. A formal representation of the behaviour of system 
processes, often in mathematical or statistical terms. The basis can 
also be physical or conceptual.

Model 
application@

Application of a fit for purpose model to address a real world 
problem such as supporting natural resource management decision 
making.

Model code@ The mathematical representation of a conceptual model in the form 
of a functioning computer program.

Model coding* The process of translating the mathematical equations that 
constitute the model framework into a functioning computer 
program.

Model 
development@

The conceptualisation, specification in mathematical terms, coding, 
testing and verification of a modelling tool, with the end product 
intended to be model code which is ready to be implemented and 
applied to addressing real world problems.

Model 
implementation@

The setting up, calibration and validation of model code for a 
particular purpose, with the aim of producing a model that is fit for 
purpose.

Model uncertainty Uncertainty related to the hypotheses that underlie the model itself 
and the model structure (After Grayson and Blöschl, 2001; Section 
3.4).

http://en.wikipedia.org/wiki/Levels_of_evidence
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Term Definition
Multiple lines of 
evidence

The use of several independent evaluation strategies to address 
the same evaluation issue, relying on different data sources, on 
different analytical methods, or on both (Centers for Disease 
Control and Prevention, 2006).

Non-uniqueness Groundwater modelling term synonymous with “equifinality” (see 
earlier definition) (After Grayson and Blöschl, 2001; Chapter 3).

Over-fitting@ Calibrating a model to the point where goodness of fit statistics for 
the calibration period are maximised/optimised but the calibrated 
model is not robust when used with input data for other periods.

Parsimony The principle of parsimony calls for keeping the model as 
simple as possible while accounting for the system processes 
and characteristics that are evident in the observations and are 
important to the predictions, and while respecting all system 
information – (Hill and Tiedeman, 2007; Chapter 11).

Phenology The study of periodic plant and animal life cycle events and how 
these are influenced by seasonal and interannual variations in 
climate (Wikipedia, en.wikipedia.org/wiki/Phenology, accessed:11 
Jan. 2011).

Precision* The quality of being reproducible in amount or performance. With 
models and other forms of quantitative information, precision refers 
specifically to the number of decimal places to which a number is 
computed as a measure of the “preciseness” or “exactness” with 
which a number is computed.

Predictive 
modelling@

Applying a model to analyse scenarios representing the past, the 
present or possible future options.

Predictive 
uncertainty@

Uncertainty in prediction of hydrological responses associated 
with: uncertainty in the input data due to sampling or interpolation 
error; uncertainty in simulated responses due to errors in model 
parameter values; and uncertainty related to the hypotheses that 
underlie the model itself and the model structure (After Grayson 
and Blöschl, 2001; Section 3.4).

http://en.wikipedia.org/wiki/Phenology
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Term Definition
Project 
management

[alternatives 
from the web via 
Google, except 
the last which is 
made up from the 
others]

• The process by which projects are defined, planned, monitored, 
controlled and delivered such that the agreed benefits are 
realised, or

• Planning, monitoring and control of all aspects of a project 
and the motivation of all those involved in it to achieve the 
project objectives on time and to the specified cost, quality and 
performance, or

• The discipline of planning, organizing, and managing resources 
to bring about the successful completion of specific project, or 

• The application of modern management techniques and 
systems to the execution of a project from start to finish, to 
achieve predetermined objectives of scope, quality, time and 
cost, to the equal satisfaction of those involved, or

• The use of skills and knowledge for co-ordinating the 
organisation, planning, scheduling, directing, controlling, 
monitoring and evaluating of prescribed activities to ensure that 
the stated objectives of a project are achieved, or

• A process based on use of management and project domain 
relevant skills and knowledge to organise, plan, schedule, direct, 
control, monitor, evaluate and deliver a project to achieve the 
project objectives on time, on budget and to agreed quality and 
performance  levels.

Public interaction 
guidelines#

Modelling guidelines established through a public consultative 
and consensus building process, like public technical guidelines 
(see definition) but differing in that they also give guidance on the 
interaction between the modeller and the water manager, who often 
have the roles of consultant and client, respectively.

Public technical 
guidelines#

Modelling guidelines often containing the same substance as 
internal technical guidelines (see definition) but differing in the 
sense that they have been prepared through a consultative 
and consensus building process involving many persons and 
organisations.

Reliability* An expression of the degree to which, and consistency with 
which, a model meets quantitative performance criteria following 
calibration, validation testing and other checks, particularly 
sensitivity/uncertainty analysis. Statistically, reliability is inversely 
related to random error. Reliability is necessary but not sufficient 
for validity (Based loosely on: Wikipedia, en.wikipedia.org/wiki/
Reliability_(statistics) accessed:16 Nov. 2010).

http://en.wikipedia.org/wiki/Reliability_(statistics)
http://en.wikipedia.org/wiki/Reliability_(statistics)
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Term Definition
Robustness* The capacity of a model to perform well across the full range of 

environmental conditions for which it was designed.

Scenario@ A set of parameter values describing the characteristics of practices 
and entities represented by a model; these values may remain 
constant throughout a model run or they could change (eg when 
modelling effects of tree growth in a rainfall-runoff model, or a new 
water source comes on-line part way through a run of a water 
planning model). Examples of practices include water management 
rules and irrigator responses to these; examples of entities include 
catchments, dams and rivers.

Sensitivity* The degree to which the model outputs are affected by changes in 
the value of selected input parameters.

Sensitivity 
analysis

Analysis of the changes in one or more outputs of a model (eg 
flow or constituent loads) with variations in the assumptions of 
the model. Most commonly this is achieved by varying the values 
of one or more model parameters in a systematic way and then 
reporting the changes in selected key model outputs (Modified from 
definition in eWater glossary).

Stakeholder@ Any individual, organisation or group with an interest in a 
project and its outcomes; these can include the organisation 
commissioning the project (the client), water managers, decision 
makers, community groups and individual members of the public. 

An individual or organisation with an interest in the success of a 
project (Modified from definition in eWater glossary).

State variables* The dependent variables calculated within the model, which are 
also often the performance indicators of the models that change 
over the simulation.

Stochastic 
uncertainty$

Uncertainty due to natural variability; this form of uncertainty is not 
reducible (see also “Variability”).

Transparency* The clarity and completeness with which data, assumptions and 
methods of analysis are documented. Experimental replication is 
possible when information about modelling processes is properly 
and adequately communicated.
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Term Definition
Uncertainty* (1) [A] term used … to describe lack of knowledge about models, 

parameters, constants, data, and beliefs. There are many 
sources of uncertainty, including: the science underlying a model, 
uncertainty in model parameters and input data, observation 
error, and code uncertainty. Additional study and collecting 
more information allows error that stems from uncertainty to 
be minimised/reduced (or eliminated). In contrast, variability 
(see definition) is irreducible but can be better characterised or 
represented with further study.

Uncertainty$ (2) A person is uncertain if s/he lacks confidence about the specific 
outcomes of an event or action. Reasons for this lack of confidence 
might include a judgement of the information as incomplete, blurred, 
inaccurate or potentially false or might reflect intrinsic limits to the 
deterministic predictability of complex systems or of stochastic 
processes.

Uncertainty 
analysis*

Investigates the effects of lack of knowledge or potential errors on 
the model (eg the “uncertainty” associated with parameter values) 
and when conducted in combination with sensitivity analysis (see 
definition) allows a model user to be more informed about the 
confidence that can be placed in model results.

Validation Where observations and simulation results are compared using 
data that were not part of the calibration. A model is validated 
for a particular application and a successful validation in one 
example does not imply that the model is validated for universal 
use. Validation is a test of usefulness and not truth (Modified from 
definition in eWater glossary).

Variability* Variability refers to observed differences attributable to true 
heterogeneity or diversity. Variability is the result of natural random 
processes and is usually not reducible by further measurement or 
study (although it can be better characterised).

* USEPA-CREM glossary of frequently used modelling terms  
  (available at: www.epa.gov/crem/index.html).

@ Drafted for this glossary.

# After Refsgaard et al (2005a)

$ After Refsgaard et al (2005b)

http://www.epa.gov/crem/index.html
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