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Abstract

One of the more serious problems encountered in reverse osmosis (RO) water treatment
processes is the occurrence of membrane fouling, which limits both operation efficiency
(separation performances, water permeate flux, salt rejection) and membrane life-time. The
development of general deterministic models for studying and predicting the development
of fouling in full-scale reverse osmosis plants is burden due to the complexity and temporal
variability of feed composition, diurnal variations, inability to realistically quantify the
real-time variability of feed fouling propensity, lack of understanding of both
membrane-foulants interactions and of the interplay of various fouling mechanisms. In the
present study, artificial neural network (ANN)-based models were developed based on
direct analysis of experimental data for predicting process operation performance. Two
approaches were considered; one based on characterizing the organic compounds passage
through RO membranes, and a second one based on modeling the dynamics of permeate

flow and separation performances for a full-scale RO desalination plant.

Organic solute sorption, permeation and rejection by RO membranes from aqueous solutions
were studied via artificial neural network-based quantitative structure-property
relationships (QSPR) for a set of 50 organic compounds for polyamide and cellulose acetate
membranes. The separation performance for the organic molecules was modeled based on
available experimental data achieved by radioactivity measurements to determine the solute
quantity in feed, permeate and sorbed by the membrane. Solute rejection was determined
from a mass balance on the permeated solution volume. ANN-based QSPR models were
developed for the measured organic sorbed (M) and permeated (P) fractions with the most
appropriate set of molecular descriptors and membrane properties selected using three
different feature selection methods. Principal component analysis and self-organizing maps
pre-screening of all 50 organic compounds defined by 45 considered chemical descriptors
were used to identify the models applicability domain and chemical similarities between the
organic molecules. The QSPR models predicted the M and P mass fractions within the range
of experimental errors of the measurements. Somewhat higher prediction errors were

encountered for a few chemicals that were not well represented within the present chemical
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domain; however, the errors were consistent with the experimental standard deviations of
the measurements. The ANN-based QSPRs were validated by means of a mass balance test
applied not only to the 50 organic compounds used to develop the models, but also to a set
of 143 new compounds. The quality of the QSPR/NN models developed suggests that there
is merit in extending the present compound database and extending the present approach to
develop a comprehensive tool for assessing organic solute behavior in RO water treatment

processes.

The dynamics of permeate flow rate and salt passage for a RO brackish water desalination
pilot plant were captured by ANN-based models. The effects of operating parameters, feed
water quality and fouling occurrence over the time evolution of the process performance
were successfully modeled by a back-propagation neural network. In an alternative
approach, the prediction of process performance parameters based on previous values was
achieved using a Fuzzy ARTMAP analysis. The neural network models built are able to
capture changes in RO process performance and can successfully be used for interpolation,
as well as for extrapolation prediction, fact that can allow reasonable short time forecasting
of the process time evolution. It was shown that using real-time measurements for various
process and feed water quality variables, it is possible to build neural network models that
allow better understanding of the onset of fouling. This is very encouraging for further
development of optimization and control strategies, based on soft sensors able to anticipate

process upsets.

ii
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AM1
ANN
ANNIGMA
ANQ
ANQ/PA
ANQ/PACA
ART
ARTMAP
ASTM
ATR-FTIR
ATSA
bmu

BSE

CA

CFS
C-plane
DB

DPM
EPF

FA

GA

GPM
HOMO
LOO
LUMO
MGD
MOPAC
MWCO
NF

NN

PA
PACA
PCA
QSPR
RBFNN
RMS
RMSE
RO

SC

SOM
SOM-DA
STM
TCF

TDS

TFC
U-matrix
WEKA

Abbreviations and nomenclature

Austin model 1

artificial neural network

artificial neural net input gain measurement approximation
artificial neural network quantitative structure-property relationship
ANQ for the collection of for polyamide membranes
ANAQ for the collection of for polyamide and one cellulose acetate membranes
adaptive resonance theory

adaptive resonance theory map

American Society of Testing Materials

attenuated total internal reflection Fourier transform infra-red
adjusted total surface area

best matching unit

backward step elimination

cellulose acetate

correlation feature selection

component plane

domain boundary (border)

disintegrations per minute

element permeate flow rate

Fuzzy ARTMAP

genetic algorithm

gallons per minute

highest occupied molecular orbital

leave one out

lowest unoccupied molecular orbital

million gallons per day

molecular orbital package

molecular weight cut-off

nanofiltration

neural network

polyamide

polyamide

principal components analysis

quantitative structure-property relationship

radial basis function neural network

root mean square

root mean squared error

reverse 0Smosis

scintillation cocktail

self-organizing map

self-organizing map dissimilarity analysis

short term memory

temperature correction factor

total dissolved solids

thin film composite

unified distance matrix

Waikato environment for knowledge analysis

iii
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Symbol Equation Parameter

A (1.1) — solvent permeability coefficient [kg-m2kPa-s1]

A (2.11); (4.8) — input pattern to ARTa module of a Fuzzy ARTMAP neural
network

ANNIGMAix (2.21) — ANNIGMA score between input variable i and output
variable k

B (1.3) — solute permeability coefficient [m-s]

B (4.8) — input pattern to ARTb module of a Fuzzy ARTMAP neural
network

C (2.10) — number of clusters in a SOM

Co (1.7) - bulk solution concentration [kg-m?]

Co (4.4); (4.6) — brine concentration [mg/1]

Cra (4.7) — brine concentration at actual conditions [mg/1]

Coys (4.7) — brine concentration at standard conditions [mg/1]

Cr (1.2); (1.6) — feed concentration [kg-m-]

Cr (4.6) — feed concentration [mg/1]

Cta 4.7) — feed concentration at actual conditions [mg/1]

Cts (4.7) — feed concentration at standard conditions [mg/1]

CF (1.8) — concentration factor

Cm (1.7) — concentration at membrane surface [kg-m?3]

Cn 4.1); 4.2) - conductivity [uS-cm]

Cr (1.2); (1.6); (1.7) — permeate concentration [kg-m3]

D (2.18) — dissimilarity measure between two maps in the SOM-DA
method

D:s (1.2); (1.3) — solute diffusion coefficient [m2-s]

E (2.9) — objective function in k-means algorithm

EPF. (4.7) — measured average RO element permeate flow rate [GPM]

EPF; (4.7) —average RO element permeate flow rate at standard
conditions [GPM]

I (2.12) - (2.15) — input pattern to an ART module

Iy (1.4); 1.7) — permeate volumetric flux [m-s?]

Js (1.2); (1.4) — solute mass flux [kg-m2-s1]

Jeo (1.1); 1.4) - solvent mass flux [kg-m2-s7]

Kow — octanol-water partition coefficient

Ks (1.2); (1.3) — distribution (partition) coefficient solute-membrane

LG (2.20); (2.21) —local gain in the ANNIGMA approach

M (3.1) — sorbed solute fraction

M (3.5 — predicted sorbed solute fraction

Mi, M (2.18) — trained self organized maps

Merit, (2.16) — performance of a feature subset S in the CES method

P (3.1) — permeate solute fraction

P (3.5) - predicted permeate solute fraction

Pea 4.3) — measured concentrate pressure [kPa]

Pra 4.3) — measured feed pressure [kPa]

Py (4.3) — measured permeate pressure [kPa]

Pes (4.3) — concentrate pressure at standard conditions [kPa]

Pss (4.3) — feed pressure at standard conditions [kPa]

Pps (4.3) — permeate pressure at standard conditions [kPa]

Q (2.9); (2.10) — cluster containing similar SOM units

Qr (1.5) — feed flow rate [m3-s]

O (1.5) — permeate flow rate [m?3-s"]

Qpa 4.3) — measured permeate flow rate [GPM]

iv
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Symbol Equation Parameter

Qps 4.3) - standardized permeate flow rate [GPM]

R (1.6); (1.8) — rejection

R - rejected solute fraction

R — predicted rejected solute fraction

R2 — coefficient of determination

Re (3.5 — calculated rejected fraction, based on a mass balance and
the predicted sorbed and permeate fractions

Se (2.10) — within-cluster distance in a SOM (the sum of the distances
between each pattern that lies in the cluster and the cluster
centroid)

% SPa 4.7) — measured percent salt passage

%SPs 4.7) - standardized percent salt passage

T (2.4) — target value in a back-propagation neural network

T (4.4); (4.5) — temperature [K]

Tj (2.11) — choice function in a Fuzzy ARTMAP neural network

TCF (4.5) — temperature correction factor

TCFa 4.3); 4.7) — temperature correction factor at actual conditions

TCFs (4.3); (4.7) — temperature correction factor at standard conditions

TDSNaci (4.1); 4.2) - equivalent NaCl total dissolved solids [mg/1]

w (2.2); (2.3); (2.5); (2.6); (2.20) —weights of a back-propagation neural network

X (2.2); (2.3); (2.6) — input pattern to back-propagation neural network

X (2.1) —un-normalized variable

X’ (2.1) —normalized variable

Y (1.5); (1.8); 4.6) —recovery

Y (2.2); (2.4) — output of one neuron in the back-propagation algorithm

a (2.11) — input vector, which together with its complement forms

the input pattern to an ART module of a Fuzzy ARTMAP
neural network

a (2.11) — complement of the input vector a

b (2.2); (2.3); (2.6) — bias neuron in the back-propagation neural networks

bmu (2.7); (2.8); (2.19) — best matching unit

bmu’ (2.19) — second best matching unit

Cj (2.9) — SOM cluster centroids

d (2.18); (2.19) — Euclidean distance

dee (2.10) — distance between the centroids of two clusters

daf (2.4); (2.5) — derivative of the activation function in back-propagation
algorithm

f (2.2); (2.3) — back-propagation transfer function

f - solute mass in feed

Pomu,i (2.7); (2.8) - neighborhood function in the SOM algorithm

k (1.7) — mass transfer coefficient [m-s]

k (2.16) —number of features in a subset S, in the CFS method

l (1.3) — membrane thickness [m]

m (2.7); (2.19) — weights of a Self Organizing Map neural network

m (3.1) — solute mass sorbed by the membrane

n (2.6) — iteration number in a back-propagation learning algorithm

1h (3.2) —number of neurons in the hidden layer of a
back-propagation neural network

ni (3.2) —number of neurons in the input layer of a
back-propagation neural network

Mo (3.2) — number of neurons in the output layer of a

back-propagation neural network
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Symbol Equation Parameter

Ttr (3.2); (3.4) —number of data in the training set

Tts (3.4) —number of data in the test set

p (3.1) - solute mass permeating the membrane

q? (3.3) — explained variance in prediction

qPer (3.4) - explained variance in prediction for the training set

g (3.4) - explained variance in prediction for the test set

r (2.17) — Pearson’s correlation coefficient

r (3.1) — solute mass rejected

Tomu (2.8) — position of best matching unit (bmu) in a SOM

T (2.16) — average absolute feature-feature intercorrelation

T, (2.16) — average absolute feature-target correlation in the CFS
method

ti (2.8) — position of unit 7 in a SOM

t (2.7); (2.8) — SOM training step

w (2.11) — weights of a Fuzzy ARTMAP neural network

wy (2.13); (2.14); (2.15) — weights of the chosen category | in a Fuzzy ARTMAP
neural network

X (2.7); 2.9); (2.18); (2.19) - SOM input sample

y (3.3) — average fraction value of experimental data for all
compounds

yi (3.3); (34) - experimental fraction for the compound i

v (3.3); (3.4) — predicted fraction for the compound i

Y, (3.4) — average value of the experimental data for all compounds
in the training set

AAi (2.20) — variation of the i input, in the ANNIGMA approach

AOk (2.20) — variation of the k output in the ANNIGMA approach

AP (1.1) — membrane pressure gradient [kPa]

AW (2.6) — weights change in the back-propagation learning algorithm

Ab (2.6) — bias change in the back-propagation learning algorithm

Az (1.1) — osmotic pressure difference [kPa]

a (2.6) —momentum term in back-propagation algorithm

a (2.7) — adaption coefficient in a SOM algorithm

a (2.11) — choice parameter in a Fuzzy ARTMAP neural network

B (2.6) — learning rate in back-propagation algorithm

B (2.14) —learning rate in Fuzzy ARTMAP algorithm

1) (2.4)-(2.6) - error gradient in back-propagation neural network

i) (4.4) — brine osmotic pressure [kPa]

T (4.4) — permeate osmotic pressure [kPa]

Tha (4.3) — brine osmotic pressure at actual conditions [kPa]

T (4.3) — permeate osmotic pressure at actual conditions [kPa]

s 4.3) — brine osmotic pressure at standard conditions [kPa]

Tips (4.3) — permeate osmotic pressure at standard conditions [kPa]

oy (2.13) - vigilance parameter in a Fuzzy ARTMAP neural network

Yol (2.15) - vigilance parameter of the ARTa module in a Fuzzy
ARTMAP neural network

v (1.4) - permeate density [kg-m-]

o (1.1) — reflection coefficient

o (2.8) — variance of the Gaussian used to define the neighborhood

vi

function in the SOM algorithm
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1. Introduction

In the recent years, several factors have led to the development of membrane separation
technology. The most important ones are the necessity of fresh water production for
drinking, domestic, agricultural, landscape or industrial uses, the requirement of higher
performance level methods for waste water reclamation and reuse applications, as well as
lower regulatory maximum allowed levels of contaminants. Membrane processes are often
chosen in water treatment technology since these applications achieve high removals of
constituents such as dissolved solids, organic carbon, inorganic ions, and regulated and
unregulated organic compounds. Reverse osmosis (RO) and nanofiltration (NF) membrane
processes are used around the world for potable and ultra-pure water production, chemical
process separations, as well as desalination of seawater (salinity around 35 g/l) and brackish
water (less salty than the seawater). Moreover, lately there has been a growing interest in the
integration of such membrane technologies for municipal and industrial water treatment,
since they have been recommended as suitable for cost-effective desalination and removal of
a wide range of low-molecular-weight trace organic constituents [1-9]. Organic compounds
of particular interest include endocrine disruptors, human and animal antibiotics,
disinfection by-products, insecticides and herbicides, and various pharmaceutical drugs.
Many of these compounds have been detected in natural ecosystems at bioactive

concentrations [10-12].

Reverse osmosis is a pressure driven membrane separation process, used for removing low
molecular weight solutes, such as inorganic salts or small organic molecules, from a solvent.
It relies on the use of a semi permeable membrane, which allows solvent molecules to pass
through it, impeding the pass of solutes. When two solutions of different concentrations are
separated by such a membrane, the solvent from the lower concentration solution will move
through the membrane into the concentrated one, in a process called osmosis. The osmotic
flow is attributed to the tendency to equalize the both size’s solute concentrations. However,

if the liquid on one side of the membrane is pure solvent, the two concentrations can never
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be equal. In this case, the process of osmosis continues until the chemical potentials of both
solutions are equal. This happens when the pressure exerted by the concentrated solution
against the membrane is high enough to prevent any further solvent flow. The
hydrodynamic pressure difference between the two solutions found at chemical potential
equilibrium is called the osmotic pressure difference. In a reverse osmosis process, a pressure
must be applied to the concentrated solution in order to overcome the osmotic pressure and
to force the solvent to cross the membrane against the concentration gradient, as represented

schematically in Figure 1.1 [3].

Membrane

—
<=

Figure 1.1. Schematic illustration of reverse osmosis process.

The solvent is driven through the membrane by pressure (convection), whereas the mass
transfer of the solutes is diffusion controlled. Hereby, the permeation of the solvent through

the membrane can be described using the pore flow model [13]:
J,=A-(AP-0-Ar) (1.1)

where | is the solvent mass flux that passes the membrane [kg{n_2 ~s'1:|, A is solvent

permeability coefficient (characteristic for a given membrane) [kg-m‘2 -kPa™ -s‘l] , AP is

the membrane pressure gradient [kPa], Az is the osmotic pressure difference [kPa], and
o is the reflection coefficient, which is a measure of the membrane selectivity (i.e., =0, no
membrane selectivity; 0 <o <1, solute transport, not a completely semi permeable

membrane; o =1, ideal membrane, no solute transport).
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The solute mass flux can be described according to the solution diffusion model, in which the
solute dissolves in the membrane and then diffuses through the membrane down a
concentration gradient [14]:

D, K,

Jo==(¢-C,) (1.2)

where |, is the solute mass flux that passes the membrane [kg-m‘2 -5‘1], D. is the solute

S

diffusion coefficient in the membrane material [mz -S_l:l , K, is the distribution or partition
coefficient, | is the membrane thickness [m], and C fr Cp are the concentrations in the feed

and permeate solution [kg : m_3:| , respectively.

The solute permeability coefficient (B, [m : 8'1] ), can be expressed as a function of diffusion

and partition coefficients and membrane thickness, as

B=—s " (1.3)

The permeate volumetric flux (]p, [m-s’lj) can be calculated subsequently as the sum of

the solute and solvent fluxes:

]p = (1'4)
where p, is the permeate density [kg . m‘3] .

Reverse osmosis performance can be expressed in terms of recovery and rejection. Recovery
(Y) is defined as the fraction of the feed flow that passes through the membrane, as presented
in Eq. (1.5). Rejection (R), defined in Eq. (1.6), expresses the extent to which a solute is

rejected by the membrane.

Q
Y=L 1.5
0, (1.5)
R=1--L .
c, (1.6)
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In Egs. (1.5) and (1.6), Q is to the volumetric flow rate [m?’ -S_ljl, and C denotes the

concentration [kg . m'ﬂ , while the subscripts p and f refer to the permeate and feed streams,

respectively.

The choice of membrane material directly influences the separation efficiency, as the
membrane characteristics influence the solvent and solute fluxes through the permeability
coefficients. For obtaining a good efficiency, the membrane material must have high affinity
for the solvent, and low affinity for the solute. The most common reverse osmosis
membranes which attained the stage of economic application in water purification plants are

made of cellulose acetate (CA) or polyamide (PA).

For most technical applications, RO membranes are used in cross flow design where water is
flowing continuously over the membrane surface. Since the permeate flow is proportional to
area of the membrane, spiral wound modules are used, obtained by rolling stacks of
membranes with separating spacer mats into cylindrical shape unit. Such a configuration
offers high surface area per unit volume. The salt solution is fed axially, the water permeates
the membranes and flows radial toward the center of the cylindrical module where is

collected in the permeate pipe, as presented in Figure 1.2.

f Permeate
Feed &3 3§ —>

Permeate

Feed Spacer

=Concentrate

Figure 1.2. Spiral wound RO membrane module.

Membrane life-time and separation performances, quantity (i.e., water flux) and quality (i.e.,
salt rejection), are primarily affected by the flux inhibiting boundary layer effects, especially
the phenomena of concentration polarization, fouling and scaling. When the feed solution

flows over the membrane surface, as presented in Figure 1.3, the rejected species accumulate
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next to the membrane surface forming a layer of higher concentration (C») than the one in

the solution bulk (Cv) [15].

LA A R

# i 3
B e e e o e

arganics
& colloids  biofilm  scale deposit

Figure 1.3. Concentration polarization and particle deposition in cross flow membrane filtration.

The occurrence of the high concentration layer near the membrane surface is called
concentration polarization and expressed using Eq. (1.7) deduced from a film theory model.
This phenomenon leads to an increase in the trans-membrane osmotic pressure, in the salt
passage (i.e., the ratio between permeate and feed-brine concentrations), as well as the

surface fouling and mineral scaling formation.

C,-C
_m P exp(]_?’j (1.7)

In Eq. (1.7), C is the concentration [kg-ms], with subscripts m, p and b referring to

membrane surface, permeate flow and bulk solution, respectively, | is the permeate flux

4

[m~s"l:| and k is the mass transfer coefficient [m . s'l:l.

Membrane fouling is considered as a group of physical, chemical and biological effects
leading to irreversible loss of membrane permeability. This phenomenon refers to the
deposition of undesirable material on the membrane, that leads to the formation of one, or
several layers on the membrane surface accompanied by plugging the membrane pores [16].
The main factors of fouling occurrence are the adsorption of feed components, clogging of

pores, depositions of solids, crystallization and compaction of the membrane structure,
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chemical interaction between membrane material and components of the solution, gel layer
formation and bacterial growth. The foulants forming deposit on the membrane are
sparingly soluble salts, dissolved organic substances, colloidal and particulate matter and
microorganisms [17]. The accumulation of inorganic ions near and at the membrane surface
can lead to an increase in their concentration, exceeding the solubility limits of various
sparingly soluble mineral salts such as calcium carbonate, calcium sulfate and barium
sulfate. These mineral salts may then crystallize directly onto the membrane surface, or can
precipitate in the bulk near the membrane followed by deposition of formed crystals onto the
membrane surface. This phenomenon leading to permeate flux decline and shorter

membrane life time is called scaling [18].

A critical parameter that controls the deposition of undesired material onto the membrane
surface is the concentration factor, defined as the ratio between the concentration of the

rejected portion on the flow and the concentration of the feed flow (CF =C, /C; ). In order to

be economically feasible, membrane desalination processes have to be operated at high
recovery levels (higher than 75%). Increasing the recovery at the high rejection level required
(higher than 95%) leads to an excessive increase in the concentration factor, as presented in
Eq. (1.8) and Figure 1.4, and accordingly, to an increase in the bulk concentration. Therefore,

the increase of the concentration factor can lead to fouling and scaling formation.

30-
20-
104

1085

Concentration Factor

757 75
Recovery (%) 50 100 Rejection (%)

Figure 1.4. Variation of concentration factor with rejection and recovery.

1
CF_H-[l—Y-(l—R)] (1.8)
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The techniques used to reduce the concentration polarization are increasing flow rate,
assembling an intensifier for turbulent flow, impulse and agitating methods, periodic
depressurization of membrane tube, flow reversal, precoating of membrane surfaces and
modification of membrane polymeric structure. Besides the use of all these methods for
limiting the concentration polarization, fouling and scaling can be controlled by feed

pretreatments and regular membrane cleaning [19].

Most of the applications of RO are in the purification of water, mainly the desalination of
brackish and seawater to produce potable water, but there are also applications in food and
diary industries, pharmaceutical and cosmetics production, water softening, ultra water
production for electronic industries, as well as treatment of municipal and industrial
wastewater and agricultural drainage water. Besides reverse osmosis or nanofiltration, there
are several available technologies for desalinating water, such as distillation (multi stage
flash, or multi effect evaporation), or other membrane separation techniques like
electrodialysis (voltage-driven). All this techniques are comparable with respect to the
produced water quality, the main difference between them being the production costs. The
thermal methods, although very used, present high energy consumption and corrosion
problems, due to the high operational temperatures. Comparing with the other available
techniques, the quality of the feed is not so important for the thermal methods, since these
systems are not susceptible for fouling. Nevertheless, scale formation still can be a problem
[20]. Electrodialysis, although a membrane separation process, does not present so much risk
of fouling or scaling, so it does not require a strict pretreatment of the feed water. Due to the
high energy consumption which is proportional with the concentration of the feed salted
solution, it is mainly used for brackish water desalination [21]. The pressure-driven
membrane processes are considered to be the most promising methods for brackish and
seawater desalination. They operate at ambient temperature, therefore presenting a small
corrosion risk. The dimensions of equipment is smaller compared with other alternative
methods, and one of the most important advantage is that even though they need high

energy consumption, part of it can be recovered [20].

The desalination techniques are used in Spain since 1970s, when the first systems based on
multi stage flash distillations were installed in Ceuta, Gran Canaria, Lanzarote and

Fuerteventura. The total operation cost of the desalination systems, together with the energy
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consumption presented a continuous decrease since then as presented in Figure 1.5. One
reason is the development of membrane separation processes, and the continuous increase in
the number of reverse osmosis-based desalination installations. In spite of the intense
research carried out for improving the operation and lowering the energy consumptions of
the desalination techniques, the total cost did not show a decrease in the later years. The
reason is that even though the energy consumption tends to decrease, the cost of the energy

presents an increasing trend [22,23].
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Figure 1.5. Evolution of total cost and energy consumption for seawater desalination in Spain.

Figure 1.6. Location of the higher capacity RO desalination plants in Spain in 2006.
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The number of reverse osmosis plants used for water desalination in Spain increased a lot in
the recent years. According to the Asociacion Espafiola de Desalacion y Reutilizacion, in 2006
there were more than 900 water desalination RO plants in Spain, with the total water
production capacity around 1.510° m?¥day. The location of the higher capacity RO

desalination plants in Spain in 2006 is presented in Figure 1.6 [22].

The use of RO desalinated water increased in the recent years in Spain as presented in Figure
1.7, for all activity domains, like industrial, agricultural, or domestic use. As presented, the

total use of desalinated water doubled from year 2000 to 2004, from 0.7 hm3/day to

1.4 hm?/day [22].
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Figure 1.7. Evolution of RO desalinated water use in Spain.

To advance the efficient operation of modern RO membrane desalination plants it is
necessary to establish an effective approach to model plant operation and to identify
deviations in process conditions due to fouling and mineral salt scaling [15]. Ultimately there
were several intents for developing theoretical approaches based on physical concepts to
simulate the performance of the membrane separation processes [13-15,24-30]. Even though
some of them showed some success, each attempt presented limitations, due to the
complexity of the problem. Therefore, there are no general deterministic models available for

predicting the development of fouling in full-scale RO plants. The major obstacles to
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developing such predictive models are the complexity and temporal variability of feed
composition, diurnal variations, the inability to realistically quantify the real-time variability
of feed fouling propensity, lack of understanding of both the interplay of various fouling
mechanism and the precise role of membrane surface properties and membrane interactions

with various foulants and fouling precursors [30].

These drawbacks might be overcome by developing empirical models based on the direct
analysis of the experimental data, and the use of artificial neural networks (ANN) seems to

be a reliable option.

Objectives

The main objective of this study is to develop artificial neural network-based models for
representing the RO membrane processes operation performance. In order to accomplish the

presented purpose, specific sub-objectives are stated, as follows:

— To identify the molecular parameters of organic compounds and the membrane
properties which determine and control the organics permeation through RO

membranes, by applying different feature selection techniques.

— To establish correlations between molecular structure information, membrane
properties and experimental fouling data regarding the organic compounds via

artificial neural network-based quantitative structure-property relationships (QSPRs).

— To model the influence of organic compounds on the fouling processes occurring in

reverse osmosis, by means of artificial neural networks.

— To describe the dynamics of a reverse osmosis plant performance, by integrating the
effect of operating parameters, feed water quality and fouling phenomena occurrence

on the time evolution of permeate flux and salt passage.

— To develop neural network models based on real experimental data from a full-scale
RO pilot plant, to capture the plant performance evolution and to allow reasonable
short term forecasting. This would allow a better understanding of the relationship

between process condition and the onset of fouling, as well as the development of

10
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optimization and control strategies and soft sensors able to anticipate the process

upsets.

In order to achieve these objectives, two systematic approaches were demonstrated for the
use of artificial neural network-based models to describe the RO process performance. The
tirst methodology is based on developing quantitative structure-property relationships to
correlate molecular properties of organic compounds and membrane parameters with
experimental fouling data. A literature review indentified several studies which
demonstrated the influence of molecular parameters over the organic compounds rejection
by polymeric membranes. However, most of the existing approaches presented in the
literature are focused on small number of compounds belonging to specific classes, and are
based on describing single parameter influence over the membrane retention performances.
For different types of membranes and classes of compounds considered, conflicting trends
were observed between various molecular parameters and organics rejection. Therefore,
ANN-based QSPRs constitute an effective approach which allows the development of
general correlations considering the simultaneous influence of several molecular and

membrane properties over the organics behavior when facing RO membranes.

Organics of RO performance l RO membranes

concern experiments J (BW30; ESPA2; LFC1; TECHR; CA)
N

A 4

Calculate Sorbed (M)

molecular Permeate (P) Mrem]:;;zse
descriptors Rejected (R) prop
Scale data and apply a

(CFS; SOM-DA; ANNIGMA)

’L feature selection method J‘

A 4

N
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4 - N
Back-propagation-
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Figure 1.8. Methodology for developing NN-based QSPR models.

11
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According to the methodology presented in Figure 1.8, RO experiments were performed for
a number of 50 organic compounds, belonging to diverse classes and characterized by a set
of 45 molecular descriptors, and 5 commercial membranes, characterized by 9 properties.
The experimental data used to analyze the organics behavior in RO processes in terms of
absorption, permeation and rejection, were provided by Orange County Water District, Los
Angeles, California. Three different feature selection methods were used to select the
smallest number of relevant input parameters among the molecular descriptors and
membrane properties used to develop QSPR models for describing the passage and the
sorbed fractions. The rejected fraction was further calculated from a simple mass balance

using the predictions of the former two fractions.

The second methodology consists in modeling the dynamics of the reverse osmosis process
performance parameters. The approaches available in literature have typically addressed the
problem of system performance given a constant feed quality with ANN models used to
describe permeate flux decline or variation of separation performances. A limited number of
studies have explored the use of ANN to capture the dynamics of filtration processes in
situations when feed quality may vary. Although it is well accepted that the ANN-based
models can effectively describe the process performance variations, the approaches
developed up to now proved to be successful for interpolation, but without the capability of
forecasting. As previously mentioned, in order to optimize the design, operation and control
of the membrane processes, is necessary to dispose of a model able to capture and forecast
the process dynamics. Experimental data from a reverse osmosis brackish water desalination
plant, provided by WaterEye Corporation, were used for developing ANN models. The
ANN input and output variables were selected to ensure that they reveal clear information
regarding RO process performance. A unique element of the present approach was the
introduction of system memory effect, whereby past performance was considered in the
predictions of future plant behavior. Back-propagation-based models were developed to
describe the effect of operating parameters, feed water quality and fouling occurrence over
the time evolution of process performance parameters. An alternative approach based on
Fuzzy ARTMAP was developed for predicting process performance parameters based on

previous values.

12
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2. Theoretical fundaments

2.1. Fouling modeling in reverse osmosis and desalination processes

Many studies are devoted to the prediction, quantification and control of fouling, not only
for the pressure-driven membrane filtration processes, but also for submerged bioreactors
used for biological waste water treatment technology or even water circulating temperature
controllers. Several approaches were proposed for fouling diagnosis in membrane filtration
processes, like quantitative models for explaining the organic fouling based on solute
properties [31-39], development of neural networks predictive models to describe the
adverse impact of fouling occurrence over the process performance [40-51], or different
methodologies for in-situ monitoring of these processes, e.g. the use of capacitive
microsensors combined with ultrasonic time-domain reflectometry [52], or development of
membrane fouling simulator [53]. Recent studies were developed to mathematically
modeling the membrane fouling in submerged membrane reactors, providing more
fundamental understanding of critical factors governing fouling in these systems [54,55]. A
neural network-based specialized tool was developed to classify and diagnose the
functioning mode of water circulation electrical controllers, successfully used for detection of

simulated fouling in this system [56,57].

Studies on organic fouling of RO membranes have shown that the rejection of organic
substances is governed by their physicochemical properties (e.g., molecular size, solubility,
diffusivity, polarity, hydrophobicity, charge), membrane properties (e.g., permeability, pore
size, surface roughness, hydrophobicity, charge), process operating conditions (e.g., flux,
trans-membrane pressure, temperature, feed pH) and feed water composition [31-39,58-66].
The early work of Matsuura and Sourirajan [31] investigated the correlation of cellulose
acetate rejection of 54 organic compounds (32 alcohols and phenols and 22 mono-carboxylic

acids) as a function of the relative acidity of the molecule, estimated by the shift in the OH-
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band maximum in the IR spectra, and of the Taft number, which accounted for the effect of
substituents on the polar effect of the organic molecule [67]. The rejection of alcohols and
phenols was reported to decrease with increasing acidity with a steep change in rejection for
the low acidity range. For mono-carboxylic acids, the rejection decreased with increased
acidity (as represented by the pKa) to a minimum level, thereafter displaying increased
rejection with increased acidity. The rejection decreased with increasing Taft number for
alcohols, phenols and aliphatic mono-carboxylic acids, while a reverse trend was observed
for substituted benzoic acids [31]. Kastelan-Kunst et al. [33] also reported that the rejection of
organic compounds (2-ethoxy ethanol; 1,2-ethandiol; 2,2-dimethyl-1,3-propanediol;
formaldehyde; 2-butanone; ethyl acetate; tetrahydrofuran) by FT30 cellulose acetate RO
membranes, decreased linearly with increased Taft number. Van der Bruggen et al. [34]
measured the rejection of four pesticides (i.e., atrazine; simazine; diuron; isoproturon) by
four NF membranes (three polyamides and one polyethersulfone) and concluded that the
rejection of organics of approximately the same size decreased with increasing solute dipole

moment.

It is generally held that solute retention increases with increasing molecular size (which often
correlates with molecular weight). However, several studies [37,38] have shown that even
large molecules, such as certain endocrine disrupting compounds, can pass through RO
membranes. Van den Bruggen et al. [35] correlated the rejection of 25 organics (including
alcohols, ketones, esters, sugars and dyes) in NF membranes (two polyamides and two
polysulfones) with solute size parameters, such as molecular weight, Stokes diameter and
equivalent molar diameter (derived from molar volume), and a molecular diameter
(obtained based on optimized molecular configuration). This study demonstrated that for
RO and NF membranes organic solute rejection generally decreased with increasing dipole
moment and increased with molecular size. Kiso et al. [37] reported that rejection of 14
pesticide by one RO membrane (polyamide) and three NF membranes (one polyamide and
two polyethersulfone) increased with solute hydrophobicity as quantified by the organic
solute octanol-water partition coefficient (Kow). Rejection also increased with molecular
weight and molecular width, i.e.,, a parameter computed based on the molecule projected
area on a plane perpendicularly to the axis that connect the two most distant atoms [36]. In
subsequent studies, using the same membranes, Kiso et al. [36,38] showed that the rejection

of alcohols and saccharides increased with increased molecular width. However, no
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significant relationship was observed between the rejection of aromatic compounds (11 alkyl
phthalates and 7 mono-substituted benzenes) and the molecular size. Nevertheless, the
rejection of these compounds increased with Kow, with the best linear correlation (R?=0.812)
obtained for the mono-substituted benzenes. Rejection of alkyl phthalates was higher than
95% for 9 of the 11 compounds considered for membranes that displayed high NaCl
rejection, irrespective of their Kow values. For membranes with low NaCl rejection, high
organic rejection (>90%) was observed for compounds with Kow>4.7, while low organic

rejection (< 40%) was obtained for compounds with Kow < 4.

Ozaki and Li [32] evaluated for charged ultra-low pressure polyamide membranes the
correlation of the rejection of 19 organic compounds (i.e., 5 alcohols; 9 phenols; acetic acid;
urea; glucose; aniline and methyl chlorophenoxy acetic acid) with their molecular weight,
molecular size and acid dissociation constant (pKa). At pH 5 and 9, organic solute rejection
increased linearly (with R?>0.957) with molecular weight in the range of 30-180 Daltons for
6 of the undissociated organics (i.e., methyl alcohol; ethyl alcohol; ethylene glycol; triethylene
glycol; urea; glucose), excluding benzyl alcohol. Rejection also correlated linearly with
molecular width (R?>0.943) for the undissociated organics when triethylene glycol was
excluded. The rejection of dissociated organics (i.e., 9 phenols; acetic acid; aniline and methyl
chlorophenoxy acetic acid), however, did not correlated with neither molecular weight nor
molecular width, but rejection did decrease linearly with the pKa at pH of 5, while two

distinct and separable linear domains below and above pKa = 7 was observed.

More recently, Kimura et al. [39] reported for a polyamide RO membrane an increased
rejection with increased molecular weight for 11 organic compounds including 4 neutral
endocrine disruptors (i.e., 4-phenylphenol; carbaryl; bisphenol A; 17B-estradiol), 5
pharmaceutical active compounds (i.e, phenacetine; primidone; isopropylantipyrine;
carbamazepine; sulphamethoxazole), caffeine and 2-naphtol. These authors also noted, in
agreement with previous studies [34], that the rejection of organic solutes of approximately
the same size by a polyamide membrane decreased with increasing dipole moment.
However, increased rejection with increased dipole moment was observed for the cellulose
acetate membrane. Interestingly, for either the polyamide or the cellulose acetate
membranes, there was no apparent correlation between organic solute rejection and the

solute octanol-water partition coefficient.
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Schutte [62] investigated the performance characteristics of two commercially available RO
membranes (one cellulose acetate and one composite polyamide) with respect to rejection of
20 organic compounds including benzene, toluene, acetone, cyclohexane, 11 alkyl alcohols
(methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-
methyl-2-propanol, 1-pentanol, 1-hexanol and 1-heptanol), 7 alkyl phenols (phenol, 4-methy]l
phenol, 4-ethyl phenol, 2,6-dimethyl phenol, 4-n-propyl phenol, 4-isopropyl phenol and 4-n-
butyl phenol). Reverse osmosis experiments were performed at three different operating
pressures ranging from 1405 to 5620 kPa. The polyamide membrane rejection of linear alkyl
alcohols increased with increasing molecular weight. The rejection of branched isomers was
observed to be higher compared with the rejection of linear isomers of equal molecular mass.
The polyamide membrane rejection of alkyl phenols, benzene and toluene increased linearly
with molecular weight (the best linear correlation obtained R? = 0.934). In the case of cellulose
acetate membrane no correlation was observed between the molecular weight of the
considered compounds and their rejection. Moreover, cellulose acetate membrane showed
lower rejection compared with the polyamide membrane. Since the organics passage through
RO membranes depends on both sorption and diffusion, the solute flux was correlated with
the adjusted total surface area (ATSA) of the molecules. The ATSA was calculated by
adjusting the total cavity area of each molecule (parameter which gives a quantitative
indication of the sorption of organic solute by the membrane), with a hydrodynamic shape
factor (parameter which reflect differences in diffusion coefficient of the solutes). The
logarithm of solute flux decreased linearly with increasing the adjusted total surface for both
alkyl alcohols and alkyl phenols, with correlation coefficient of 0.960 and 0.940, respectively.
However, it was noted that the developed correlations, consistently predicted higher solute
fluxes for the branched isomers, meaning that the hydrodynamic factors considered did not

account fully for the branching effect.

More recently, Bellona et al. [60] carried out a comprehensive literature review regarding
factors affecting organics rejection and rejection mechanisms for NF and RO water treatment.
The solute parameters identified to determine the organics rejection were molecular weight
(found to be important especially for the non-charged, non-polar compounds), molecular
size (length and width), molecular structure (e.g., number of methyl groups in the molecule),
acid dissociation constant, hydrophobicity/hydrophilicity, polarity and diffusion coefficient.

Membrane properties that affect rejection included molecular weight cut-off (MWCO),
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desalting degree, porosity, morphology (i.e., roughness), hydrophobicity/hydrophilicity (i.e.,
contact angle) and surface charge (i.e., zeta potential). Moreover, feed water composition
(i.e., pH, ionic strength, hardness, presence of organic matter) were also identified to
influence the rejection. In addition, the authors proposed a qualitative classification of
organic compounds. Ten categories were identified when grouping the organics by
comparing their physico-chemical characteristics (i.e., molecular weight, acidity constant,
hydrophobicity and molecular width) with membrane properties (i.e., MWCO, pore size,
membrane charge) and operation parameters (i.e., pH). A general degree of rejection is given

for each category, in terms of low, moderate and high.

Van der Bruggen et al. [61] extended the qualitative classification proposed by Bellona [60],
using experimental data to develop a semi-quantitative approach for assessing the organics
rejection. Following the classification algorithm proposed by Bellona [60], 42 organic
compounds were clustered into the ten categories previously identified. Based on
experimental analysis for 12 compounds and 3 RO membranes, and previous results
reported in literature concerning the 42 organic compounds and 15 different RO membranes,
expected rejection ranges were proposed for each category. They concluded that the
categories including hydrophobic compounds are badly defined, since they include both
compounds with low and high rejection. Moreover, they suggested that additional
molecular, membrane and operation parameters might be considered for a full quantification

of organics rejection.

Given the significant impediments in developing models based on phenomenological
hypotheses to describe the dynamics of the RO processes, techniques focusing on direct
analysis of experimental data were investigated. Hence, artificial neural network-based
models have proved to be a viable alternative to model the plant performance variations
using physically meaningful, easy and inexpensive to measure process parameters. Previous
attempts of using artificial neural networks to describe dynamic filtration processes focused
on modeling the permeate flux decline, or equivalent increase in total membrane resistance,

as well as variations in separation performances, usually related to rejection.

17



UNIVERSITAT ROVIRA I VIRGILI

MODELING THE RESERVE OSMOSIS PROCESSES PERFORMANCE USING ARTIFICIAL NEURAL NETWORKS
Dan Mihai Libotean

ISBN:978-84-691-2701-8/DL:T.386-2008

Part of the available approaches for modeling membrane separation processes by means of
ANN considered a steady-state procedure, in order to identify the influence of different
process variables on the separation performances. Accordingly, Niemi et al. [48] used neural
networks to simulate the reverse osmosis of aqueous ethanol and acetic acid solution, and
ultrafiltration of a bleach plant effluent. Laboratory experiments considering a wide range of
several process parameters (i.e., feed flow velocity, temperature, concentration and pressure)
[68] were the basis of ANN models built to estimate the permeate flux and the rejection. The
extreme experimental values were used in the training phase, and testing subsequently the
model using the whole data set. The neural network (NN) predictions were slightly better
than the ones obtained by a finely porous mass transfer model [68], reducing significantly
the computational time. The influence of pressure, concentration and temperature of the feed
over the permeate flow rate for a RO process using a spiral wound FilmTec SW30 membrane
was investigated by Abbas and Al-Bastaki [40]. Different experimental runs were performed,
varying the three feed parameters previously mentioned, while maintaining constant the
feed flow rate and the permeate pressure. A 3:5:1 back-propagation neural network was
trained using the experimental values measured for the extreme operating temperatures (i.e.,
10 °C and 30 °C), and tested with the data corresponding to the intermediate temperature
(i.e., 20 °C). The predicted and experimentally determined permeate flow rates correlated
linearly with the slope of the best line fit of 1.08, and the coefficient of determination
R2=10.989. However, when the experimental data corresponding to an extreme temperature
value were selected for the test set, and the network was trained with the remaining data set,
the model revealed poor performance. These results confirmed the expectation that ANN
cannot be applied for data extrapolation (i.e., operational ranges that were not covered by the

training data set).

Several studies addressed the problem of system performance evolution during the process
operation. Dornier et al. [47] studied the use of neural networks for the case of raw cane
sugar syrup microfiltration system, for integrating the effects of hydrodynamic conditions on
the time evolution of the total hydraulic resistance of the membrane. Using a NN
architecture with three inputs (i.e., time, trans-membrane pressure and crossflow velocity),
two hidden layers (with 5 and 3 neurons, respectively, as resulting from an optimization
process) and one output (i.e., total membrane resistance), it was showed that the best results

were obtained when experiments in the centre and periphery of the parametric range were
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used in training a model based on constant operating conditions. For this case, the total
membrane resistance was predicted with the variation coefficient of 7.0% (defined as the
ratio between the root mean squared error and the experimental mean value, expressed in
percent), and the correlation between the predicted and experimental values characterized
by R?=0.975. The capacity of neural networks models to represent the evolution of process
performance under variable operation conditions was also investigated. In this case, the
network was trained with four different experimental runs with filtration time ranging from
140 to 180 hrs, and tested using three other sets when the filtration time varied from 100 to
180 hrs. Acceptable values were obtained for the variation coefficient and the coefficient of
determination between the experimental and predicted membrane resistance on the whole
data base (16.1% and 0.874, respectively). However, the total membrane resistance could not
be well reproduced for one experimental run with a dynamic different from the ones used in
training. Also, it is expected that the model can not be applied beyond the time range

considered in training (i.e., maximum of 180 hrs).

Razavi et al. [49] studied the ability of neural network approach for the dynamic simulation
of crosstlow milk ultrafiltration under constant feed quality. Using laboratory experimental
data, the permeate flux and the total hydraulic resistance were predicted as a function of
operation time, pH and fat percent of the feed. A set of processing conditions was used for
developing single curve simulation in order to enable the selection of optimum number and
arrangement of training points. Subsequently, 6 experimental points for each set of feed
quality conditions, including data corresponding to the beginning and the end of filtration
period, were chosen for training a neural network model. As a result, using only 10% of
experimental data for the learning base, a high accuracy model was built with the average

relative error 1.06%.

Delgrange et al. [44,45] used the neural networks modeling for an ultrafiltration drinking
water pilot plant to predict the hydraulic resistance and the trans-membrane pressure at the
end of a filtration cycle and at the beginning of a next one. The best configuration of input
parameters was found to include the turbidity of raw water, temperature and the permeate
flow rate. Since process history influence the membrane performance, information from the
beginning of the cycle and from the end of the previous one was considered. Prediction

errors lower than 5% were obtained when modeling both cases of reversible and irreversible
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fouling. Although turbidity was the only water quality parameter considered as input, good
predictions were obtained also when feed water contained organic matter, as a result of
considering history information. In a subsequent study, Delgrange-Vincent et al. [46]
developed a model based on two feed-forward neural networks interconnected in a
recurrent way, for predicting the productivity of an ultrafiltration pilot plant. The evolution
of the total membrane resistance at the end of each operational cycle, and at the beginning of
a new cycle after backwashing was predicted based on filtration operating parameters (i.e.,
permeate flow, filtration time), water quality parameters (i.e., turbidity, dissolved oxygen,
pH, ultraviolet absorbency) and backwash operating parameters (i.e.,, backwash pressure
and chlorine concentration). The model allowed good predictions even in the case of
changing water quality and operating conditions, for both reversible and irreversible fouling,
with 90% of the experimental points predicted with less than 10% of error. Shetty et al. [51]
investigated the use of a neural network for predicting the time evolution of the membrane
resistance in a drinking water nanofiltration process, for several configurations: flat
membrane sheets, single and multiple spiral-wound elements, for both bench- and full-scale
tests. Models based on back-propagation architecture, implementing a Levenberg-Marquardt
learning algorithm were developed to relate influent flow rate (i.e.,, sum of feed water and
recovery water flow rates), permeate flux, total dissolved solids (TDS) index, ultraviolet
absorbance at 254 nm, pH and temperature of the feed water and operational time with the
evolution of the total membrane resistance. When the recovery varied during the process
operation, both feed flow rate and influent flow rate were considered as input parameters.
The presence of experimental data corresponding to minimum and maximum values of each
input parameter was assured in the training data set. It was shown that using only 10% of
experimental points for training allowed the prediction of 93% of the data with an absolute

relative error below 5%.

The dynamic rate of crossflow ultrafiltration of colloidal dispersions given a constant feed
quality was predicted using ANNs by Bowen et al. [41]. The permeate flux decline was
predicted based on ionic strength (i.e, measure of the average electrostatic interactions
among ions in an electrolyte), zeta potential (i.e., electrostatic potential generated by the
accumulation of ions at the surface of a colloidal particle that is organized into an electrical
double-layer), time and applied pressure. In a first attempt, a 4:12:1 neural network was

trained using 4 to 6 experimental points from the filtration profiles corresponding to extreme
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pH and ionic strength conditions, and high, medium and low pressure values. Almost 84%
of experimental data were predicted within the 10% error margin, with an average error of
5.6%. Greater prediction accuracy was obtained when training a 4:10:1 network with
experimental data corresponding to extreme operating pressures for each pH-ionic strength
combination, and intermediate operating pressure for one set of solution conditions. In this
case, close to 95% of experimental data were predicted within the 10% error margin, with the
average error of 3.6%. Chellam [42] investigated the use of ANN in simulation of transient
permeate flux decline caused by polydispersed colloids during constant feed quality
crossflow microfiltration. Fouling caused by three different types of rigid, stable particles
with different size distribution under a wide range of hydrodynamic conditions was
analyzed. The instantaneous permeate flux was modeled as a function of initial feed
concentration, initial feed flux, entrance shear rate, instantaneous trans-membrane pressure
and filtration time. For each one of the colloidal suspensions, an individual ANN model was
trained using extreme values of input parameters. Using about 23% of the experimental data
for training phase, accurate models able to predict the majority of observations (~95% of

entire data set) with relative errors less than 10% were developed.

Chen and Kim [43] compared the performance of a radial basis function neural network
(RBFNN), a regular multilayer feed-forward back-propagation neural network and a
multiple lineal regression method for the prediction of the permeate flux decline in crossflow
membrane filtration of colloidal suspension under constant feed quality [69]. The particle
size of the suspended solids (SiO2), solution pH and ionic strength, trans-membrane pressure
and filtration time were used as input parameters. Training the networks with
approximately 17% of the data selected to be equally spaced in time and including the
extreme values of the experimental data, the best results were obtained in the case of the
radial basis function neural network. In this case, 97% of test data were predicted with less
than 10% of relative error, with the correlation between the predicted and experimental
values characterized by R?=0.988. Slightly worse results were obtained when using a
back-propagation neural network, when 87% of test data were predicted with less than 10%
of relative error, with the coefficient of determination between the measured and predicted
values R?=0.958. As expected, the worst results were obtained when using a multiple linear

regression method for predicting the permeate flux decline.
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Sahoo and Ray [50] used the same data set [69] as Chen and Kim [43] to develop a genetic
algorithm (GA)-based method for searching the optimal geometry of a back-propagation
neural network and a radial basis function network. The influence of training dataset size as
well as the importance of scaling the data was also analyzed. The results confirmed that the
models performance enhance when using a larger training dataset, and also, the use of scaled
data slightly improve the performance of the models. Comparing their results with the ones
obtained by Chen and Kim [43] (in terms of R-values between the predictions and the
experimental values), it is concluded that the GA-optimized ANNSs outperforms significantly
the trial-and-error calibrated ANNs. Anyway, it is not very clear whether their performance
index refers to the correlation coefficient (r), or to the coefficient of determination (R?) like
used by Chen and Kim [43], since comparing the root mean squared error (RMSE) values
obtained in the two studies for the RBFNN, small improvement in models quality is seen
only when using a large training dataset and scaling the data. In contrast with the
conclusions of Chen and Kim [43], back-propagation neural networks provided better results
than radial basis function neural networks, and this can be attributed to the use of optimum

network geometry, found using the GA method.

2.2. Artificial neural networks

Artificial neural networks are numeric techniques able to capture and represent complex
input-output relationships. They have the ability to learn linear, as well as non-linear
correlative patterns between sets of input data and corresponding target values, directly
from the data set that is modeled. They can also be successfully used in classification
problems, since there are specific algorithms available to group the input patterns in
different clusters based on similarities-dissimilarities between them. The ANN are

characterized by processing units (neurons) and adjustable parameters (weights) [70].

In the ANNs approaches, data normalization is necessary before starting the training
process, to ensure that the influence of the input variable in the course of model building is
not biased by the magnitude of their native values, or their range of variation. The
normalization technique used consist in a linear transformation of the input/output variables

to the range [0,1] using the following expression:
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where Xj; denote the normalized variable j for pattern i and min(X j) and maX(X ; ) are the

minimum and maximum values of that variable in the respective dataset.

For the predictive ANN algorithms used, the model performance is evaluated using the
quality indices specifically defined for each particular application. Moreover, the average
absolute and relative errors, standard deviation of the absolute and relative errors together

with the maximum values of these errors are also reported.

Back-propagation is a neural network training method based on a forward flowing of
information, and back-propagated error corrections. The back-propagation networks are

usually organized in layers of neurons, as the architecture presented in the Figure 2.1.

INPUT OUTPUT

Figure 2.1. Multilayer neurons architecture.

Connections are made between the neurons of adjacent layers: a neuron is connected so that
it receives signals from each neuron in the preceding layer and transmits signals to each
neuron in the immediately succeeding layer. Usually, there are at least three neurons layers:
an input layer which receives the input data, one or more hidden layers, and an output layer.
Additionally, a bias neuron (b) that supplies an invariant output is connected to each neuron

in the hidden and output layer [71].
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Each processing element (neuron) receives a number of inputs, X;. A weighted sum of these
signals is calculated, using the neuron’s assigned weights W,, which is transformed by an

activation function f to produce a single output signal Y, that is send to the neurons in the
succeeding layer. The output of one neuron is calculated using the Eq. (2.2), as can be

deduced from the sketch exposed in Figure 2.2:

Figure 2.2. Single neuron model.
Y:f(ZX,Wi +bj (2.2)

The activation function defines the output of the neuron in terms of the activity level at its
input. Different expressions can be used for the neuron’s activation function, like a step,

sigmoid, tangent sigmoid or linear function, presented in Figure 2.3.

step sigmoid
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Figure 2.3. Different neuron activation functions: (a) step; (b) sigmoid; (c) linear; (d) tangent sigmoid.
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The back-propagation training consists of two passes of computation: a forward pass and a
backward pass. In the forward pass an input pattern vector is applied to the neurons in the
input layer. The signals from the input layer propagate to the units in the first hidden layer,
each one producing an output as described above. The outputs of these neurons are
propagated using the same algorithm to units in subsequent layers until the signals reach the
output layer where the actual response of the network to the input vector is obtained.
Extending the formula for calculating the output of a single neuron (Eq. (2.2)) for the general

case of any unit from any layer, leads to:

X] = ff—l[z X Wit +bj‘1j (2.3)

1

where superscript j represents the layer number, while subscripts i and k represent the

neurons indices in layer j-1 and j, respectively. The networks” weights (V\/i{k ), that are fixed

during the forward pass, are all adjusted during the backward pass in accordance with a

back-propagated error signal for minimizing an error function [72].

For the output layer neurons, the error gradient is calculated based on the difference
between the target value and the neuron’s output (Eq. (2.4)), while for the hidden layer
neurons the error gradient is determined by calculating the weighted sum of errors at the

previous layer, as expressed in Eq. (2.5).

& =df* (T, -Y,) (2.4)

51]'—1 — dfj_l 2515 sz]k (2.5)
k

In Eq. (2.4) the superscript o represents the output layer, 0, is the error gradient of the kt
neuron, df° is the derivative of the activation function, Y, is the output of the kt neuron,
while T, is the kt target variable. In Eq. (2.5), 6/ is the error gradient of the it" neuron from

the layer j-1, and df I is the derivative of the activation function of the layer j-1.

The principle used for weights adaptation is also known as generalized delta rule. Once the
error gradients are evaluated for every layer, the biases and the weights are updated

according to the equations [73]:
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sz]k (n+1) :Vvi{k (n)+AVVi{k (1)
AW{k(”):ﬁ'5IZ 'ij‘*‘a'Avvf{k(”_l)
bl (n+1)=b] (n)+Ab)

Ab! = B-5] +a-Ab] (n—-1)

(2.6)

where n is the iteration number, while « and f are two parameters characterizing the
learning process. Here, S is the learning rate and « is the momentum term introduced to
improve the convergence by taking into account the effect of the weights changes from the

previous iteration.

A more efficient method used for weights adaptation is the Levenberg-Marquardt algorithm
[74,75], which is a combination between the gradient descent rule and the Gauss-Newton
method. The algorithm uses a parameter to decide the step size, which takes large values in
the first iterations (equivalent with the gradient descent algorithm), and small values in the
later stages (equivalent with the Gauss-Newton method). It combines the ability of both
methods (i.e., convergence from any initial state in the case of gradient descent, and rapid
convergence when reach the vicinity of the minimum error in the case of Gauss-Newton

method) while avoiding their drawbacks [71,76].

For the learning phase, the data must be divided in two sets: the training data set, which is
used to calculate the error gradients and to update the weights, and the validation data set,
which allows to select the optimum number of iterations in which the networks learns
general information from the training set. As the number of iterations increases, the training
error drops whereas the validation data set error begins to drop, then reaches a minimum
and finally increases. Continuing the learning process after the point when the validation
error arrives to a minimum leads to a process called over-fitting, when the network became
specific to the pattern vectors that form the training data set. After finishing the learning
process, another data set (test set) is used to validate and confirm the prediction

accuracy [44].

Self-Organizing Map (SOM) is a tool for visualization and classification of high-dimensional
data, by implementing an orderly mapping onto a regular low dimensional grid, while

preserving the relations between the input patterns [77,78]. The map (network) consist of a
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set of units (neurons or cells), originally arrange in physical positions according to a
topology function, since the map can have a rectangular or hexagonal grid, with plate,
cylindrical or toroidal shape, as depicted in Figure 2.4. During the learning process, the map
adapts itself to represent all the available input patterns ordered on the grid so that similar

samples are close to each other and dissimilar ones far from each other [79].

Hexagonal lattice Rectangular |attice

Toroid shape

Cylinder shape

Figure 2.4. Different SOM topologies.

At the beginning of the learning process, a prototype vector (often randomly initialized) of
the same dimension as the input data vectors is assigned to each map unit. At presenting a
current input pattern, it is simultaneously compared with all the map’s neurons, in order to
express the dissimilarity between it and each prototype in terms of a general distance
function, in most of the cases the Euclidian one. The best matching unit (bmu), which is the
network’s cell with the prototype most similar to the input, is selected (Figure 2.5). The next
step is to update the weights of the network, by moving the best matching unit and its
topological neighbors closer to the input vector in the input space. The update rule for the

prototype vector of unit i is:
m;(t+1)=m,(t)+a(t)h,,,(t) [x —m (t)] (2.7)

where m, is the prototype vector of unit i, ¢ is the training step, x is the input vector, a(t) is
the adaptation coefficient also called the learning rate factor, and h,,, . (t) is the

neighborhood function, often taken to be the Gaussian function expressed in Eq. (2.8)

centered on the winner unit denoted bmu.

t,.. —7T ?
hbmu,i (t) = exp[_% (28)
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In Eq. (2.8), 1,,,, and 7, are the positions of neurons bmu and i, respectively, on the SOM grid
and o’ (t) is the variance of the Gaussian. Both «(t) and o(#) decrease monotonically

with time, starting with higher values for the ordering phase in which a rough classification
is achieved, and attaining smaller values in the tuning phase when a fine adjustment of the

map is performed [77,78].

Input pattern

Figure 2.5. Self-Organizing Map.

This process is repeated until the classification stabilizes, i.e. no more adaptations are
needed. Once the SOM has been trained, several methods can be used for visually inspect the
results of the clustering process. The most widely used method is based on the unified
distance matrix (U-matrix), which indicates the overall shape of the map by means of
distances between prototype vectors of neighboring map units in the original grid. A
graphical representation of the contribution of each variable of the input vector to the

clustering process is obtained by extracting the component planes (C-planes) [80].

The number of formed clusters can be found by applying a partitioning algorithm, to a new
data set that consists of the prototypes of the trained network. A partitioning algorithm
organizes the data set into a number of clusters by minimizing some criterion or error
function [80]. One of the simplest unsupervised algorithms to solve the clustering problem is
the k-means. The procedure is based on defining k centroids (cj), one for each cluster (Qx), and

group the data set into these clusters by minimizing the following objective function (E):
k 2

E=> > Hx—ch (2.9)
j=1 xeQy

This can be achieved by an iterative procedure that consists in associating each sample form
the data set to the nearest cluster (in terms of distance to the cluster centroid), and then

recalculate new centroids as the centre of gravity of the clusters resulted from the previous
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step. The process must be repeated until the centroids do not change their location any more.
The k-means algorithm does not necessarily find the most optimal configuration, because it is
very sensitive to the initial randomly selected centroids. In order to reduce this effect, the

procedure can be run multiple times [71].

The decision criterion of the partitioning algorithm, which identifies the proper number of
clusters and their distribution, is a validity index. According to Davies-Bouldin index [81],

the best clustering minimizes the following function:

_l N max SC(Qk)+SC(Ql)
fk)=z { 1.(0,Q) } 210

where C is the number of clusters, S. is the within-cluster distance (the sum of the distances

c

between each pattern that lies in the cluster and the centroid), d,, is the distance between the

centroids of two clusters. According to this index, the partitioning that offers the most

compact clusters and well separated from each other is selected.

Fuzzy ARTMAP

ARTMAP is a class of neural network architectures designed for classification, based on
Adaptive Resonance Theory (ART), which perform incremental supervised learning of
recognition categories and multidimensional maps. The fuzzy ARTMAP neural network is
formed by a pair of fuzzy ART modules linked by an associative memory and an internal

controller, as shown in Figure 2.6 [82].

During the supervised learning, one of the ART modules (ART:) receives a set of input
patterns A, meanwhile the other module (ARTv) receives a corresponding set of input
patterns B, which is the correct prediction given A. Each module performs a classification of
the input received, and then a linking of the categories is realized by an associative learning
network. Every input pattern to the ART modules must be presented in complement coding
form including the input vector (2) and its complement (a°), as expressed in Eq. (2.11).
Therefore, the input vector @ must previously be normalized using Eq. (2.1), so that each of

its components lies in the interval [0,1].
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A=(a,a); a =1-q, (2.11)

1

This is a normalization rule that preserves amplitude information [83].

§ Map field ;

;) Linkage — j¢——
I R : b v
Categories Categories
A y N
i A 4 i y E
Hypothesis Hypothesis | ‘
4 tracking A
| (a.a) | (b,b°) @ |
| | ART, |

Input A Input B

Figure 2.6. Fuzzy ARTMAP architecture.

In each ART module, the input pattern (I) must be asses to a category, characterized by a set
of adaptive weights (w). The classification procedure of fuzzy ART is based on the Fuzzy Set
Theory [84]. Accordingly, the category is chosen based on a choice function, Tj, by
comparing the input pattern with the weights of each one of the existing categories:

T.(I)= ‘I/\w]-‘

] (2.12)

a+[w]
where wj is a vector of adaptive weights for the j* category; « is the choice parameter (> 0),
A is the fuzzy intersection operator defined by (p i )i =min(p,,q;) for any vectors p and g

having the same dimension, and the norm | - | is defined as the sum of the components of the

vector.

The category with the maximal choice function is chosen (noted by index J), and thereupon is
checked whether the resonance occurs. This happens if the match function of the chosen

category meets the vigilance criterion:
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Mz D (2.13)
]

In Eq. (2.13) p is the vigilance parameter ( p €[0,1]), which controls the number of created

categories and allows the implementation of desired accuracy criterion in the classification
procedure. This parameter calibrates the minimum confidence that an ART module must
have in a recognition category activated by an input pattern, in order to accept that category
rather than search for a better one [83,85]. If the vigilance criterion is not satisfied, the
mismatch reset occurs, and the next category possessing high value for the choice function is
chosen. The search process continues until a category to meet the resonance criterion is
found, or if this is not achieved, a new category is created. Once a category is selected for the
presented input pattern, its weight vector is updated according to the Eq. (2.14), using a

learning rate parameter, £ [0,1]:

W™ = B-(Irw)+(1-B)-w;" (2.14)

The associative memory records the link between the classes corresponding to the input
patterns presented to each ART module. The internal controller supervises if the new link is
in contradiction with any other previously recorded. If no contradiction is found, the link is
recorded. Otherwise, the input pattern for the ART. module is reclassified with a larger
vigilance parameter in a process called match tracking. It enables the neural network to learn
about similar patterns with different consequences, by sacrificing a minimum amount of
generalization in order to correct a predictive error. Therefore, the vigilance parameter is set
to be slightly larger than the match function, using a small positive infinitesimal quantity ()

[86,87].

a
:‘I/\w]

+e (2.15)
]

Pa

The Fuzzy ARTMAP neural networks were designed for data classification. However, a
modified architecture introduced by Giralt et al. [88] allows also the generation of an output
pattern once the network is trained using the algorithm prior presented. In the predictive
mode, only the category layer from ART» module is active, and linked to ARTa to provide an
output for each input pattern presented to the later module [88]. The generated output is

based on the adaptive weights of the ART» module.
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2.3. Methods for selection of the most suitable set of input parameters

In order to avoid the use of redundant information in model training, it is desirable to select
the smallest number of input parameters (i.e., hereinafter termed “features”), while
preserving the most relevant input information. In other words, the aim is to obtain the most
suitable set of input parameters selecting each feature that provides useful information,
while avoiding the duplication of information already afforded by other selected parameters
[89]. There are available several feature selection methods, which can lead to different set of
inputs, due to differences in the selection algorithm. There are available two common
approaches: filters, that evaluate features based on general characteristics of the data,
independent of any particular algorithm, and wrappers that employ a statistical re-sampling
technique using the actual target learning algorithm to estimate the accuracy of feature

subsets [90,91].

To assure that none of the relevant input parameters are overlooked, three different input
variable selection methods (two filters and one wrapper) are utilized: a) Waikato
Environment for Knowledge Analysis Correlation Feature Selection (WEKA-CEFES; [91]), b)
Self-Organizing Map Dissimilarity Analysis (SOM-DA; [92]), and c) Artificial Neural Net
Input Gain Measurement Approximation (ANNIGMA, [93]).

a) Correlation Feature Selection (CFS) method used is the one included in the WEKA
software package. WEKA is a collection of machine learning algorithms that provide a
general purpose environment for automatic classification, regression, clustering, and feature
selection, including algorithms for modeling such as decision trees, rule sets and linear
discriminants, as well as pre-processing data methods like discretization, normalization and
feature selection. Feature selection schemes include fast filtering as well as wrapper
approaches, with the evaluation measures based on correlation and entropy-based

criteria [94].

The correlation feature selection method [91] uses a search algorithm along with a function
to evaluate the “merit” of each feature subset, in order to select features that are highly
correlated with the desired target, but low correlated with other previously selected

parameters [95]. The heuristic by which CFS measures the performance of a feature subset
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takes into account the usefulness of individual features for predicting the target variable,
along with the level of intercorrelation among them:
k-7,

Merit, = (2.16)
; Jk+k(k-1) 7,

where Merit; is the heuristic performance of a feature subset S containing k features, 7, the
average absolute feature-target correlation, and 7, the average absolute feature-feature

intercorrelation. The Pearson’s correlation coefficient between two n-size arrays x and y, with

the average values X and ¥, respectively, can be defined as:

n

Z(xi -x)(v:~Y)

r, =—=1 (2.17)

B S

i=1 i=1

Empty “best feature subset”

Y

Create all new possible subsets by
the single addition of each non-used [«
feature to the “best feature subset”

Measure the “merit”
of each subset

g y,
s ; N
Select the subset with the
highest “merit” as the
L new “best feature subset” )

Is the “merit”
of the current
“best feature subset”
grater than the one
obtained on the
previous step?

Declare the “best feature subset”
the one obtained at the previous step

Figure 2.7. CFS algorithm for selection of the "best feature subset".
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Being based on a forward selection algorithm, the search starts having the “best feature
subset” as an empty set of features and generates all possible single feature expansions. In an
iterative process, the subset with the highest performance is chosen and is expanded by
creating all possible subsets by adding single non-used features. If expanding a subset results
in no “merit” improvement, the search terminates and the best unexpanded subset is

returned as the “best feature subset” (Figure 2.7) [91,96].

b) Self-Organizing Map Dissimilarity Analysis feature selection approach proposed by
Rallo et al. [92] is based on the projection of all the candidate subsets of variables on the
space generated by a SOM. An indicator of the relevance of each subset with respect to the
target variable is obtained by comparing the generated maps based on the dissimilarity

measure proposed by Kaski and Lagus [97]:

N ‘d%(xi)_sz(xi)‘
; dy, (x;)+dy, (x;)

D(M,,M,)= (2.18)
n

In the above equation, D is the dissimilarity measure between two maps, M, and M,, and
d(xz.) is the Euclidean distance over the map, from the input sample xi to its second best
matching unit, denoted by bmu’(xi), passing first from xi to the best matching unit, denoted
by bmu(xi). For each input sample x, the distance is calculated considering the shortest
continuous path (passing through neighbor units) between bmu(x) and bmu’(x):

L (bmu'(x))-1
+min Hmf,-(k>‘ml,-<k+1)
k=0

‘ (2.19)

d(x) = Hx - mbmu(x)

where I, (k) denotes the index of a k' unit on the i path along the map grid from unit

bmu(x) to bmu’(x), and m represents the weight vector associated with each cell unit.

The application of the approach consisted of using all the available data (molecular
descriptors and target variables) to build the SOM. Next, the C-planes are extracted and the
U-matrix is computed. The process of selection of relevant variables starts by the
identification of the redundant ones, using a redundancy index defined by Rallo et al. [83]

that takes into account the correlation between variables and their representation over the
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map (C-planes and U-matrix). The variables which present the redundancy index greater
than a certain threshold (=0.95-0.98) are discarded from the dataset, since they provide
similar information with that of other variables. After the removal of the redundant
variables, a new SOM is created, followed by the extraction of the C-planes. These planes are
classified in several clusters, by using a SOM approach followed by a Davies-Bouldin index

procedure [81] for determining the optimal clusters configuration.

The next step in the selection of the “best feature subset” is the identification of an initial set
to start the search procedure. The starting point for the search is determined by choosing a
representative variable for each cluster, assuring in this way the presence of non-repetitive
information in the initial set. To avoid the inclusion of irrelevant features in the initial set,
only those variables that present a correlation with the target higher than the average
correlation for the whole set of variables are considered. The iterative process of finding the
“best feature subset” consists in the addition of the rest of variables, one by one, in the
decreasing order of their absolute correlation with the target variable. For each subset of
descriptors formed in this way, a new SOM is obtained. The dissimilarities between all the
maps obtained are computed using Eq. (2.18), and the configuration which presents a
minimum average dissimilarity between the corresponding map and all other maps is
selected as the “best feature subset”. The smallest average dissimilarity value indicates the
maximum coherence and compactness of the information represented by those particular

maps [92].

c) Artificial Neural Net Input Gain Measurement Approximation is a feature selection
approach proposed by Hsu et al. [93]. The method is based on ranking the features by
relevance based on the weights associated to each one by a back-propagation neural
network. The reasoning behind this algorithm is that the neural networks” weights represent
a measure of the gain of the input signal to the output node. An input will strongly affect the
output if it has associated high weights. Therefore, a network training algorithm intends to
reduce the weights of an irrelevant input and to increase the weights of a relevant one. An
evaluation index is defined based on the network weights, to asses the influence of each

input over each output,
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LG, =

AO <
AAT _ Z]‘,‘W; W]ﬂ (2.20)

where LG is the local gain between the input A, and the output O,, n, is the number of

neurons in the hidden layer, W' and W? are the weights associated with the neurons in the
hidden and output layers, respectively, and the subscripts i, j and k refers to the neurons
indices in the input, hidden and output layers, respectively. The ANNIGMA score is further

calculated by normalizing the local gain to a scale of 100.

LG,

IQPJPJI(;Adfqm ::;;;;;Z(fzi_j
k

-100 (2.21)

This feature selection method is based on a backward stepwise elimination (BSE) wrapper
algorithm. The feature selection process starts with the complete set of original variables and
removes features from candidate subsets during the search. A large number of irrelevant
features are eliminated in early iterations while a fine adjustment is performed in the
subsequent iterations. When the performance degrades, the best of the discarded features are

brought back into the candidate subset.

In contrast with previous two feature selection methods presented, ANNIGMA offers the

possibility to rank the features according to their relevance with respect to multiple targets.
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3. Quantitative structure-property relationship for organic compound rejection in

reverse osmosis membranes

3.1. Experimental data, pretreatment and model development

The existing literature on organic solute rejection by RO and NF membranes summarized in
Section 2.1 reveals that while rejection depends on molecular parameters, conflicting trends
still exist. The aforementioned studies have mostly focused on the correlation of rejection
with a few molecular properties for a small number of compounds belonging to narrow
chemical classes. Clearly it would be beneficial to develop predictive models based on a
detailed mechanistic understanding of the reasons for the observed organic solute rejection
levels (or passage) as a function of the properties of the solute and the membrane.
Nevertheless, this is a daunting task given the large number of current and future organics
(and compound classes) that may be of concern in municipal and industrial wastewaters. An
alternative approach is to develop quantitative structure-property relationship models that
consider the simultaneous correlation of organic solute rejection with multiple molecular
parameters for the membranes considered, with the potential for being applied to a broad-
range of compound classes. In this regard, artificial neural networks offer a unique capability
for building multi-parameter QSPRs with wide applicability domains. ANN-based QSPRs
have been proposed for estimation of different physicochemical properties [98-104], as well
as biological activity, pharmacological or toxicological properties [92,105-109]. Therefore, the
potential application of ANN-based QSPR models for the analysis and prediction of organic
solute rejection by RO membranes has been explored using experimental RO performance
data for fifty different organic compounds and five different commercial RO membranes.
The feature selection approaches presented in Section 2.3 have been applied to select the
most appropriate model input variables to correlate and estimate, using ANN-based QSPR

models, the sorption, passage, and rejection of organic compounds by RO membranes.
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Table 3.1. Organic compounds with available experimental data, with identification of application and/or effects.

Family? CAS

Name

Compound class, known use and/or toxicity endpoint

P b s S

i i i s S i i i i i S i

15972-60-8
71-43-2
80-05-7
58-08-2
2921-88-2
57-88-5
51481-61-9

76-57-3
120-83-2
94-75-7
84-66-2
56-53-1
121-14-2
57-91-0
53-16-7
100-41-4
71-00-1
15687-27-1
58-89-9
298-00-0
98-95-3
104-40-5
87-86-5
108-95-2
85-44-9
57-83-0
19466-47-8
58-22-0
108-88-3
85-01-8

2-Chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide (Alachlor)
Benzene

2,2-bis(4-Hydroxyphenyl)propane (Bisphenol A)
1,3,7-Trimethyl-2,6-dioxo-1,2,3,6-tetrahydropurine (Caffeine)

O,0-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphorothioic acid (Clorpyrifos)

(3beta)-Cholest-5-en-3-o0l (Cholesterol)

2-Cyano-1-methyl-3-(2-(((5-methylimidazol-4-yl)methyl)thio)ethyl)guanidine

(Cimetidine)

3-o-methylmorphine monohydrate (Codeine)
2,4-Dichlorophenol

2,4-Dichlorophenoxyacetic acid

1,2-Benzenedicarboxylic acid diethyl ester (Diethylphthalate)
3,4-bis(p-Hydroxyphenyl)-3-hexene (Diethylstilbestrol)
2,4-Dinitrotoluene

17a Estradiol

1,3,5(10)-estratrien-3-ol-17-one (Estrone)

Ethylbenzene

2-Amino-3-(3H-imidazol-4-yl)propanoic acid (Histidine)
2-[4-(2-Methylpropyl)phenyl]propanoic acid (Ibuprofen)
1,2,3,4,5,6-Hexachlorocyclohexane (Lindane)
O,0-Diethyl-O-4-nitro-phenylthiophosphate (Methyl parathion)
Nitrobenzene

4-Nonylphenol

2,3,4,5,6 Pentachlorophenol

Phenol

1,2-Benzenedicarboxylic anhydride (Phthalic anhydride)
Pregn-4-ene-3,20-dione (Progesterone)
beta-Sitostanol-n-hydrate
17b-Hydroxy-4-androsten-3-one (Testosterone)

Toluene

Phenanthrene

Endocrine disruptor

Fuel hydrocarbon-Carcinogen

Estrogenic/antiandrogen household waste water product
Pharmaceutical human drug
Insecticide-Industrial/household waste water product
Pharmaceutical sex/steroid hormone-Fecal indicator
Pharmaceutical human drug

Pharmaceutical human drug

Algicide, antihelmintic, bactericid, agricultural fungicide
Endocrine disruptor

Plasticizer-Industrial/household waste water product
Pharmaceutical-Estrogen-Carcinogen

Production of isocyanate and explosives-Carcinogen
Pharmaceutical-Estrogen-Sex/steroid hormone
Pharmaceutical-Sex/steroid hormone

Fuel hydrocarbon

Amino acid

Non-steroidal anti-inflammatory drug

Insecticide

Insecticide

Solvent and mild oxidizing agent
Surfactant-Endocrine disruptor

Endocrine disruptor

Phenolic compound

Plasticizer-Industrial/household waste water product
Pharmaceutical-Sex/steroid hormone

Plant sterol-Endocrine disruptor

Hormone

Solvent-Carcinogen

Polycyclic aromatic hydrocarbon
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Table 3.1. Organic compounds with available experimental data, with identification of application and/or effects (continuation).

Family? CAS Name Compound class, known use and/or toxicity endpoint

B 56-41-7 2-Aminopropanoic acid (Alanine) Amino acid

B 70-47-3 2-Amino-3-carbamoylpropanoic acid (Asparagine) Amino acid

B 56-84-8 2-Aminobutanedioic acid (Aspartic acid) Amino acid

B 52-90-4 2-Amino-3-mercaptopropanoic acid (Cysteine) Amino acid

B 79-43-6 2,2-Dichloroacetic acid Disinfect byproduct

B 124-40-3 N,N-dimethylamine Raw material, or solvent in synthesis

B 56-40-6 Aminoethanoic acid (Glycine) Amino acid

B 56-87-1 (5)-2,6-Diaminohexanoic acid (Lysine) Amino acid

B 63-68-3 (5)-2-Amino-4-(methylsulfanyl)-butanoic acid (Methionine) Amino acid

B 62-75-9 N-nitroso dimethyl amine Carcinogen

B 75-65-0 tert-Butyl alcohol Alcohol-Industrial solvent

B 72-19-5 (25,3R)-2-Amino-3-hydroxybutanoic acid (Threonine) Amino acid

B 76-03-9 Trichloroacetic acid Disinfection byproduct

B 57-13-6 Urea Fertilizer

B 72-18-4 (5)-2-Amino-3-methyl-butanoic acid (Valine) Amino acid

B 127-18-4 1,1,2,2-Tetrachloroethylene Industrial chlorinated solvent

DB 85721-33-1 1-Cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3- Pharmaceutical human/veterinary antibiotic
quinolinecarboxylic acid (Ciprofloxacin)

DB 564-25-0 4-(Dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,10,12,12a-pentahydroxy-6- Pharmaceutical human/veterinary antibiotic
methyl-1,11-dioxo-2-naphthacenecarboxamide monohydrate (Doxycycline)

DB 60-00-4 Ethylenediaminetetraacetic acid Chelating agent

DB 60-54-8 Tetracycline Antibiotic

3 Family of compound as identified in Figure 3.2a. A — Family A; B — Family B; DB — Domain Border.
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The experimental data used for analyzing the RO membranes performance with respect to
the organic compounds in terms of sorption, passage and rejection, were provided by
Orange County Water District, Los Angeles, California [110]. The set of 50 compounds listed
in Table 3.1 mostly of public health concern, was selected for a detailed experimental RO
study. The selection was made based on an interrogation of several available databases
regarding monitoring rules for contaminants and toxic substances, including the U.S.
Geological Survey Toxic Substances Hydrology Program [111], U.S. Environmental
Protection Agency Unregulated Contaminant Monitoring Rule [112], U.S. Environmental
Protection Agency Announcement of the Drinking Water Contaminant List [113], and the
California Department of Health Services Unregulated Chemicals Requiring Monitoring
[114]. The list of compounds includes endocrine disruptors, pharmaceutically active
compounds, antibiotics and antimicrobial agents, neuroactive drugs, insecticides, herbicides,
pesticides, disinfection byproducts, solvents, industrial pollutants and fuel hydrocarbons.
Several amino acids were also considered to broaden the range of molecular properties

variations.

Five commercial RO membranes, four polyamides (BW30, ESPA2, LFC1, TFCHR) and one
cellulose acetate (CA), whose properties are listed in Table 3.2, were selected for a detailed
experimental evaluation of their performance expressed as sorption, passage and rejection
with respect to the selected organic compounds. Membrane properties used to characterize
the selected RO membranes include contact angle, zeta potential at pH=7 and zeta potential
slope (at the pH range of 5-7), root-mean-square (RMS) surface roughness and specific water
flux. Additional information for the polyamide membranes include the polyamide layer
thickness, two COO-/Amide ratios and the OH-/Amide ratio derived from attenuated total
internal reflection Fourier transform infra-red (ATR-FTIR) spectroscopic measurements.
These four polyamide membrane parameters are unitless relative indices based on ratios
between the absorption at different wavelengths corresponding to the presence in the
membrane of carboxyl group (1415 cm™), amide I bonds (1665 cm™), amide II bonds
(1542 cm™), hydroxyl group (3400 cm™) and polysulfone membrane support layer (874 cm™).
The contact angles along with the zeta potential are typically used as indicators of the degree
of membrane hydrophilicity. The RMS surface roughness is also reported as a surrogate
measure that indicates possible differences in sorption surface area. The polyamide layer

thickness directly affects membrane transport resistance in the polyamide membranes.
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Table 3.2. Properties of membranes used for experimental analysis.

Membrane Properties BW30 ESPA2 LFC1 TFCHR CA
Contact angle [degrees] 61.5 61.3 61.7 61.5 66.2
Zeta potential [mV] -12.8 -26.0 -17.3 -16.3 -22.4
Zeta potential slope (pH 5-7) -2.67 -5.00 -1.03 -1.61 -0.62
COO-/Amide I ratio 0.46 0.31 0.43 0.33 -
COO/Amide Il ratio 0.42 0.27 0.42 0.33 -
OH-/Amide I ratio 2.09 0.53 1.37 0.80 -
Polyamide thickness 1.30 1.31 1.19 0.69 -
Roughness [nm] 82.9 90.9 111.5 48.6 44.6
Specific water flux 1.03 1.44 1.44 1.23 0.34

[m3.m-2.s-l .kPa-l.lOS]

BW30 — Thin Film Composite (TFC) brackish water RO membrane (DOW Filmtec); ESPA2 — TFC
brackish water RO membrane (Hydranautics); LFC1 — TFC low fouling brackish water RO membrane
(Hydranautics); TFCHR — TFC high rejection RO membrane (Koch Membrane Systems); CA -
Cellulose acetate brackish water RO membrane (Osmonics).

RO membrane characterization studies

The organic compounds used, with purity >99%, were stored either at 4 °C or —20°C
(depending on the compound) for a minimal period of time (typically less than one week)
prior to assay to lessen the opportunity for post-manufacture chemical changes. Compounds
labeled with *C were chosen preferentially over compounds labeled with 3H to reduce the
possibility of radiolysis during storage and to suppress *H proton exchange with water
during interaction with the membrane [115]. Only four compounds labeled with SH were
used. These were cimetidine (51481-61-9), beta-Sitostanol-n-hydrate (19466-47-8),
doxycycline (564-25-0) and tetracycline (60-54-8).

Membrane characterization tests consisted of the determination of solute permeation and
sorption thereby enabling calculation of rejection in a series of dead-end membrane filtration
experiments carried out in the apparatus depicted Figure 3.1. Solute mass in the feed,
collected permeate and sorbed by the membrane was determined based on measurements of
the radioactivity of the feed, permeate and the membrane itself. Solute mass rejected by the
membrane was determined by the difference between the solute mass in the feed charge and
the sum of the mass accumulated on the membrane plus the organic compound mass in the

permeate.

Membrane performance studies were carried out using a small dead-end stainless-

steel/Teflon pressure filtration cell (VWR, Bristol, CN), which supported the membrane
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coupon (1.25 cm diameter) on a perforated stainless steel disk with the feed surface sealed
with a Teflon O-ring. Membrane samples measuring 10.1x15.2 cm were preconditioned
under crossflow conditions in a plate-and-frame stainless steel RO cell at a pressure of
1034 kPa for 16 hrs using 1 pohm-cm deionized water to hydrate and clean the membranes.
Following preconditioning, circular 1.25 cm diameter coupons of membrane were cut for use
in a high pressure dead-end filtration cell drawn schematically in Figure 3.1. These
conditioned membrane coupons were stored in 17 Mohm-cm ASTM I ultrapure water at 4 °C

for no more than one week before use.

Solute m

' I'.Apgrmeating
feed (f) solute (p)
Rejecfgd
solute (r)
S()‘i{'i't‘e'-sorbéaﬂi)y

membrans” (m) Rd.Membrane_) Measure Membrane

Radioactivity

1034 kPa TS
BEH okt frleris 1> Collect Product

Measure Feed Measure Product ¢ Determine

Radioactivity ~ Radioactivity Volume
r=f-(IIl+I)) P2

Figure 3.1. Schematic illustration of solute sorption, permeation and rejection by the RO membrane in
the experimental dead-end filtration mode.

Prior to each experiment, the feed side of the pressure cell (Figure 3.1) was filled with 5 ml
feed solution, prepared using ultrapure water, with the target organic at concentration of
about 9 uM, resulting in typically 10° — 10¢ disintegrations per minute (DPM) of the
radiolabeled (**C or °H) test compound. At this concentration, the effects of concentration
polarization on the osmotic pressure were expected to be relatively low, despite the dead-
end filtration mode of operation. All the experiments were carried out at 1034 kPa and 24 °C
with the feed solution pH adjusted to 7 using HCl or NaOH. A minimum of five replicate

membrane performance measurements were performed with each membrane-solute
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combination. All pressure cell components were thoroughly cleaned and decontaminated
prior to each experiment with a radiodecontamination solution (Radiacwash #005-400,
Biodex Medical Systems, Inc., Shirley, MA), followed by detergent cleaning to remove
organic contaminants (Micro-90, International Products Corporation, Burlington, NJ). All
system components were subsequently washed with deionized water (1 pohm-cm deionized
water) and subsequently soaked in water for a minimum of 1 hr. Prior to use all system
components were scrubbed with a nylon bristle brush, rinsed with deionized water followed
by rinsing with 70% laboratory grade denatured ethanol, an additional rinse with deionized

water and finally drying in air.

Permeate product was collected in a 10 ml of scintillation cocktail (SC) solution (Optifluor,
Packard Instrument Company, Meriden, CT) in a 22 ml scintillation vial, through a 18-gauge
hypodermic needle attached to the pressure cell product side. Once a permeate volume of
approximately 0.5 ml was collected (and weighted to precision of +0.005 g), the membrane
coupon was removed and rinsed by sequentially immersing and swishing in three 400 ml
beakers containing 350 ml of 17 Mohm ASTM I grade ultrapure water. Excess solution was
wicked away from the membrane surface using an adsorbent paper and the membrane was
then immersed into a 22 ml scintillation vial containing 10 ml of the SC solution. Membrane
samples were incubated overnight in order to facilitate permeation of the cocktail into the
membrane material. The above procedure yielded higher than 99% recovery of membrane-
retained (i.e., sorbed) organics. Scintillation vials containing feed, permeate and membrane
samples were analyzed using a scintillation counter (Wallac LKB 1219 Rackbeta Liquid
Scintillation Counter, Perkin-Elmer, Shelton, CT). Quench and counting efficiency were
corrected using the external sample channel ratio method with ?*Ra as the external standard
to yield a DPM measurement which was corrected for background DPM measured for a

10 ml of a reference SC solution.

Characterization of organic compounds

Molecular descriptors were derived from molecular calculations given the chemical
structures of the selected compounds listed in Table 3.1. Molecular structures, presented in

ANNEX ], were first drawn using ACD/ChemSketch 8.00 (Advance Chemistry Development
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Inc.) [116] and converted to three dimensional structures using the CAChe Software (Oxford
Molecular Ltd.) [117]. The geometry of the three dimensional structures for the water
dissolved compounds were subsequently optimized using the molecular orbital package
(MOPAC) with the AMI1 (Austin Model) Hamiltonian. MOPAC is a semi-empirical
quantum-mechanical computational tool that uses the presence and positions of electrons
between atoms to compute and minimize an energy related to the heat of formation, by
solving the Schrodinger equation for the best molecular orbitals and geometry of the
chemical molecule considered [118]. The AM1 Hamiltonian is an operator in the Schrodinger
equation that describes the energy of the electrons and nuclei in the molecule, based on the

modified neglect of differential diatomic overlap approximation [119,120].

The initial set of 45 molecular descriptors (Table 3.3) was selected to ensure inclusion of the
major descriptors that have been shown effective for neural network-based correlations of
chemical properties such as aqueous solubility [100], octanol-water partition coefficient [102],
infinite-dilution activity coefficient [104], critical properties [99], vapor pressure [101] and
Henry’s law constant [103], in addition to those correlating descriptors reported in previous
studies of organic solute rejection by RO membranes [31-39]. The selected chemical
descriptors included constitutional, topological, geometrical, electrostatic and quantum

chemical parameters [120].

The constitutional descriptors included the number of atoms in the solute molecule, bond
counts (single bonds and double bonds), number of rings, size of the smallest and the largest
ring, and molecular weight. The bonds count excluded ionic bonds, and the coordinate
bonds were counted as simple bonds. Molecular topological descriptors included three
connectivity indices [121,122] of orders 0, 1 and 2, three valence connectivity indices [121,122]
of orders 0, 1 and 2, and three k (kappa) shape indices of orders 1, 2 and 3 [123]. Molecular
connectivity indices encode two-dimensional structural information into numerical values
based on a molecular structure which is expressed topologically by a hydrogen-suppressed
graph. The connectivity indices are the valence weighted counts of the connected subgraphs.
The zeroth order term (atomic) is related to the degree of branching and size of the molecule
expressed as the number of non-hydrogen atoms. The first order term (bond) represents a
dissection of the molecular skeleton into “two contiguous bond” fragments. The second

order (path) is a weighted count of four atoms (three-bond) fragment representing the
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potential of rotation around the central bond. The first order kappa shape index quantifies
the number of cycles in the chemical compound, the second order kappa shape index
quantifies the degree of linearity or star-likeness of the chemical, and the third order kappa

shape index quantifies the degree of branching toward the center of the chemical.

Table 3.3. Molecular and membrane descriptors used for developing QSPR models.

Molecular descriptors and membrane properties

1 — Atom count (all atoms)

2 — Bond count (all bonds)

3 —Bond count (single bonds)
4 — Bond count (double bonds)
5 — Ring count (all rings)

6 — Size of smallest ring

7 — Size of largest ring

8 — Molecular weight [Da]

29 — HOMO energy [eV]

30— LUMO energy [eV]

31 — Dielectric energy [kcal/mol]

32 — Steric energy [kcal/mol]

33 — Heat of formation [kcal/mol]

34 — One term energy: electron-electron repulsion [eV]
35 — One term energy: electron-nuclear attraction [eV]
36 — One term energy: total energy[eV]

9 — Connectivity index order 0

10 - Connectivity index order 1

11 — Connectivity index order 2

12 — Valence connectivity index order 0
13 — Valence connectivity index order 1
14 — Valence connectivity index order 2
15 — Shape index kappal

16 — Shape index kappa2

17 — Shape index kappa3

37 — Two center energy: electron-electron repulsion [eV]
38 — Two center energy: electron-nuclear attraction [eV]
39 — Two center energy: nuclear-nuclear repulsion [eV]
40 — Two center energy: total electrostatic [eV]

41 — Two center energy: resonance [eV]

42 — Two center energy: exchange [eV]

43 — Two center energy: total energy [eV]

44 —Total energy [eV]

45 — Molar refractivity

18 — Moment of inertia A [1040g-cm?]
19 — Moment of inertia B [10-40g-cm?]
20 — Moment of inertia C [104°g-cm?]

21 — Solvent accessibility surface area [A?]

46 — Contact angle [degrees]
47 — Zeta potential [mV]

48 — Zeta potential slope (pH 5-7)
49 — COO-/Amide I ratio

22 — Polarizability [A3]

23 — Dipole moment [Debye]

24 — Dipole vector X [Debye]

25 — Dipole vector Y [Debye]

26 — Dipole vector Z [Debye]

27 — Dipole point-charge [ Debye]
28 — Dipole hybridization [Debye]

50 - COO/Amide II ratio

51 - OH-/Amide I ratio

52 — Polyamide thickness

53 — Roughness [nm]

54 — Specific water flux [m3-m2-s1-kPa1-10%]

Variables from 1 to 45 represent molecular descriptors, while variables from 46 to 54 are properties of
the membranes. Variables 49 to 52 refer only to the polyamide membranes. In italic font are presented
molecular/membrane descriptors selected at least for one model.

The geometrical descriptors were the moments of inertia (A, B and C) and the solvent
accessibility surface area. The moments of inertia characterize the mass distribution in the
molecule and the susceptibility of the molecule to different rotational transitions. Each
moment of inertia is defined with respect to a specific rotational axis. The solvent
accessibility surface area is the molecular surface area that is accessible for contact with a

sphere of 1.4 A2 which approximates the radius of a water molecule [124].
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The electrostatic descriptors [120] were the polarizability, dipole moment, dipole vectors (X,
Y and Z), dipole point-charge and dipole hybridization. The polarizability represents the
response of electron distribution to an externally-applied static electric field. The dipole
moment accounts for the internal separation of the positive and negative charges in a
molecule, being a sum of two terms: one term corresponding to the non-uniform distribution
of the electrons in bonds (dipole point-charge), and the second term to the influence of the
atoms hybridization (dipole hybridization). The dipole vectors provide information

regarding the spatial orientation of the charge distribution [125].

Quantum chemical descriptors included 15 energy descriptors, heat of formation and molar
refractivity [120]. The quantum total energy parameter is defined as the sum of one-center
and two-center energy terms which were considered as additional potential chemical
descriptors. The one-center energy terms include electron-electron repulsion and
electron-nuclear attraction. The two-center energy terms include resonance energy, exchange
energy, electron-electron repulsion, electron-nuclear attraction, and nuclear-nuclear
repulsion. The total electrostatic (or Coulombic) interaction is equal to the sum of the
following two-center energy terms: electron-electron repulsion, electron-nuclear attraction
and nuclear-nuclear repulsion. The resonance energy corresponds to the difference in
delocalized pi electrons and localized pi electron in a double bond. The exchanged energy
involves two electrons where the energy of attraction is between the nuclei and the overlap
charge in the bond. HOMO energy is the energy required to remove an electron from the
highest unoccupied molecular orbital, while the LUMO energy is the energy gained when an
electron is added to the lowest unoccupied molecular orbital. The heat of formation is the
energy released or used when a molecule is formed from elements in their standard state.
The steric energy is a summation of the energy terms for all included bonds, angles and
torsions, taking into account also the non-bonded interactions (e.g., van der Waals and
electrostatic interactions). The dielectric energy is the stabilizing portion of the total energy
of a molecule that results from screening the charges in the molecule by a dielectric.

Molecular refractivity is related to the refractive index, molecular weight and density [126].

The initial set of descriptors (Table 3.3) used as inputs in the QSPR models included 45
molecular solute descriptors and 9 membrane properties. The output variables are

considered the membrane performance parameters, which included the solute mass in the
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permeate (p) and sorbed by the membrane (m) for a given permeate volume collected. These

performance parameters were converted into mass fractions:

M=—"_.p-_"P @3.1)
p+m+r p+m+r

It is also noted that the above mass fractions can also be considered as the fractions of the
fluxes of solute permeation and sorption per membrane surface area, relative to the total
additive solute mass flux over the permeation period. The rejected fraction R was then

calculated from a simple mass balance, i.e, R=1-(M+P).

Data conditioning and selection of compounds belonging to the same chemical domain

Prior to model development, all input and output parameters (i.e., solute and membrane
descriptors and solute fractions) were normalized in the range [0,1] using Eq. (2.1). Further,
the exploration of the chemical space for defining the model application domain is necessary.
Chemicals, such as those listed in Table 3.1, are usually characterized in terms of molecular
descriptors by using different approaches. For example, descriptor value ranges, principal
component ranges, geometric methods based on the convex hull, distance-based methods,
and probability density modeling methods can be applied [127]. The principal components
analysis (PCA)-based approach, which uses the orthogonal coordinate system defined by the
principal components, is one of the most widely adopted approaches. A 2D projection onto
the space spanned by the two first principal components usually provides adequate
information about the distribution of data in the input space. On the other hand, the K-
means clustering of a Self-Organizing Map (SOM) built to classify the considered chemicals
is a suitable alternative to PCA. First, SOM is a topology preserving projection method which
permits visualization of the data space in a 2D plot. Second, the SOM clustering process uses
Euclidean distances between vectors formed by compounds’ chemical descriptors to
compute the similarity between chemicals in the dataset. Finally, SOM approaches the point
probability density of the input space in a way that more units are placed in regions of the

input space where data points are dense and fewer units where density is sparse.

The PCA and SOM results for 50 chemicals listed in Table 3.1 are shown in Figure 3.2. Each

compound in these plots is represented by a 45-dimensional vector formed by all molecular
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descriptors listed in Table 3.3. The PCA projection results (Figure 3.2a) suggest the presence
of two chemical families. Family A with the first 30 chemicals and Family B with the
following 16 chemicals listed in Table 3.1. Figure 3.2a also identifies four chemicals, with
their CAS numbers indicated, which are located closer to the boundaries of the chemical
domain (DB chemicals; see also Table 3.1) and thus will significantly influence any model
developed. Figure 3.2b shows the K-means classification of the SOM prototype vectors
representing the clusters obtained after classifying all 50 chemicals that are also represented
by vectors of descriptors. Ten coherent chemical families (in terms of molecular descriptors)

can be identified from the clustering of SOM prototypes in Figure 3.2b.

The PCA discrimination between chemicals in Families A and B (Table 3.1) is mainly
accomplished by the occurrence of aromatic rings in the former or of amino functional
groups in the latter. Family B contains chemicals without rings in their molecular structure.
Moreover, it includes 9 of the 10 amino-acids listed in Table 3.1, the exception being
Histidine (71-00-1) which belongs to Family A because it is an amino-acid with an imidazol
aromatic ring in its molecule. Family B also includes three amines, two acids, one alcohol and
one halogenated compound. It should also be noted that the 16 chemicals of Family B (Table

3.1 and Figure 3.2a) constitute class 5 in the SOM classification depicted in Figure 3.2b.
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Figure 3.2. Analysis of the chemical space by means of (a) PCA; (b) SOM.

Of the chemicals near the domain boundary (DB), ethylenediaminetetraacetic acid (60-00-4)
is unique from the molecular structure viewpoint since it constitutes a single class in the
SOM (class 4), i.e., it is not structurally similar to any of the other chemicals in Table 3.1. The
antibiotics tetracycline, doxycycline and ciprofloxacin (60-54-8, 564-25-0, 85721-33-1),
previously detected at the domain borders by the PCA-based approach, form another
coherent and separate SOM class (class 10 in Figure 3.2b). These three antibiotics are located
in the neighborhood of ethylenediaminetetraacetic acid (60-00-4). Thus, the PCA and SOM
classifications complement each other in the characterization of the chemical domain
explored in the current study with respect to organic chemicals passages through RO

membranes.
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A more detailed understanding of chemical domain of the current 50 chemicals can be
obtained from the examination of the functional groups that best discriminate between the
three families of compounds A, B, and DB in Table 3.1, as suggested elsewhere [128]. This

functional group analysis is summarized in the histogram depicted in Figure 3.3.

The more characteristic functional groups of Family A are nCq (number of total quaternary
sp3 C), nCrq (number of ring quaternary sp3 C), nN+ (number of positive charged N),
nArNO2 (number of aromatic nitro groups), nArCOOR (number of aromatic esters), nArOR
(number of aromatic ethers), nPO4 (number of phosphates/thiophosphates), nlmidazoles
(number of Imidazoles), NRCONR2 (number of aliphatic tertiary amides), nN=C-N< (number
of amidine derivatives), nC(=N)N2 (number of guanidine derivatives), nNq (number of
quaternary N), nN(CO)2 (number of imides [thio-]), nROR (number of aliphatic ethers),
nO(C=0)2 (number of anhydrides [thio-]), nCH2RX (number of CH2RX), nCXr (number of X
on ring sp3 C), and nPyridines (number of Pyridines). For Family B, the more characteristic
functional groups are nR=Cp (number of terminal primary sp2 C), nRNNOx (number of
aliphatic N-nitroso groups), nSH (number of thiols), nCHRX2 (number of CHRX2), nR=CX2
(number of R=CX2) and nCRX3 (number of CRX3). For the DB chemicals, the more
characteristic functional groups are nArCO (number of aromatic ketones) and nArNR2

(number of aromatic tertiary amines).

The above suggests that the selected compounds are similar in terms of functional groups
that are both coherent with the families identified by PCA and SOM analyses, and match the
selection criteria. For example, chemicals that are of public health concern are included in
Family A, amino acids in Family B and antibiotics in the DB compounds class. In addition,
the above classification and domain characterization results indicate that the majority of the
50 chemicals reasonably span the chemical space. Since the data set is very small from a
QSPR development point of view, all chemicals have been considered in the current model
building, even though higher prediction errors are expected for under-represented

compounds.
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Figure 3.3. Discriminant functional group for the compounds in the three families identified by the PCA. Functional groups abbreviations taken from:
http://www .talete.mi.it/help/dragon_help/index.html?Functional GroupCounts11.
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Development and quality assessment of ANN models

Several artificial neural networks-based QSPR models were developed to analyze the
influence of the chemical structure on the sorption (M), passage (P) and rejection (R) of
organic compounds determined experimentally for four polyamide and one cellulose acetate
RO membranes. The models were developed based on back-propagation architecture with
one input layer, one hidden layer and one output layer. The linear transfer function was
utilized for the input and output layers and a hyperbolic tangent transfer function was used
for the hidden layer (see Figure 2.3) [71]. For each model that was generated, the network
architecture was established with the condition that the total number of connections between
network’s neurons would not exceed the total number of input data points. This condition
was specified as
n,—n

n, = min(n,‘f‘ax;Z-ni —1); < —r—o (3.2)
1+n, +n,

where 1, n,, and n, are the number of neurons in the input layer, hidden layer and output

layer respectively, and 7,, is the number of data in the training set.

Two types of analyses were carried out, the first based on internal validation, with a leave-
one-out (LOO) cross-validation procedure [129], and the second one consisted on an external
validation with an independent set of test compounds that were not used for model training
[129,130]. For both cases, the average absolute and relative errors, standard deviations and

maximum value of these errors were also computed.

For the internal model validation, each one of the 50 chemicals in Table 3.1 was individually
and sequentially eliminated from the data set and the remaining (50-1) compounds used to
train 50 different models. The cross-validation explained variance in the prediction index, ¢?,
was then calculated for all the individually predicted mass fractions using the 50 models

[129],

n

Z(yi_]?i)z

g =1-5— (3.3)

Z(yi_y)Z

i=1

52



UNIVERSITAT ROVIRA I VIRGILI

MODELING THE RESERVE OSMOSIS PROCESSES PERFORMANCE USING ARTIFICIAL NEURAL NETWORKS
Dan Mihai Libotean

ISBN:978-84-691-2701-8/DL:T.386-2008

where y, and 7, refers to the experimental and predicted mass fraction for the compound i,
Y is the average fraction value of experimental data for all n compounds and q? is the

explained variance in prediction index, which varies from 0 to 1. A low value of ¢? in the
LOO test typically indicates a model with low internal predictive ability and low robustness
or ability to avoid the influence of outliers [130]. However, the converse does not necessarily
hold, since it has been shown that a high value of g? obtained for internal validation is an
insufficient criterion for a QSPR model to be highly predictive, especially when the number
of descriptors is approaching or is higher than the number of compounds [130]. Therefore
model testing by external validation is also needed, i.e., by using an external data set not

used to train the model.

Accordingly, external validation of model quality with separate but complementary training

and test sets was evaluated with the following two indices:

Ty T

Z(%_ﬁi)z Z(%‘_?i)Z
erzl_::l—;qtzszl_fl— (34)
T 2 ts

2 (Yi=¥n) (v~

i=1 i=1

where g; and g; are the training and test set explained variance in prediction, respectively,
and ¥, is the average value of the experimental data belonging to the training set. The

number of samples in the training and test set are represented by n# and ns, respectively
[129]. A clustering SOM-based algorithm [77] was used to divide the chemical data set (using
the best feature subset and target variable), for each selected network architecture, into
consistent training and test sets. In the present approach, the compound nearest to the
centroid of each SOM cell was taken to be as most representative of that map unit. The
representative compounds of the six cells with the higher number of hits (i.e., number of
molecules allocated to each cell) were selected for the test set (i.e., six compounds), with the
remaining compounds (44) assigned to the training set. The above procedure assured that
the training set contained data that were reasonably representative of the entire chemical

domain.
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3.2. Results

Three types of artificial neural networks QSPR models were developed for the sorbed
fraction (M) and passage fraction (P): (a) independent ANN-QSPR models for each of the
solute fractions and membranes used (hereinafter termed Independent ANQ models),
(b) specific ANN-QSPR models for each of the solute fractions for the composite collection of
several membranes (hereinafter termed Membrane-Composite ANQ models), and
(c) ANN-QSPR models that simultaneously considered the two solute fractions for each

specific membrane (hereinafter termed MP-Composite ANQ models). The predicted

rejection fraction (R) was calculated from a simple mass balance, i.e., R=1- (M + lAD ) where

A A

M and P were estimated from the ANN-QSPR models. The models were built using the
most suitable set of input descriptors (Table 3.4) selected from the initial set of indices (Table
3.3) by the three feature selection methods presented in Section 2.3.

Table 3.4. Feature selection results for the Independent ANQ, Membrane-Composite ANQ/PA and
MP-Composite ANQ models.

Independent ANQ models

Membrane FS method M fraction P fraction

CA CFS 628 30 6813142830
SOM-DA 4568172324262830313233 1456891619212728303235
ANNIGMA 4 67 23 26 27 28 29 35 6782325272829 30

BW30 CFS 623252833 7816212430
SOM-DA 461617 2324252627 28303133 14568914162526293035
ANNIGMA 567 16 23 24 25 29 30 33 6782123273334

ESPA2 CFS 623252833 6781316212430
SOM-DA 45617232526282930313233 1456891416272829303235
ANNIGMA 567 16 18 23 24 25 29 33 67121321232627 3233

LFC1 CFS 617 23 2528 33 6816212430
SOM-DA 456161723242526272829303133 14568915161724293035
ANNIGMA 67 14 16 18 23 25 27 29 30 31 33 67823242527323334

TFCHR CFS 6232528 33 6781316212430
SOM-DA 456172324252628293023133 14568914162729303235
ANNIGMA 567 16 23 24 25 29 30 6721242728313233
Membrane-Composite ANQ/PA (BW30, ESPA2, LFC1, TFCHR) models

Membrane FS method M fraction P fraction

PA SOM-DA 4561724282930313233474852 45691618 192528293031 3247

MP-Composite ANQ models

Membrane FS method M and P fraction

CA ANNIGMA 468232627282930

BW30 ANNIGMA 56723242527282933

ESPA2 ANNIGMA 56723242527 282933

LFC1 ANNIGMA 567816232425272829303133

TFCHR ANNIGMA 5672324252728293233

Indices correspond to molecular and membrane descriptors, as identified in Table 3.3.
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It should be noted that for building Membrane-Composite ANQ models, only SOM-DA
selected both molecular and membrane descriptors. In Table 3.4 are presented the input
parameters selected by SOM-DA for developing models for the collection of all four
polyamide membranes (termed Membrane-Composite ANQ/PA models). The same
parameters were utilized also for developing models for the collection of all five membranes
used (termed Membrane-Composite ANQ/PACA models), adding for each fraction model
the membrane Specific Water Flux among the model inputs. In the case of M fraction
Membrane-Composite ANQ/PACA model, given the fact that polyamide thickness is one of
the selected inputs and this parameter refers only to the polyamide membranes, the value
zero was used for the cellulose acetate membrane. As presented in Section 2.3, among the
three feature selection methods used, only ANNIGMA offers the possibility to rank input
features according to their relevance with respect to multiple targets. Therefore, the input
parameters selected using this method for developing MP-Composite ANQ models are
presented in Table 3.4. However, MP-Composite ANQ models were built also by using as
input parameters the union of molecular descriptors selected by CFES for the Independent
ANQ models for the M and P fractions. Low model quality is expected in a similar analysis
performed using the molecular descriptors selected by SOM-DA due to the increased
number of input parameters chosen by this method which would lead to a small number of
neurons in the hidden layer as calculated from Eq. (3.2). Therefore, such analysis is not

performed.

Selection of model input parameters for Independent ANQ models

Generally, the SOM-DA and ANNIGMA offered a more ample selection comparing with
CFS. The SOM-DA always selected the largest number of features for all models considered,
because of the specific criteria used by this method to reduce the number of input
parameters. In the SOM-DA approach, descriptors are sorted in a decreasing order of
importance of influencing the topological organization of the target variable in the SOM map

that accounts for chemical similarity.

A very good agreement between the three feature selection methods was observed. Table 3.4
shows that for every membrane, the set of input descriptors selected by the CFS method for

the M fraction model was a subset of those selected by the SOM-DA method. However, not
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all the descriptors selected by CFS for the M fraction models were contained also in the
descriptor sets selected by ANNIGMA. The same was concluded after comparing the
descriptors selected by ANNIGMA with the ones selected by SOM-DA. Nevertheless, the
descriptors selected only by one method have corresponding descriptors belonging to the
same descriptor class (Table 3.3) in the subsets selected by the other two methods. For
example, all five molecular descriptors selected by CFS for the M fraction model for the
BW30 membrane (descriptors 6, 23, 25, 28 and 33) belong also to the subset selected by
SOM-DA. Four of them (ie., 6 23, 25 and 33) belong also to the subset selected by
ANNIGMA, while the remaining electrostatic descriptor (i.e., 28) was replaced by the latter
method by another electrostatic descriptor (i.e., 24). Seven molecular descriptors were
selected by both ANNIGMA and SOM-DA methods: 6, 16, 23, 24, 25, 30 and 33. The
constitutional descriptors 5 and 7, selected only by ANNIGMA method, were replaced in the
subset selected by SOM-DA by another topological descriptor (i.e., 4). Also, the quantum
chemical descriptor 29, selected by ANNIGMA method, was replaced by the SOM-DA

method with descriptor 31, which belongs also to the quantum chemical class.

Similar conclusion is achieved in the case of P fraction models. For example, three of the
molecular descriptors selected by CFS for modeling the P fraction in the case of BW30
membrane (i.e., 8, 16 and 30) were selected also by SOM-DA. The constitutional descriptor 7,
selected by CFS, was replaced in the subset selected by SOM-DA by four other constitutional
descriptors (i.e., 1, 4, 5 and 6). Also, the electrostatic descriptor 24 selected by CFS was
replaced by the electrostatic descriptors 25 and 26 in the subset selected by SOM-DA. For the
same membrane, three molecular descriptors were selected by both CFS and ANNIGMA
(i.e., 7, 8 and 21). The electrostatic descriptor 24 and the quantum chemical descriptor 30
selected by CFS, were replaced by the electrostatic descriptors 23 and 27, and by quantum
chemical descriptors 33 and 34, respectively, in the subset selected by ANNIGMA. Two
molecular descriptors were selected by both ANNIGMA and SOM-DA (i.e., 6 and 8). The
constitutional descriptor 7 selected by ANNIGMA was replace in the subset selected by
SOM-DA by other three constitutional descriptors (i.e., 1, 4 and 5). Also, the electrostatic
descriptors 23 and 27, together with the quantum chemical descriptors 33 and 34 selected by
ANNIGMA, were replaced in the subset selected by SOM-DA by electrostatic descriptors 25

and 26 and quantum chemical descriptors 29, 30 and 35, respectively.
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A close examination of molecular features selected in Table 3.4 reveal descriptor selection
similarities between the polyamide and cellulose acetate membranes. For example,
comparing the input sets selected with the CFS method, molecular descriptors 6 and 28 were
commonly selected for all five membranes for the M fraction model. Similarly, molecular
descriptors 8 and 30 were commonly selected for all five membranes for predicting the P
fraction. However, certain differences were also observed. For example, for the M fraction
prediction, molecular descriptors 23, 25 and 33 were selected by the CFS method only for the
polyamide membranes, while molecular descriptor 30 was selected only for the cellulose
acetate membrane. For the P fraction, molecular descriptors 16, 21 and 24 were selected only
for the PA membranes, while molecular descriptors 14 and 28 were selected only for the CA
membrane. Similarly, with the SOM-DA method, molecular descriptors 4, 6, 17, 23, 26, 28, 30,
31 and 33 were selected for all five membranes for the M fraction, while molecular
descriptors 1, 4, 5, 6, 8, 9, 16, 30 and 35 were selected for all five membranes for the P fraction.
It should be noted that molecular descriptor 8 was selected for the M fraction only for the CA
membrane, while molecular descriptor 25 was selected only for the four PA membranes.
Molecular descriptors 19 and 21 were selected only for the P fraction and CA membrane,
while molecular descriptor 29 was selected only for the four PA membranes. ANNIGMA
selected for each one of the five membranes the molecular descriptors 6, 7, 23 and 29 for the
M fraction, and molecular descriptors 6, 7 and 27 for the P fraction, respectively. For the M
fraction, molecular descriptors 16 and 25 were selected only for the four PA membranes,
while molecular descriptors 4, 26, 28 and 35 were selected only for the CA membrane. In the
case of the P fraction, molecular descriptor 33 was selected for all four PA membranes, and
molecular descriptors 28 and 29 were selected only for the CA membrane. The above results
are consistent with the expectation that the significance of specific solute chemical
descriptors for the prediction of solute permeation and sorption (i.e,, P and M fractions)

should also vary with membrane properties.

Selection of model input parameters for Membrane-Composite ANQ models

Among the input parameters selected for the M fraction Membrane-Composite ANQ/PA
model, molecular descriptors 4, 6, 17, 28, 30, 31 and 33 were selected also for M fraction
Independent ANQ models of each one of the four PA membranes. In the case of P fraction,

molecular descriptors 4, 5, 6, 9, 16, 29 and 30 selected for the Membrane-Composite ANQ/PA
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model were selected also for the Independent ANQ models for every PA membrane. These
parameters were also selected by SOM-DA in the most suitable set of input parameters for
the Independent ANQ models built for the CA membrane. Therefore, the input parameters
presented in Table 3.4, as selected for the composite collection of all four PA membranes,
were also used for developing Membrane-Composite ANQ/PACA models. The most suitable
set of input descriptors for building Membrane-Composite ANQ models for the PA
membranes included membrane descriptors 47, 48 and 52 for the M fraction model and 47
for the P fraction model. For the Membrane-Composite ANQ/PACA models, the membrane

specific water flux was also added among the model inputs.

Selection of model input parameters for MP-Composite ANQ models

Molecular descriptors selected by ANNIGMA for the MP-Composite ANQ models for each
membrane are a subset of the union of descriptors selected by the same method for the M
and P fraction Independent ANQ models. Molecular descriptors 5, 6, 7, 23, 24, 25, 27, 28, 29
and 33 were selected for all four polyamide membranes. Among these, molecular descriptors
6, 23, 27, 28 and 29 were selected also for the cellulose acetate membrane. Molecular
descriptors 5, 7 24, 25 and 33 were selected only for the PA membranes, while molecular

descriptors 4 and 26 were selected only for the CA membrane.

Correlating input descriptors for organic chemical separation performance

The most relevant molecular descriptors that characterize membrane performance in terms
of organic solute passage and sorption, and calculated rejection, can be identified via analysis
of the frequency of occurrence of the different molecular descriptors in the optimal input sets
selected by the CFS, SOM-DA and ANNIGMA feature selection methods (Table 3.4) for the
Independent ANQ models. Accordingly, the molecular descriptors identified as most
relevant for correlating solute sorption (M fraction) are the size of the smallest ring (6),
dipole moment (23), dipole hybridization (28), LUMO energy (30) and heat of formation (33).
In addition, the dipole vector Y (25) was also selected as relevant for correlating solute
sorption by the polyamide membranes. The most influential molecular descriptors for

correlating solute passage (P fraction) for either the polyamide or cellulose acetate
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membranes are the size of the smallest ring (6), molecular weight (8), shape index kappa
2 (16) and LUMO energy (30). For the cellulose acetate membrane, dipole hybridization (28)

was selected as an additional parameter to characterize the P fraction.

The current identification of molecular descriptors as most relevant for describing organic
passage, sorption rejection by RO membranes is in general agreement with previous studies.
For example, previously has been reported that molecular size and steric effects influence
organics rejection [32,35,37-39]. Specifically, descriptors selected in the present approach
which characterize molecular size and steric effects included, for example, molecular
weight (8), shape index kappa 2 (16), moment of inertia B (19). Other selected descriptors are
the size of the smallest ring (6) and the heat of formation (33). The selection of the former is
consistent with the fact that 70% of the compounds in the study set, those pertaining to
Family A in Figure 3.2a and Table 3.1, contain at least one aromatic ring. Selection of the heat
of formation (33) can also be rationalized by the fact that this parameter is related, among
other factors, to molecular size and molecular bonds stability in relation to structural

complexity.

The current feature selection methods also identified molecular dipole parameters, such as
dipole moment (23), dipole vector Y (25) and dipole hybridization (28), in addition to the
LUMO Energy (30), as relevant molecular information for organic compounds passage
through RO membranes. The identification of dipole moment descriptors is consistent with
previous studies [31,33,34,39] that have suggested the importance of the dipole moment as a
factor affecting solute-RO membrane electrostatic interactions [35]. Previous studies have
also suggested that the rejection of organic compounds is strongly influenced by surface
hydrophobic/hydrophilic interactions that have been typically correlated with the solute
octanol-water partition coefficient [36-38]. It is emphasized that the octanol-water partition
coefficient (Kow) is not a fundamental molecular parameter and thus it was not explicitly
considered in the present initial set of descriptors. However, a number of the molecular
descriptors identified in Table 3.4 as relevant for organic passage and sorption, i.e.,
molecular weight (8), dipole moment (23) and dipole hybridization (28), have also been

previously identified as relevant molecular descriptors for the prediction of Kow [102].

The polyamide membrane properties that were identified by the feature selection methods as

being significant correlating parameters for organic compound sorption and passage were
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the zeta potential (47), zeta potential slope (pH 5-7) (48) and polyamide thickness (52). The
first two parameters are associated with membrane charge, while the latter affects membrane
permeability. The specific water flux (54), used to differentiate between polyamide and
cellulose acetate membranes, is also related with the membrane permeability and to the
membrane pore size. Surface charge, membrane permeability and membrane pore size have

been reported to affect organic rejection by RO membranes [32,58,60].

Performances of QSPR models for solute sorption, passage and rejection

The performances of all QSPRs developed are presented in ANNEX III for the internal LOO
cross-validation and in ANNEX IV for the independent test set compounds used in the
external validation. Given the fact that models performance for the four polyamide
membranes were similar as determined by both internal and external validation methods, in
the next sections are presented and discussed in detailed the results for only two of them
(BW30 and TFCHR), together with the results for the cellulose acetate membrane. The
selected descriptors that best explain the chemical behavior for the BW30 and LFC1
membranes, as well as for the TFCHR and ESPA2 membranes, are almost coincident, as
presented in Table 3.4. Furthermore, the ranges of experimental M, P and calculated R
fractions for the BW30 and TFCHR are representative for the considered polyamide
membranes, as seen in ANNEX II. For brevity of reporting, the average relative errors are
presented in parenthesis, just after the corresponding absolute values. It should be noted that
these error calculations exclude mass fraction values that are equal to zero or that could be
considered zero based on the average standard deviation of the experimental measurements

for the data set under consideration.

Independent ANQ models

The M and P mass fractions predicted by the LOO internal validation Independent ANQ
models, together with the calculated R fraction, are depicted in Figures 3.4 - 3.6 for the BW30,
TFCHR and CA membranes, respectively. The external validation predictions for the M and

P fractions, together with the calculated R fractions, are plotted in Figure 3.7 for the same
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three membranes. All figures include the results obtained with the sets of descriptors
selected by the CFS, SOM-DA and ANNIGMA methods (Table 3.4). All Independent ANQ
models developed, including those for the ESPA2 and LFCl membranes, showed an
explained variance in the prediction of M and P fractions, and calculated R fraction, higher
than 0.975 for internal LOO cross-validation. As expected, the explained variance for external
test set validation presented lower values. However, in most of the cases the explained
variance in prediction exceeded 0.900, which also indicates a remarkable model performance.
The worst results were obtained for the calculated R fraction for CA membrane using the
descriptors selected by CFS, which can be attributed to the small number of descriptors
selected for the M fraction model for this membrane-feature selection combination (Table
3.4). The same reason is the cause of the lower model performance observed in Figure 3.7g.
The internal validation average absolute errors for all predicted fractions were up to 0.020
(average relative error of 12.4%). In the case of external validation, the average absolute
errors increased up to 0.077 (70.9%), except for the CA membrane models with descriptors

selected by the CFS method which approximately doubled the average absolute deviation.

Internal validation with LOO models. In order to explore the adequacy of the selected
chemical descriptors and to confirm their proper identification, internal LOO validation
analysis was carried for Independent models for the M and P fractions, as their governing
mechanisms respond to different solute/membrane interactions. The LOO validation for the
M and P models and for the calculated R fraction, as shown in Figures 3.4 and 3.5 for the
BW30 and the TFCHR membranes, revealed good performance. Explained variance in
prediction higher than 0.976, and average absolute errors smaller than 0.017 (7.0%) were
obtained for all predicted mass fractions for the BW30 and TFCHR membranes. Slightly
higher average errors were obtained for the CA membrane models (Figure 3.6), with the
highest average relative error of 12.4% when the chemical descriptors were selected by the
CFS method. The internal validation maximum absolute errors were as high as 0.230

(270.2%), indicating the presence of outliers, particularly for the CA membrane case.

Predicted M and P fractions for the BW30 membrane with LOO models are in good
agreement with the measured organic fractions as is evident in Figure 3.4. Performance of
the M and P models based on CFS selected descriptors (Figure 3.4a,d,g) was with average
absolute errors of 0.006 (5.1%) and 0.005 (5.2%), with standard deviations of 0.009 (11.8%)
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Figure 3.4. LOO cross-validation of Independent ANQ models for the polyamide BW30 membrane.
Predicted M fractions with (a) CFS, (b) SOM-DA and (c) ANNIGMA descriptors; Predicted P fractions
with (d) CFES, (e) SOM-DA and (f) ANNIGMA descriptors; Calculated R fractions from predicted M

and P fractions with (g) CFS, (h) SOM-DA and (i) ANNIGMA.

and 0.010 (8.5%), respectively. For the calculated R fraction, the average absolute error was
0.007 (1.2%), with a standard deviation of 0.011 (1.6%). When the input molecular descriptors
to the LOO models were selected by the SOM-DA method, both M and P fractions (Figure
3.4b,e,h) were predicted with essentially the same average absolute errors of 0.008 (4.2% for
M and 7.0% for P), with corresponding standard deviations of 0.014 (5.3% for M and 12.8%
for P). For the calculated R fraction, the average absolute error was 0.010 (1.8%), with a
standard deviation of 0.016 (4.2%). Similar results were obtained also when using the input

descriptors selected by ANNIGMA (Figure 3.4c,f,i), when the average absolute errors for the
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M and P fractions models were 0.013 (4.2%) and 0.006 (6.2%), respectively, with the
corresponding standard deviations of 0.035 (5.9%) and 0.010 (8.3%). The average absolute

error for the calculated R fraction was 0.017 (1.8%) with a standard deviation of 0.036 (2.4%).

Comparison of Figures 3.4 and 3.5 indicates that the LOO models, for the M and P fractions,
built independently for the BW30 and TFCHR polyamide membranes perform equally well.
Performance of the M and P models for the TFCHR membrane based on CFS selected
descriptors (Figure 3.5a,d,g) was with average absolute errors of 0.010 (6.3%) and 0.004
(3.3%), with standard deviations of 0.018 (15.0%) and 0.006 (3.6%), respectively. For the
calculated R fraction, the average absolute error was 0.012 (2.4%), with a standard deviation
of 0.018 (3.0%). When the input molecular descriptors were selected by SOM-DA (Figure
3.5b,e,h), model performance for the M and P fractions for the TFCHR membrane were with
average absolute error of 0.006 (3.1%) and 0.007 (3.2%), with standard deviations of 0.007
(3.4%) and 0.027 (4.8%), respectively. In this case, the average absolute error for the
calculated R fraction was 0.010 (1.2%) with a standard deviation of 0.025 (1.3%). When the
input molecular descriptors were selected by the ANNIGMA method, the M and P fractions
(Figure 3.5b,e,h) were predicted with average absolute errors of 0.012 (6.6%) and 0.004
(3.8%), respectively, with corresponding standard deviations of 0.027 (14.8%) and 0.008
(4.6%). For the calculated R fraction the average absolute error was 0.015 (1.8%) with a

standard deviation of 0.027 (3.0%).

Organic compounds presenting high deviation between the predicted and experimental
mass fractions (Figures 3.4 and 3.5) can be considered outliers. For example, for M fraction
model build with descriptors selected by ANNIGMA for the BW30 polyamide RO
membrane (Figure 3.4c), the M and P fractions for 1,1,2,2-tetrachloroethylene (127-18-4)
presented an absolute deviation of 0.230 (23.0%). Figure 3.2b shows that this compound is
classified alone in its SOM unit. Moreover, the distance from this compound to the center of
its unit is higher than the average map topographic distance. As expected, this compound
presented a high absolute deviation also for the calculated R fraction. For the second
polyamide membrane (TFCHR), two outliers are revealed in Figure 3.5: N-nitroso dimethy]l
amine (62-75-9) in the case of the P model fraction built using the molecular descriptors

selected by SOM-DA, and 1,1,2,2-tetrachloroethylene (127-18-4) for the M fraction model
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developed based on the ANNIGMA selected descriptors. Figure 3.2b shows that N nitroso

dimethyl amine (62-75-9) is also classified alone in its SOM unit.
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Figure 3.5. LOO cross-validation of Independent ANQ models for the polyamide TFCHR membrane.
Predicted M fractions with (a) CFS, (b) SOM-DA and (c¢) ANNIGMA descriptors; Predicted P fractions
with (d) CFES, (e) SOM-DA and (f) ANNIGMA descriptors; Calculated R fractions from predicted M
and P fractions with (g) CFS, (h) SOM-DA and (i) ANNIGMA.

The results reported in Figures 3.4 and 3.5 for the two polyamide membranes are coherent in
terms of the applicability domain of current models as determined by the chemical
information contained in the dataset. LOO models built for the CA membrane yield
predictions with higher deviations than those for the polyamide membranes. The best
performance for this membrane was obtained when using the molecular descriptors selected

by ANNIGMA (Figure 3.6¢,1,i). The M and P fractions were predicted with average absolute

64



UNIVERSITAT ROVIRA I VIRGILI

MODELING THE RESERVE OSMOSIS PROCESSES PERFORMANCE USING ARTIFICIAL NEURAL NETWORKS
Dan Mihai Libotean

ISBN:978-84-691-2701-8/DL:T.386-2008

errors of 0.014 (7.4%) and 0.009 (2.1%), respectively, with corresponding standard deviations
of 0.035 (17.9%) and 0.020 (3.8%). For the calculated R fraction, the average absolute error
was 0.014 (9.8%) with the standard deviation of 0.035 (20.6%). For these models, two
compounds act like outliers: ibuprofen (15687-27-1) in the M fraction model with an absolute
deviation of 0.217 (105.8%), and 2,4 dichlorophenol (120-83-2) in the P fraction model
presenting an absolute deviation of 0.124. Both compounds are allocated to single map units
in the SOM classification presented in Figure 3.2b. The predicted M and P fractions in the CA
membrane with LOO models based on the SOM-DA selected descriptors (Figure 3.6b,e/h) are
in agreement with measurements with similar absolute average errors of 0.014 (8.2% for M
and 3.0% for P) and standard deviations of 0.021 (13.5%) and 0.028 (3.9%), for the M and P
fractions, respectively. The average absolute error for the calculated R fraction was 0.020
(11.6%) with the standard deviation of 0.030 (18.5%). In the M fraction model, the prediction
of lindane (58-89-9) was observed to deviate significantly from the experimental value with
0.124 (12.6%). For the P fraction model, three compounds act like outliers: 2,4 dichlorophenol
(120-83-2), cimetidine (51481-61-9) and ibuprofen (15687-27-1). These four compounds are
allocated to single map units in the SOM classification presented in Figure 3.2b. The three
CFS selected descriptors (Table 3.4) did not provide sufficient information for the LOO M
fraction model developed for the CA membrane (Figure 3.6a) which is partially the reason
for the large average absolute error of 0.018 (12.4%) and corresponding standard deviation of
0.030 (40.4%) observed in this case. However, in this case only the prediction of 2,4
dichlorophenoxyacetic acid (94-75-7) was observed to deviate significantly from its
experimental value with 0.143 (270.2%). The performance of the predicted P fraction was
with average absolute error of 0.012 (3.3%) with the standard deviation of 0.020 (4.4%), while
the calculated R fraction presented the average absolute error of 0.020 (11.1%) with the
standard deviation of 0.030 (19.0%). In this case, ibuprofen (15687-27-1) appeared also as an
outlier, in spite of the fact that its predictions did not presented significant deviation from

the experimental value in neither M fraction, nor P fraction models.

Figures 3.4, 3.5 and 3.6 illustrate that it is possible to describe the RO membrane performance
with respect to organic compounds with the proper selection of molecular information
(Table 3.4). Good agreement was obtained between the predicted and measured fractions

over the entire experimental mass fraction range (i.e., [0,1]).
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Figure 3.6. LOO cross-validation of Independent ANQ models for the cellulose acetate CA membrane.
Predicted M fractions with (a) CFS, (b) SOM-DA and (c) ANNIGMA descriptors; Predicted P fractions
with (d) CFS, (e) SOM-DA and (f) ANNIGMA descriptors; Calculated R fractions from predicted M
and P fractions with (g) CFS, (h) SOM-DA and (i) ANNIGMA.

External validation of QSPR models. External validation is more demanding that the LOO
cross-validation models discussed previously, particularly for small datasets as the one
presented in Table 3.1, since the former is performed with never seen before test compounds
while the latter maximizes the amount of information used for training (49 compounds in
this case) and minimizes the information used for testing (1 compound) in several
consecutive models (50 in this case). The acceptable compactness of the chemical space in

Figure 3.2 justifies the application of an external validation, which was carried out by
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dividing the small data set of 50 compounds into 44 compounds for training the M and P
fractions QSPR models and 6 for model testing, following the SOM procedure outlined in
Section 3.1. Training and test compounds were different for all M and P models, even for the

same membrane. Thus, the total number of test compounds for the calculated R fractions

(i.e, R=1 —(M +D )) was always larger than 6 and at most equal to 12, including compound

pairs of either test M-test P, test M-train P or train M-test .

The predicted M, P and calculated R fractions for the test compounds are compared with
experimental measurements in Figure 3.7. The Independent QSPR models developed with
descriptors selected by CFS, SOM-DA or ANNIGMA method, showed explained variance in
prediction indices for the test set compounds higher than 0.874, for the three membranes
selected for detailed analysis. An exception is the CA membrane M fraction model based on
the CFS selected descriptors, when a lower explained variance in prediction of 0.828 was
obtained. This is also the cause of the drastically decrease to q?>~ 0.331 in the case of the
calculated R fraction. Except the latter case, the values compared very well with the ones
obtained for the LOO cross-validation, especially considering the heterogeneous nature and

the small number of 44 training compounds.

Evaluation of the M and P fraction models with the external data test set, is shown in Figure
3.7a for the BW30 membrane based on the models built with the CFS selected molecular
descriptors. The absolute average errors for the M and P fraction models are 0.034 (17.6%)
and 0.024 (42.6%), respectively, with corresponding standard deviations of 0.040 (14.1%) and
0.015 (49.8%). Deviations of the same order of magnitude were also observed for the
calculated R fractions: average absolute error of 0.048 (7.5%) with the standard deviation of
0.040 (4.7%). Predicted M and P fractions for the same BW30 membrane, with models
developed using descriptors selected by SOM-DA method (Figure 3.7b), reveal comparable
behavior, with the average absolute errors obtained for the predicted M and P fraction
models respectively of 0.066 (70.9%) and 0.018 (44.5%), with standard deviations of 0.064
(88.2%) and 0.021 (70.2%). For the calculated R fraction, the average absolute error was 0.044
(7.8%) with the standard deviation of 0.054 (9.4%). Similar results were obtained also when
using the molecular descriptors selected by ANNIGMA (Figure 3.7c). The average absolute

errors for the predicted M and P fractions and calculated R fraction were of 0.053 (16.5%),
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0.013 (8.8%) and 0.059 (7.1%), respectively, with the corresponding standard deviations of
0.035 (12.1%), 0.007 (4.9%) and 0.039 (5.2%).
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Figure 3.7. External validation for the Independent ANQ models for the BW30, TFCHR and CA
membranes with the descriptors selected by CFS, SOM-DA and ANNIGMA for the M, P and R
fractions corresponding only to the test set compounds. BW30 with (a) CFS, (b) SOM-DA and

(c) ANNIGMA; TFCHR with (d) CFS, (e) SOM-DA and (f) ANNIGMA; CA with (g) CFS, (h) SOM-DA
and (i) ANNIGMA.

Comparable performance was obtained for the TFCHR polyamide membrane (Figure
3.7d,e,f). Average absolute errors for the predicted M and P fraction models and calculated R
fraction with descriptors selected by CFS (Figure 3.7d) were 0.015 (8.7%) with standard
deviation of 0.017 (13.8%), 0.025 (38.5%) with standard deviation of 0.015 (25.2%) and 0.027

(5.9%) with standard deviation of 0.035 (8.0%), respectively. For the models built with
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descriptors selected by SOM-DA method (Figure 3.7e), the average absolute errors were
0.017 (20.2%) with standard deviation of 0.012 (27.2%) for the M fraction and 0.021 (15.9%)
with standard deviation of 0.003 (3.3%) for the P fraction. For the calculated R fraction, an
average absolute error of 0.025 (3.7%) with the standard deviation of 0.023 (2.8%) was
obtained. When using the ANNIGMA selected descriptors (Figure 3.7f), the average absolute
errors obtained for the M, P and R fractions were 0.077 (55.1%), 0.030 (28.3%) and 0.057
(10.1%), respectively, with the corresponding standard deviations of 0.063 (48.3%), 0.019
(25.1%) and 0.056 (9.1%).

As in the LOO cross-validation models, the worst external validation results were obtained
for the cellulose acetate membrane (Figure 3.7g,h,i). The poorer performance of the models
built using the descriptors selected by the CFS method (Figure 3.7g) could be attributed, in
part, to the reduced number of descriptors (i.e., 3) selected in this case for M fraction. As a
result the chemical information provided to the QSPR model was insufficient and thus
average absolute errors for predicted M fraction were as high as 0.112 (44.3%), with a
standard deviation of 0.135 (67.3%). Lower deviations of 0.041 (10.1%), with a standard
deviation of 0.025 (4.5%), were obtained for the predicted P fractions for this membrane.
Consequently, the calculated R fraction also showed a high average absolute error of 0.101
(33.9%) with the standard deviation of 0.113 (29.6%). As expected, model predictions
improved significantly when the M and P fraction models were developed using the
SOM-DA or ANNIGMA selected descriptors (Figure 3.7h,i). In these cases, the average
absolute errors obtained for the M fraction models were of 0.012 (8.5%) and 0.025 (15.6%),
respectively, with the corresponding standard deviations of 0.008 (10.6%) and 0.019 (18.4%).
For the P fraction models, the average absolute errors were 0.043 (10.4%) with standard
deviation of 0.030 (5.3%) when SOM-DA selected descriptors were used, respectively 0.060
(18.7%) with standard deviation of 0.039 (8.5%) when ANNIGMA selected descriptors were
used. It should be noted also that the average experimental standard deviation of P fractions
for the CA membrane (0.036) is higher than the ones obtained for the BW30 and TFCHR
polyamide membranes (0.023). It is also emphasized that the fact that the experimental P
fraction data for the CA membrane covered the entire [0-1] range, as opposed to the smaller
ranges for the organic passage fractions for the PA membranes, is partially responsible for

the poorer performance of the models developed for the CA membranes.
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Membrane-Composite ANQ models

The M and P fractions predicted by the QSPR models built for the composite collection of all
five membranes considered, together with the calculated R fractions, are depicted in Figure
3.8, for both internal and external validation. It should be noted that in Figure 3.8 each
compound is represented by five different points, corresponding to the five RO membranes.
Therefore, in the present case the input database is larger, including the experimental data
for the 50 organic compounds and all five membranes considered (i.e., in this case there are
248 available experimental points). However, during the LOO cross-validation were
developed only 50 models, in each one selecting the experimental data corresponding to one
molecule as test set, and using the rest of the data for training. For the external validation, 7
compounds were selected for testing the M fraction model (representing 33 points), while the
rest of 43 compounds were used for training (representing 215 points). For the P fraction
model, 6 compounds were selected for testing (representing 30 points), while the rest of 44

compounds were selecting for testing (representing 218 points). The total number of test

compounds for the calculated R fraction was 12.
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Figure 3.8. Membrane-Composite ANQ/PACA models. Internal validation for the (a) predicted M
fraction, (b) predicted P fraction and (c) calculated R fraction. External validation (d) M, P and R
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For the LOO cross-validation (Figure 3.8a,b,c), the explained variance in prediction for the M
and P fraction models and calculated R fraction were higher than 0.933. The average absolute
errors for the M, P and R fractions were 0.060 (34.9%), 0.038 (33.5%) and 0.067 (20.1%),
respectively, with the corresponding standard deviations of 0.061 (45.6%), 0.043 (39.0%) and
0.061 (36.7%). In the case of external test set validation (Figure 3.8d), the explained variance
in prediction indices decreased as low as 0.793, as expected. Also, the average absolute errors
for the M and P fraction models increased to 0.088 (43.4%) and 0.052 (45.2%), respectively,
with the corresponding standard deviations of 0.081 (51.6%) and 0.057 (39.5%). For the
calculated R fraction, the average absolute error was 0.065 (13.4%) with the standard

deviation of 0.062 (15.5%).

The above results demonstrate that the development of composite models for a collection of
membranes is feasible if a sufficiently large number of membrane characteristics and data are

available.

MP-Composite ANQ models

QSPRs that simultaneously considered the two experimental solute fractions are thought to
better capture the membrane performance with respect to organic compounds separation.
The reasoning behind this consideration is that in these models, molecular descriptors for all
possible solute-membrane interaction are taken into account at once. However, the results
obtained for the MP-Composite ANQ models are not much better than the ones obtained for
the Independent ANQ models. This is mainly attributed to the small size of the data set.
Since in the MP-Composite ANQ models the number of output variables increases (i.e., 2
outputs), in order to keep the number of connections below the number of experimental data
contained in the training set, the number of hidden neurons would have to decrease
according to Eq. (3.2). All MP-Composite models built, including those for ESPA2 and LFC1
membranes, presented an explained variance in prediction in the M and P fractions and
calculated R fraction higher than 0.842 for the internal validation with the average absolute
errors up to 0.054 (34.7%). The model performance decreased, as expected, in the case of
external test set validation. The explained variance in prediction decreased down to 0.692,

while the average absolute errors increased up to 0.145(109.8%).
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Internal validation with LOO models. The M and P fractions predicted by the LOO internal
validation MP-Composite ANQ models for the BW30, TFCHR and CA membranes, together

with the calculated R fractions are depicted in Figures 3.9, 3.10 and 3.11, respectively.
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Figure 3.9. LOO cross-validation of MP-Composite ANQ models for the polyamide BW30 membrane.
(a) predicted M fraction, (b) predicted P fraction, (c) calculated R fraction with CFS descriptors;
(d) predicted M fraction, (e) predicted P fraction, (f) calculated R fraction with ANNIGMA descriptors.

The predicted M and P fractions and calculated R fraction for the BW30 membrane with the
CFS selected descriptors (Figure 3.9a,b,c), were in good agreement with the corresponding
experimental values. The average absolute errors for the M, P and R fractions were 0.025
(14.8%), 0.018 (16.3%) and 0.029 (2.9%), respectively, with the corresponding standard
deviations of 0.032 (19.4%), 0.027 (22.5%) and 0.045 (3.1%). Similar results were obtained
when using the molecular descriptors selected by ANNIGMA (Figure 3.9d,e,f). In this case,
the model performance of the M, P and R fractions was with average absolute errors of 0.030
(13.2%), 0.022 (13.7%) and 0.028 (5.4%), respectively, with the corresponding standard
deviations of 0.059 (19.2%), 0.038 (15.4%) and 0.038 (15.6%).

Comparable results were obtained also for the TFCHR membrane. When using the union of
the molecular descriptors selected by CFS for the Independent ANQ models built for the M

and P fractions (Figure 3.10a,b,c), the average absolute errors were 0.035 (13.6%) with a
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standard deviation of 0.067 (21.4%) for the M fraction, 0.029 (17.5%) with a standard
deviation of 0.064 (18.9%) for the P fractions, and 0.033 (7.3%) with a standard deviation of
0.051 (16.8%) for the R fraction, respectively. The performance of the MP-Composite ANQ
models based on ANNIGMA selected descriptors (Figure 3.10d,e,f) were 0.027 (15.1%) with a
standard deviation of 0.041 (21.3%) for the predicted M fraction, 0.023 (28.6%) with a
standard deviation of 0.029 (44.2%) for the predicted P fraction and 0.029 (4.5%) with a
standard deviation of 0.035 (4.1%).
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Figure 3.10. LOO cross-validation of MP-Composite ANQ models for the polyamide TFCHR
membrane. (a) predicted M fraction, (b) predicted P fraction, (c)calculated R fraction with CFS
descriptors; (d) predicted M fraction, (e) predicted P fraction, (f) calculated R fraction with ANNIGMA
descriptors.

Internal validation analysis carried out for the CA membrane (Figure 3.11) yield predictions
with slightly higher deviations than those for the polyamide membranes previously
presented. When CFS selected descriptors were used (Figure 3.11a,b,c), the M and P fraction
were predicted with average absolute errors of 0.033 (26.7%) the M fraction and 0.041 (10.7%)
the P fraction. The standard deviations of the average absolute errors for these cases were
0.049 (54.3%) for the M fraction and 0.048 (10.1%) for the P fraction. For the calculated R
fraction, the average absolute error was 0.051 (30.9%) with the standard deviation of 0.062

(43.3%). The performance of predicted M and P fractions and calculated R fraction when
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ANNIGMA selected descriptors were used (Figure 3.11d,e,f) was with average absolute error

of 0.030 (28.2%), 0.045 (12.3%) and 0.054 (34.7%), respectively, with the corresponding

standard deviation of 0.032 (54.5%), 0.050 (11.3%) and 0.059 (50.5%).
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Figure 3.11. LOO cross-validation of MP-Composite ANQ models for the cellulose acetate CA
membrane. (a) predicted M fraction, (b) predicted P fraction, (c)calculated R fraction with CFS
descriptors; (d) predicted M fraction, (e) predicted P fraction, (f) calculated R fraction with ANNIGMA
descriptors.

Most of the organic compounds presenting high deviation between the experimental values
and the Independent ANQ models predictions were identified as outliers also in the MP-
Composite ANQ models: 1,1,2,2-tetrachloroethylene (127-18-4), N-nitroso dimethyl amine
(62-75-9), 1,4 dichlorophenoxyacetic acid (94-75-7), ibuprofen (15687-27-1) and cimetidine
(51481-61-9). Moreover, compounds identified at the domain border by the PCA-based
approach (Figure 3.2a), like tetracycline (60-54-8), doxycycline (564-25-0) or ciprofloxacin
(85721-33-1) presented high absolute errors in the MP-Composite ANQ models. Several other
compounds could not be properly described for at least one membrane-feature selection

combination by the MP-Composite models.

External validation. The M and P fraction of the test set compounds for the BW30 membrane

were predicted using the CFS selected descriptors (Figure 3.12a) with average absolute errors
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of 0.076 (51.0%) with a standard deviation of 0.053 (31.2%) and 0.018 (18.2%) with a standard

deviation of 0.017 (14.5%), respectively. For the calculated R fraction, the average absolute

error was 0.085 (12.5%) with the standard deviation of 0.052 (9.7%). Slightly better results

were obtained for the same membrane when using the ANNIGMA selected descriptors

(Figure 3.12d). In this case, the average absolute errors were 0.052 (36.9%) with standard

deviation of 0.042 (56.1%) for the predicted M fraction, 0.039 (53.8%) with standard deviation

of 0.019 (71.1%) for the predicted P fraction, and 0.035 (4.9%) with standard deviation of

0.031 (4.7%) for the calculated R fraction.
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Figure 3.12. External validation for the MP-Composite ANQ models for the BW30, TFCHR and CA
membranes with the descriptors selected by CFS and ANNIGMA for the M, P and R fractions
corresponding only to the test set compounds. (a) BW30, (b) TFCHR and (c) CA with CFS descriptors;
(d) BW30, (e) TFCHR and (f) CA with ANNIGMA descriptors.

Worst results were obtained when modeling the TFCHR membrane performance. When CFS

selected descriptors were used (Figure 3.12b), the average absolute errors for the predicted M

and P fractions and calculated R fraction were 0.117 (85.8%), 0.031 (21.3%) and 0.120 (13.9%),

respectively, with the corresponding standard deviations of 0.082 (86.9%), 0.024 (9.3%) and

0.091 (10.7%). When ANNIGMA selected descriptors were used (Figure 3.12e), the average

absolute errors were 0.109 (99.3%) with standard deviation of 0.131 (144.2%) for the

predicted M fraction, 0.026 (22.4%) with standard deviation of 0.019 (19.0%) for the predicted
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P fraction and 0.116 (23.0%) with standard deviation of 0.129 (23.8%) for the calculated R

fraction.

For the CA membrane, when the CFS selected descriptors were used (Figure 3.12c), the
average absolute errors were 0.041 (16.3%) with standard deviation of 0.029 (23.7%) for the
predicted M fraction, 0.057 (9.2%) with standard deviation of 0.038 (8.2%) for the predicted P
fraction and 0.042 (86.6%) with standard deviation of 0.046 (91.6%) for the calculated R
fraction. When the ANNIGMA selected descriptors were used (Figure 3.12f), the average
absolute errors for the predicted M and P fractions and calculated R fraction were 0.048
(65.1%), 0.080 (15.2%) and 0.052 (58.6%), respectively, with the corresponding standard
deviations of 0.037 (107.3%), 0.068 (6.4%) and 0.048 (90.7%), respectively.

The LOO cross-validation and the external test set results obtained for the MP-Composite
ANQ models, revealed slightly better results when using the molecular descriptors selected
by ANNIGMA considering simultaneously the two experimental fractions, compared with
the case of using reunion of molecular descriptors selected by CFS for the Independent ANQ

models for the M and P fraction.

3.3. Validating the QSPR models

The validation of the current models was completed with the entirely new set of 143
compounds listed in ANNEX V, for which no experimental M and P mass fractions were

available but that could be tested for mass balance. A valid set of models would require that
the predicted sorbed, passed and rejected mass fractions for each compound (M , P and R ,

respectively) close the mass balance: M+P+R=1. Accordingly, models for the

experimental M and P fractions, and for the R fraction calculated from predicted M and P

values to close the mass balance (i.e, R, = 1—(M + 13)), were developed by using the entire

set of experimentally screened 50 organic compounds Table 3.1, and tested with the
additional 143 compounds of public health concern that were not experimentally
characterized. This test set includes compounds such as endocrine disruptors,
pharmaceutical active compounds, antibiotics and antimicrobial agents, neuroactive drugs,

insecticides, herbicides, pesticides, industrial pollutants, fuel hydrocarbons and amino acids
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[111-114]. The mass balance test was developed for the three membranes whose modeling
results are presented in Section 3.2, using the following seven molecular descriptors: dipole
moment, dipole vector X, dipole vector Y, dipole hybridization, heat of formation, size of
smallest ring, and shape index kappa2. These molecular descriptors are among the ones
identified in Section 3.2 as the most relevant to characterize the organic solute passage,
sorbtion and rejection by RO membranes, based on the frequency of occurrence of different
molecular descriptors in the optimal input sets selected by the three feature selection

methods for the Independent ANQ models.

Table 3.5 shows that the new 143 compounds span slightly larger ranges of variation in the
values of the molecular descriptors compared to those for the 50 organic compounds used to
develop the three QSPR mass fraction models. Therefore, for model development, the mass
fractions were normalized with the corresponding minimum and maximum mass fraction
values in the training set of 50 chemicals, while the seven input descriptors listed in Table 3.5
were normalized with the minimum and maximum values of the complete set of 193
chemicals. This assured the possibility to extrapolate predictions beyond the chemical
domain of the 50 training chemicals.

Table 3.5. Comparison between the range of variation of the seven molecular descriptors selected as

input to the models, for the 50 chemicals with available experimental data and for the 143 organics
without experimental data.

Range for the 50 compounds with Range for the 143 compounds
Molecular descriptor experimental data without experimental data
min Max min Max
Dipole moment 0.0 15.8 0.0 28.6
Dipole vector X -8.6 10.9 -10.5 23.6
Dipole vector Y -11.4 13.7 -15.2 13.7
Dipole hybridization 0.0 2.8 0.0 3.4
Heat of formation -368.9 103.5 -755.0 249.2
Size of smallest ring 0.0 6.0 0.0 7.0
Shape index kappa2 1.0 10.7 1.0 25.7

The neural network architecture 7:5:1 was used for each one of the three mass fraction
models, established using the conditions specified in Eq (3.2). The ability of the models to
close the mass balance was assessed by computing the relative error for each one of the 193

chemicals,

100 (3.5)
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Table 3.6. Mass balance relative errors for the 193 compounds, for each of the three membranes.

Index CAS BW30 TFCHR CA Index CAS BW30 TFCHR CA
[%] [%] [%] [%] [%] [%]

1 100-41-4 3.5 6.2 3.7 51 6804-07-5 7.6 1.8 9.9
2 104-40-5 0.9 13.3 25 52 100-75-4 6.0 4.0 26.1
3 108-88-3 0.5 16.0 0.0 53 1031-07-8 12.8 5.0 16.7
4 108-95-2 0.1 16.2 0.8 54 103-23-1 83.4 24.3 7.8
5 120-83-2 0.2 9.5 1.3 55 103-90-2 6.2 0.6 14.2
6 121-14-2 3.2 2.6 17.4 56 106-44-5 1.3 5.8 114
7 124-40-3 2.0 3.9 11.4 57 106-46-7 0.6 12.0 1.5
8 127-18-4 9.4 20.1 13.3 58 108-67-8 2.0 10.2 3.1
9 15687-27-1 1.1 3.0 8.3 59 108-86-1 2.2 7.9 8.3
10 19466-47-8 27 5.3 4.8 60 1141-38-4 14.9 6.5 0.6
11 2921-88-2 2.8 1.3 23 61 115-29-7 94 0.2 12.0
12 298-00-0 25 0.4 0.0 62 115-32-2 3.0 6.8 1.7
13 51481-61-9 0.4 0.1 0.5 63 115-86-6 12.5 15.6 35.5
14 52-90-4 4.3 49 5.3 64 115-96-8 44.4 90.8 22.7
15 53-16-7 0.8 1.1 0.6 65 117-81-7 15.1 17.7 7.2
16 56-40-6 23 1.8 8.8 66 117-84-0 15.1 9.2 0.7
17 56-41-7 2.7 114 2.8 67 118-74-1 54 4.5 4.6
18 564-25-0 5.8 0.4 4.2 68 120-12-7 3.8 2.0 2.6
19 56-53-1 1.8 1.2 0.0 69 121-82-4 35.8 15.7 47.1
20 56-84-8 1.9 4.7 5.8 70 122-11-2 4.5 1.8 54.0
21 56-87-1 1.6 6.3 0.7 71 122-34-9 6.6 1.6 4.1
22 57-13-6 0.4 6.6 2.6 72 124-48-1 10.4 1.9 9.1
23 57-83-0 49 5.0 1.1 73 127-79-7 3.1 16.2 11.2
24 57-88-5 1.2 27 1.1 74 12789-03-6 6.7 14 5.7
25 57-91-0 10.6 3.1 3.6 75 128-37-0 5.7 5.0 5.7
26 58-08-2 5.0 49 0.8 76 128-39-2 7.6 2.7 1.7
27 58-22-0 44 2.2 5.8 77 129-00-0 3.6 1.5 0.7
28 58-89-9 1.0 4.4 11.3 78 13071-79-9 4.5 10.3 7.7
29 60-00-4 2.0 4.1 4.2 79 134-62-3 3.9 5.8 0.0
30 60-54-8 22 4.3 1.0 80 136-85-6 44 12.1 4.2
31 62-75-9 1.0 4.7 24 81 139-13-9 4.0 13.5 13.5
32 63-68-3 2.1 6.3 0.5 82 1401-69-0 13.7 72.3 54.7
33 70-47-3 3.0 14 5.9 83 143545-90-8 83.3 2.0 48.3
34 71-00-1 2.6 8.1 1.9 84 144-82-1 43.8 48.7 11.0
35 71-43-2 1.4 15.3 1.0 85 154-21-2 0.8 3.0 14.9
36 72-18-4 3.6 0.1 1.5 86 1610-18-0 0.5 9.7 0.0
37 72-19-5 6.5 0.5 3.3 87 1634-04-4 49 0.3 0.2
38 75-65-0 0.7 1.1 73 88 1646-88-4 1.9 9.9 21.1
39 76-03-9 2.6 0.3 3.0 89 16655-82-6 13.2 13.2 18.1
40 76-57-3 0.9 3.8 21 90 1672-46-4 4.7 49 49
41 79-43-6 1.2 1.3 2.7 91 16752-77-5 8.3 5.2 1.8
42 80-05-7 3.0 3.3 1.0 92 1836-75-5 6.4 54 0.0
43 84-66-2 0.7 4.3 2.8 93 18559-94-9 4.9 114 9.9
44 85-01-8 3.8 1.6 34 94 1912-24-9 1.9 44 0.0
45 85-44-9 3.8 6.3 5.3 95 206-44-0 04 13.6 0.0
46 85721-33-1 52 1.2 0.4 96 20830-75-5 14.3 72.2 62.4
47 87-86-5 2.5 1.4 3.3 97 21087-64-9 6.0 6.9 26.9
48 94-75-7 3.0 0.5 34 98 2136-79-0 10.4 5.5 4.8
49 98-95-3 25 3.1 1.8 99 2169-87-1 1.8 19.1 16.6
50 15972-60-8 1.6 3.8 2.5 100 2212-67-1 19.2 2.6 13.3
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Table 3.6. Mass balance relative errors for the 193 compounds, for each of the three membranes.

Index CAS BW30 TFCHR CA Index CAS BW30 TFCHR CA
[%] [%] [%] [%] [%] [%]
101 2385-85-5 5.0 8.5 4.2 148 637-92-3 94 10.6 1.4
102 25013-16-5 10.7 5.2 14.1 149 63-91-2 16.8 15.3 32.8
103 25812-30-0 16.7 0.4 15.8 150 64285-06-9 6.4 3.7 6.5
104 26638-19-7 1.1 36.5 7.1 151 657-24-9 494 52.1 18.3
105 27304-13-8 4.2 344 16.7 152 66357-35-5 0.9 3.7 22.8
106 298-04-4 11.9 3.2 7.7 153 67-66-3 0.6 17.9 7.2
107 3018-12-0 27.7 10.4 7.6 154 67708-83-2 344 15.8 1.9
108 302-17-0 245 7.0 5.0 155 68-22-4 0.7 1.3 5.2
109 309-00-2 0.4 3.1 11.9 156 70458-96-7 22 7.7 50.1
110 3252-43-5 211 17.2 3.8 157 719-22-2 2.7 5.4 4.1
111 330-54-1 4.1 25 10.3 158 72-14-0 58.6 14.7 11.2
112 330-55-2 2.7 5.0 3.8 159 72-33-3 1.9 2.0 9.6
113 333-41-5 5.8 52 7.3 160 723-46-6 6.2 24.3 38.7
114 3380-34-5 6.4 0.8 3.1 161 72-43-5 1.2 13.1 2.2
115 34256-82-1 3.6 8.5 3.8 162 72-54-8 34 5.2 0.0
116 35523-89-8 82.0 64.2 48.3 163 72-55-9 44 7.6 0.0
117 42399-41-7 9.8 16.1 6.7 164 738-70-5 1.5 10.9 13.1
118 474-86-2 7.1 3.1 49 165 74-83-9 11.8 23.5 5.2
119 486-56-6 1.7 3.0 24.6 166 74-95-3 8.8 23 10.4
120 50-27-1 5.6 27 6.1 167 74-97-5 59 5.3 3.0
121 50-29-3 2.6 1.9 0.0 168 75-09-2 29.1 28.0 8.3
122 50-32-8 0.8 5.6 0.0 169 75-25-2 12.5 1.3 5.8
123 5103-71-9 3.6 0.0 11.3 170 75-27-4 10.7 0.6 3.6
124 51218-45-2 24 11.9 5.5 171 75-71-8 17.6 62.3 114
125 51-28-5 9.5 49 8.2 172 759-94-4 223 49 17.8
126 513-88-2 9.4 43.6 7.2 173 7601-90-3 50.5 39.2 5.2
127 517-04-4 12.7 1.2 4.2 174 76420-72-9 0.0 0.7 9.6
128 517-09-9 8.2 1.8 10.3 175 76-44-8 7.5 0.4 12.3
129 53-41-8 12.8 0.3 7.7 176 79-01-6 9.6 12.5 7.2
130 54910-89-3 12.4 4.1 30.7 177 79-34-5 10.4 6.2 11.1
131 55-18-5 4.3 11.8 0.7 178 79-57-2 0.3 0.8 51.1
132 5589-96-8 4.6 3.1 5.0 179 80-32-0 4.3 11.1 0.6
133 56-45-1 3.2 4.1 11.5 180 83463-62-1 26.7 7.7 9.0
134 57-62-5 17.6 6.7 5.5 181 84-74-2 7.6 14.5 4.6
135 57-68-1 10.1 6.5 0.3 182 87-68-3 8.4 0.2 27.5
136 5902-51-2 7.9 10.0 13.5 183 924-16-3 57.7 5.9 10.6
137 59-89-2 6.0 2.2 11.1 184 930-55-2 22 5.3 1.2
138 60-57-1 14.9 24.1 5.5 185 93106-60-6 28.2 14.7 11.3
139 606-20-2 21 1.5 4.0 186 93-76-5 4.3 4.0 154
140 608-73-1 2.8 8.5 6.1 187 944-22-9 2.8 0.1 3.3
141 611-59-6 10.0 51 17.0 188 95-47-6 1.7 15.6 1.0
142 61-82-5 1.5 11.1 14.6 189 95-48-7 1.8 5.8 14.6
143 61869-08-7 12.3 4.5 23 190 95-50-1 44 4.6 0.6
144 61-90-5 12.7 17.5 34 191 95-63-6 29 12.4 2.0
145 621-64-7 16.2 29.3 0.3 192 994-05-8 9.7 11.2 1.7
146 631-64-1 17.3 32.5 4.0 193 99-87-6 5.1 4.3 5.3
147 63-25-2 29 4.7 18.0

Organic compounds from 1 to 50 were used for developing the models, while chemicals from 51 to

193 were used for test.
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The mass balance errors obtained for each one of the three membranes modeled and for all
193 compounds are presented in Table 3.6. Without prescreening the new compounds with
respect to the model applicability domain corresponding to the 50 compounds with
experimental data, the current predictions showed that the mass balance was fulfilled in
most cases. In the case of the BW30 models, the mass balance average relative error for the 50
organics with experimental data was 2.7%, with a standard deviation of 2.1%, while for the
143 new compounds the error increased to 11.4% with the standard deviation of 15.3%. For
this membrane, the mass balance was closed with relative errors smaller than 5% for 105
chemicals, 39 compounds presented mass balance relative errors between 5 and 10%, 22
compounds between 10 and 15%, 10 compounds between 15 and 20%, and 3 compounds

between 20 and 25%. Only 15 chemicals deviated more than 25% in the mass balance closure.

For the TFCHR membrane models, the average relative error for the 50 organics with
experimental data was 4.7% with the standard deviation of 4.7%, while for the 143 new
compounds the error increased to 11.4% with the standard deviation of 15.2%. In this case,
the mass balance was closed with relative errors smaller than 5% for 92 chemicals, 43
compounds presented mass balance relative errors between 5 and 10%, 24 compounds
between 10 and 15%, 15 compounds between 15 and 20%, 5 compounds between 20 and

25%, while only 14 chemicals presented mass balance deviations higher than 25%.

In the case of the CA membrane models, the mass balance relative error for the 50 organic
compounds used for the models development was of 3.7% with standard deviation of 3.7%.
The average relative error increased in the case of 143 new organic compounds to 11.0%,
with the standard deviation of 12.6%. For this membrane, the mass balance was closed with
relative errors smaller than 5% for 91 chemicals, 43 compounds presented mass balance
relative errors between 5 and 10%, 29 compounds between 10 and 15%, 11 compounds
between 15 and 20%, 4 compounds between 20 and 25%, while only 15 chemicals presented

mass balance deviations higher than 25%.

The examination of the chemicals presenting mass balance relative error higher than 25% at
least for one membrane leads to a list including 33 compounds. A SOM analysis revealed
that these compounds are not well represented by the set of 50 chemicals used to train the
models. When the 143 new chemicals were presented to an 8x7 SOM generated with the 50

organic compounds characterized by the seven descriptors listed in Table 3.5, 11 of these 33
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chemicals were allocated to empty and isolated map units. Another 19 of them, even though
allocated to occupied units, presented large classification errors, denoting low similarities
with the chemicals used to train the map. The remaining 3 compounds among the 33 with
the largest mass balance errors, failed only in the mass balance test for the BW30 membrane,

presenting however relative deviations close to 25%.

The current mass balance results show that simple non-linear algorithms, such as back-
propagation neural networks, can quantitatively assess the rejection of organic compounds
in RO membranes if appropriate chemical information is considered. Even though the mass
balance test is not a sufficient condition for validating the QSPR models developed,
definitely it is a necessary one. Moreover, it is the only validation method that can be applied
in the presented approach. According to this test, for each one of the three membranes the
majority of the compounds presented a relative error lower than 25% for the mass balance
based on the predicted mass fractions. In should be noted that these results were obtained
based on all 193 organic molecules, without a priori screening the 143 new compounds with
respect to the applicability domain for which the QSPR models were developed. Therefore,
the mass balance test results provide a reasonable indication of the applicability of the

approach presented in this work.
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4. Reverse osmosis plant performance

4.1. Full-scale RO data

As presented in Section 2.1, ANN-based models can effectively describe membrane process
performance with respect to the dynamics of both flux and separations performance. ANN
models developed in previous studies were based on training the model with a certain
fraction of experimental data inter-dispersed through the complete dataset and including
extreme values. Therefore, the resulting models were successful for data interpolation (i.e.,
predictions for an input variable range for which the ANN model was trained) but without
the capability of forecasting (i.e., future time predictions of performance for time periods that
were not covered by the training data set). The ability to forecast membrane plant
performance, even for short future steps, would provide additional flexibility for integrated
process control strategy and could be used to signal the need for remedial action (e.g.,
membrane cleaning, adjustment of process variables such as pressure and flow rates).
Although ANN approach is data-driven and therefore results in plant-specific application,
such an approach has the advantage of capturing the unique aspects of the plant that include
operational behavior of plant equipment (e.g., pumps, valves, monitoring devices and
control system), process elements (i.e., membrane modules, feed pretreatment modules),
plant configuration, as well as feed quality variations. Taking into account the
aforementioned advantages, a NN model of RO plant performance was developed, capable
of describing temporal variations in permeate flow and salt passage, as well as for short-term
forecasting. In the present approach the use of process information backward in time is
utilized along with feed process variables to forecast plant performance, suggesting the

possibility of using such an approach for RO process control and process fault identification.

The experimental data used for building the ANN models was provided by the WaterEye
Corporation [131]. The 1 MGD (million gallons per day) RO brackish water desalination

plant represented schematically in Figure 4.1 is located at Port Hueneme, California,
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operated at 75% recovery. The first and second stages contain 9 and 5 membrane modules,
respectively. The monitored plant parameters for the feed stream included flow rate,
conductivity, feed pressure, pH and temperature. Permeate and concentrate (i.e., brine)
monitored parameters included flow rate, conductivity and pressure. The inter-stage
pressure was also monitored. Real time data of the above process parameters were collected

every 10 minutes for a period of about 3 months.

« Flow rate
« Conductivity
« Pressure
e pH o Flow rate
« Temperature « Conductivity
15t Stage « Pressure
Permeate
" flow
Feed flow nd
2" Stage

« Pressure l\ i t
 Flow rate

Concentrate flow « Conductivity
« Pressure

Figure 4.1. Diagram flow of the two-stage RO plant from Port Hueneme, California, with
identification of monitored process parameters.

The composition of the feed, permeate and concentrate streams are not measured in real-
time in commercial RO plants, but instead, conductivity measurements are reported as
surrogates for salt concentration. The common approach is to correlate conductivity with the
total dissolved solids concentration (TDS) using sodium chloride as the correlating salt. Such
correlations can be obtained either from experimental measurements for the actual range of
salt compositions of interest or based on thermodynamic multi-electrolyte calculations. In the
present analysis the concentrations for both feed-brine and permeate flows were expressed
in terms of [mg/l] of total dissolved solids based on conductivity [uS/cm] — TDS [mg/1]
correlations derived from multi-electrolyte calculations using the OLI Analyzer software
[132]. The correlations were developed based on ionic composition of the feed presented in
Table 4.1, calculating the conductivity that would result from various levels of concentrations

of this feed water and correspondingly the production of permeate for various levels of salt
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passage. Based on the resulting conductivity, the equivalent NaCl TDS [mg/l] was calculated

and this was utilized to arrive at the following correlations, presented also in Figure 4.2:

Permeate: TDS,,, = 0.3455-(Cn)""" (4.1)

Feed-brine: TDS, ., = 0.1409-(Cn)""*”’ (4.2)

where Cn is the conductivity [uS/cm]. Both correlations expressed in Egs. (4.1) and (4.2)
presented coefficients of determination (R?) higher than 0.999, and average relative errors of

8.1110%%, 1.69102%, respectively.

Table 4.1. Average feed composition.

Ion/Specie mg/l [Ton/Specie mg/l [Ton/Specie mg/l [Ton/Specie mg/1
SiO2 28 | Ca* 142.6 | HCOs 261 | NOs 1.46
CO2 8.7 | Mg* 39.6 | CI 46.2 | COs* 0.83
Nar 97.4 | Fe* 01 | F 04 | TDS 10714
K+ 4.6 | Ba> 0.03 | SO+ 445 | pH 7.68

Conductivity [uS/cm]
0 1000 2000 3000 4000 5000 6000
25 ! ! 3500
O Permeate - 3000
= 20 - =
ED A Feed-brine - 2500 ED
= 15 42000 —
S 2
Z 10 + 1 1500 Z
2 1 1000 &
= 5 F =
+ 500
0 0
0 10 20 30 40 50 60 70
Conductivity [uS/cm]

Figure 4.2. Conductivity-TDS correlations for permeate and feed-brine.

Feed quality and operational parameters can vary during plant operation, as presented in
Figure 4.3 for the considered operational period, and this typically results in variations in
permeate flow rate and salt passage. The occurrence of undesired phenomena like
membrane fouling or scaling affects also the permeate flow rate and salt passage time
evolution. Therefore, in order to effectively evaluate the plant performance, it is necessary to
compare permeate flow and salt passage rates at a standard reference condition. The

standardization method presented in ASTM 4516-00 [133] was used to normalize the
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permeate flow rate and the salt passage with respect to temperature, pressure and osmotic
pressure. The reference (standard) condition was set corresponding to the process parameter
measurements for the first monitoring point.

Time [hr]
0 200 400 600 800 1000 1200 1400 1600 1800

700 T T T T T T T T T 700

%D | |
2 660 ot 660
9 620 - M % 1 620
o] 8
L ik X . I
E_4 oS
540 L1 L 1 | 540
14-01-00 03-02-00 23-02-00 14-03-00 03-04-00

Date
Figure 4.3. Variability of feed water TDS during the RO plant evaluation period.

According to the above ASTM procedure, the standardized permeate flow was calculated

from
I?}s__liﬁ
P - gy, | [TCE]
er,s = P. —P 'Qp,a (4.3)
L [TCF,]
Pf,a 2 p.a ﬂ-b,a + ﬂ-p,a [ a

where Q, is the permeate flow rate [GPM], P;, P. and P, are the feed, concentrate and
permeate pressures [kPa], 7, and 7, are the brine and permeate osmotic pressures [kPa]

estimated by Eq. (4.4), and TCF is the temperature correction factor calculated using Eq. (4.5)

[131]. The subscripts a and s refer to the actual and the standard conditions, respectively.

T

m, =0.2654-C, - =i 7,=0057, (4.4)
1000 - —*
1000
TCF =exp[3020-(1/298.15-1/T)) (4.5)

In Egs. (4.4) and (4.5), T is the absolute temperature [K], and C» is the brine concentration
[mg/l] expressed as a log-mean average, and calculated in terms of the recovery Y (ie.,

permeate to feed flow rates ratio) and feed concentration Cr[mg/l], according to

C,=C,-In[(1/(1-Y))/Y] (4.6)
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The standardized percent salt passage (%SP) for the RO process is calculated as

usp —LEPE ] [TCE ] (G | [Cra] oop )

[epeR ] [TeR ] [Gn ] [€0]

where EPF is the average RO element permeate flow rate [GPM].

The time evolutions of the standardized permeate flow and salt passage for the considered
operational period, calculated according to the ASTM 4516-00 specification expressed in Egs.
(4.3)-(4.7), are represented in Figure 4.4. In addition, the evolutions of the pressure drop
along the membrane channel for both stages, as well as for the overall process are

represented in Figure 4.5.
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Figure 4.4. Time evolution of the normalized salt passage and normalized permeate flow. The vertical
dotted lines represent startup moments after process interruptions for membrane cleaning and/or

replacement.
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Figure 4.5. Time evolution of the pressure drop along the membrane channel, for each one of the two
stages and for the overall process. The vertical dotted lines represent startup moments after process
interruptions for membrane cleaning and/or replacement.
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Discontinuities in the represented variables, especially when accompanied by large periods
of missing data, since no measurements are performed during the cleaning procedure, are
clear information of operational problems and process interruptions for membrane cleaning
and/or replacement. The startup times after these interruptions are indicated by the dotted
vertical lines (at t =328, 832, 976, 1671, and 1928 hrs) as shown in Figures 4.4 and 4.5 for the
percent salt passage, normalized permeate flow and pressure drop, respectively; the plant
was shut down for various periods just prior to these times. There can also be noted other
data gaps in the time evolution of represented variables. However, the missing of data
cannot be used as unique criteria for the identification of operational problems, since it can

be attributed to process shutdown or problems in the data acquisition system.

4.2. Back-propagation approach for modeling plant performance

Data preprocessing and analysis

The RO process performance was modeled by developing ANNSs capable of describing
temporal variations in normalized permeate flow and normalized salt passage. Accordingly,
as illustrated in Figure 4.6, the output of the models was expressed as the normalized
permeate flow, or the normalized salt passage, related to the first standardized value of each
operating period identified in Figures 4.4 and 4.5. As input variables, process parameters
physically meaningful, independent, easy and inexpensive to measure and capable of being
monitored in real-time were selected. Therefore, the flow rate, conductivity, pressure, pH
and temperature of the feed were chosen as inputs. Since the impact of membrane fouling
occurrence on membrane performance is a cumulative effect over time, with flux decline
becoming more severe with fouling progression, a time measure is needed as additional

input parameter.

However, the time scales associated with plant readjustment to changes in operational
conditions (e.g., pressure, flow rate) can be much shorter than the fouling time scale. These
shorter time scales, termed here as “short term memory” (STM), were set by dividing the
process operational period into equal time intervals, with the length of time varying from 7
to 125 hrs. To capture the STM, a time variable ranging for each time interval from t =0 to the

length of time considered was added as input.
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Figure 4.6. Identification of input and output variables used for modeling the RO plant performance.

In order to account for the large time-scale events, a “long term memory” that makes the link
between two consecutive STM time intervals is needed. This was accomplished by
considering the normalized permeate flow (or normalized salt passage, respectively) at the
beginning of each time interval as additional input. Due to the fact that the monitored
variables are measured every 10 minutes, dividing the operational time period in 7 hrs equal
intervals, a maximum of 42 experimental measurements can correspond to each time
interval. The use of a smaller number of points in each time interval would practically merge

the two memory terms; therefore, time lengths smaller than 7 hrs were not considered.

ANN models for permeate flow and salt passage were built using the back-propagation
algorithm, based on an architecture with one input layer, one hidden layer and one output
layer, as presented in Figure 4.6. The linear transfer function was utilized for the input and
output layers and a hyperbolic tangent transfer function was used for the hidden layer (see
Figure 2.3) [71]. For model development, the input and output parameters were normalized
in the range [0,1] using Eq. (2.1). A statistical analysis was performed for the selection of the
optimal neural network architecture for each length of time considered for dividing the time
space in equal intervals, by varying the number of hidden neurons from 2 to 11. The ANN
models were trained using data from the first three periods of operation (0-906 hrs) which
contained a total of 4569 data points. Subsequent to training, model validation was carried

out with 20% of the training data selected randomly. The validation step served as a

89



UNIVERSITAT ROVIRA I VIRGILI

MODELING THE RESERVE OSMOSIS PROCESSES PERFORMANCE USING ARTIFICIAL NEURAL NETWORKS
Dan Mihai Libotean

ISBN:978-84-691-2701-8/DL:T.386-2008

stopping criterion for the ANN learning algorithm. Model testing was performed using the
entire data set from the three operational periods starting at t =976 hrs and forward in time
(Figures 4.4 and 4.5). It is emphasized that the data from the last three operational periods
were not used in the learning phase, neither for model training, nor for internal validation;
hence, model testing was accomplished with an external data set. Overall, approximately
40% of the entire plant data set was used for ANN model training, 10% of the data were used
for validation and 50% of the data (last three operational periods) were used for external
model testing. The adequacy of model ANN architecture and length of time intervals was
assessed using the model explained variance in prediction index, q°, calculated separately
for the training, validation, and test data sets [129], defined in (3.4). In addition, model
performance was also evaluated based on the relative error (average and maximum),

standard deviation, and coefficient of determination for the model fit (ANNEX VI).

Results

Various ANN architectures, with 2-11 hidden neurons, were evaluated ranging the STM time
interval length form 7 to 125 hrs, for both normalized permeate flow and normalized salt
passage models. The selection of the best architecture for each length of time considered was
made based on the explained variance in prediction index calculated for the test data set, as
presented in Figures 4.7 and 4.9 for the normalized permeate flow rate and normalized salt

passage, respectively.

The accuracy of capturing the dynamic changes in normalized permeate flow generally
increased as the STM time interval length decreased (Figure 4.7). For each one of the NN
architectures considered, the highest q? index for the test data set was obtained when the
time space was divided into 7 hrs of equal intervals. Also, the lowest q? index was generally
obtained when using the 125 hrs time intervals, except the 7:7:1, 7:8:1 and 7:10:1 architectures
when the lowest performance was obtained for 100 hrs time intervals, and the 7:2:1
architecture when the lowest performance was obtained for 50 hrs time intervals. In order to
find the optimal NN architecture, the results were analyzed for each particular STM time
interval length. When using time intervals of 15, 25 or 100 hrs, the g2 index increased from 2

to 5 neurons in the hidden layer, and subsequently decreased slowly with increasing the

90



UNIVERSITAT ROVIRA I VIRGILI

MODELING THE RESERVE OSMOSIS PROCESSES PERFORMANCE USING ARTIFICIAL NEURAL NETWORKS
Dan Mihai Libotean

ISBN:978-84-691-2701-8/DL:T.386-2008

number of hidden neurons. In these cases, a bimodal graph was obtained with the highest
values of q? obtained for 5 and 9 hidden neurons, respectively. For time intervals of 7, 50 or
75 hrs, the models performance followed a similar behavior of increasing g? index as the
number of hidden neurons increased from 2 to 5 (or 6 in the case of 50 hrs time intervals),
remaining nearly constant for higher values of neurons in the hidden layer. In the case of
dividing the time space into equal intervals of 125 hrs, the maximum g? indices were
obtained for 7:2:1 and 7:7:1 architectures. The ANN model that yielded the highest q? index
for predicting the normalized permeate flow was obtained when using 5 neurons in the

hidden layer, and dividing the time space into equal intervals of 7 hrs.
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Figure 4.7. Statistical analysis for determination of the optimal network structure and optimal length
of time intervals based on q? quality indices, for modeling the normalized permeate flow rate.
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Figure 4.8. Average relative error for the best architecture (chosen based on g2 index) for each length
of time, for the normalized permeate flow rate models.
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The average relative errors for the best performing architecture for each length of time
considered are presented in Figure 4.8. For the training and validation data sets the average
relative errors were similar for all lengths of time intervals considered. In the case of the test
data set, the average relative error decreased with increasing the length of time from 7 to
25 hrs, increasing thereafter with the increase of time interval length from 25 to 100 hrs.
Accordingly, the lowest average relative error was obtained when using 25 hrs time intervals
and 11 neurons in the hidden layer. However, as can be seen from Figure 4.8, the average
relative errors of the best performing architecture for each one of the time interval lengths of
7, 15 and 25 hrs, presented very similar values around 0.85%. It should be noticed also that
the complexity of the best architectures for these three cases increased as increasing the
length of the time interval, presenting 5, 9 and 11 neurons in the hidden layer, respectively.
In order to avoid the increase in models complexity, generally is preferable to use a smaller
number of hidden neurons as long as the loss in model performance is small and acceptable.
Based on the above analysis, the optimal NN architecture-length of time intervals

combination for predicting the normalized permeate flow was selected to be 7:5:1 and 7 hrs.

Figure 4.9 summarizes the models ability to capture the changes in normalized salt passage
during the operation of the RO process. High performance models were obtained when
dividing the time space in equal intervals of 7-25 hrs. In these cases, the explained variance in
prediction calculated for the test set were similar (q2 = 0.90), irrespective of the length of time
intervals and NN architecture used. Big differences were observed between the model
performances obtained in the previously mentioned cases and the ones when higher time
lengths were used for dividing the time space. When larger time intervals were used for
dividing the time space, lower values were obtained for the test set explained variance in
prediction index. The lowest value of ¢?>=~0.46 was obtained when using 100 hrs time

intervals.

The average relative errors for the best performing architecture for each length of time
considered are in agreement with the former analysis based on explained variance in
prediction index, as illustrated in Figure 4.10. A smooth increase of the average relative
errors of the training and validation data sets was observed as the length of the time
intervals increased from 7 to 75 hrs. The training and validation data sets average relative

errors decreased slightly when the time space was divided into 100 hrs intervals, increasing
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again when the length of the time intervals was 125 hr. Meanwhile, the test data set average
relative errors were comparable when the length of the time intervals was 7, 15 or 25 hrs
(2.4%, 2.5% and 2.8%, respectively), increasing drastically for larger lengths of time intervals,
arriving to a maximum of 6.5% when the time length used was 100 hrs.
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Figure 4.9. Statistical analysis for determination of the optimal network structure and optimal length
of time interval based on g? quality indices, for modeling the normalized salt passage.
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Figure 4.10. Average relative error for the best architecture (chosen based on q? index) for each length
of time, for the normalized salt passage.

Therefore, without affecting significantly the model performance, the optimal characteristics
(i.e,, NN architecture and length of time intervals) for the normalized salt passage model
were selected to be identical with the ones chosen for the normalized permeate flow model:

7:5:1 architecture, dividing the tine space into 7 hrs equal intervals.
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The selected optimal NN architecture and length of the time interval were used for modeling
the RO process plant performance in terms of normalized permeate flow rate (Figure 4.11)
and normalized salt passage (Figure 4.12). A wider scatter of model predictions for the test
set relative to the test set is observed for both predicted parameters. This observation is in
agreement with the higher average relative errors and maximum relative errors computed
for the test data set compared with the ones calculated for the training data set. Accordingly,
for the normalized permeate flow rate, the average relative errors were 0.50% and 0.88%,
with maximum relative errors of 3.18% and 5.92% for the training and test data, respectively.
When modeling the normalized salt passage, the average relative errors for the training and
test data sets were 1.61% and 2.73% with the maximum relative errors of 15.83% and 35.52%,

respectively.
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Figure 4.11. Normalized permeate flow rate training (a) and test (b) data predictions for the model
built using 7 hrs time intervals and the neural network architecture 7:5:1. X, experimental data; ¢, NN
predictions. The vertical dotted lines represent startup moments after process interruptions for
membrane cleaning and/or replacement.

However, it is apparent that the ANN models captured the plant performance evolution not
only for the period of time corresponding to the experimental data used in the models

training phase, but also for the operational period for which the model was tested. It is
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noted, however, that there are prediction outliers for both modeled parameters (Figures 4.11
and 4.12); this behavior is attributed to the scatter of the monitored variables during the
considered operation period. The good agreement between the predicted and experimental
values for both normalized permeate flow and salt passage demonstrate that the NN-based
RO models can be successfully used for interpolation, as well as for reasonable forecasting of

the plant performance evolution.
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Figure 4.12. Normalized salt passage training (a) and test (b) data predictions for the model built
using 7 hrs time intervals and the neural network architecture 7:5:1. X, experimental data; *, NN
predictions. The vertical dotted lines represent startup moments after process interruptions for
membrane cleaning and/or replacement.

The normalized permeate flow (or normalized salt passage, depending on the parameter
selected for modeling) at the beginning of each STM time interval is an important input
variable to the present ANN RO plant process methodology. It assures the necessary
information from the past, to make present time predictions. In order to illustrate the
effectiveness of the approach, the operational time period 1750-1950 hrs was selected.
During this period the normalized permeate flow rate (Figure 4.13) was stable, and therefore
it is expected that an actual state model (i.e., correlate the present time plant performance

with the present time process variables) would be sufficient to predict plant performance.
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Figure 4.13 presents a comparison between the normalized permeate flow predicted by four
different NN models, using different length of the time intervals for dividing the time space.
It should be noted that the model developed using time intervals of 0 hrs (Figure 4.13a) is
equivalent to predict based only on process variables (i.e., flow rate, conductivity, pressure,
pH and temperature of the feed) without using any past information. Therefore, the network
architecture used for the actual state model was 5:5:1. Similar to the other three models
presented in Figure 4.13b,c,d, the actual state model was trained using data from the first
three periods of operation (0-906 hrs) and tested with the remaining data (operational period
>976 hrs). The results presented in Figure 4.13 reveal that the actual state model (Figure
4.13a) is not able to predict correctly the normalized permeate flow for the considered
operational time period (1750-1950 hrs), whereas when past information is taken into

account for developing the model, the predictions get closer to the experimental values.
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Figure 4.13. Comparison of normalized permeate flow predictions for different length of time
intervals, for the operational period 1750-1950 hrs. (a) At=0 hrs (actual state model); (b) At=7 hrs;
(c) At=50 hrs; (d) At=125 hrs. X, experimental data; ¢, NN predictions.

The inability of the actual state ANN model to capture the evolution of the normalized

permeate flow, and thus the need for past time information, can be best understood by
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identifying major RO plant operational data clusters by means of Self-Organizing Map
[77,78]. The operational patterns, represented by complete operational data set (five input
variables and the normalized permeate flow) were classified using a SOM followed by a

Davies-Bouldin index procedure [81] resulting in 12 separate clusters (Figure 4.14).

(b)

(a)

Figure 4.14. SOM clustering of normalized permeate flow operational patterns. (a) 12 separate clusters
with the corresponding number of patterns allocated to each one; (b) Unified distance matrix.
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Figure 4.15. Representation of normalized permeate flow operational patterns in 12 clusters. The

vertical dotted line represents the separation between the training data set and test data set.
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The SOM classification together with the training-test distribution of experimental data is
shown in Figure 4.15. The open circles represent operational patterns that were classified in
clusters 7 and 12, while the crosses represent the other operational patterns. It is noted that
for the period of time represented in Figure 4.13 (operational time higher than 1750 hrs), the
patterns are mainly classified in clusters 7 and 12. Also, it can be observed that these clusters
are scarcely represented in the training set, which is mainly formed by patterns belonging to
clusters 2, 5 and 6. As illustrated in Figure 4.14, the later three clusters are located far from
clusters 7 and 12 (in Figure 4.14b the light color represents map cells close to each other,
while the dark color represents cells far from each other, suggesting also a separating border

between different clusters).

Similar analysis was developed for the normalized salt passage models, with the comparison
of four different model predictions presented in Figure 4.16. The same operational period of
time (i.e., 1750-1950 hrs) like for the normalized permeate flow models was considered. In
this case it was also noted that the actual state model (Figure 4.16a) did not predict correctly
the plant performance for the considered period, while prediction improvement was
observed when the past information is considered (Figure 4.16b,c,d). The SOM analysis was
reprocessed this time for classifying the normalized salt passage patterns, followed by a
Davies-Bouldin index procedure [81] to identify 11 distinct clusters (Figure 4.17). Figure 4.18
reveal that the operational patterns corresponding to the period considered in Figure 4.16
(1750-1950 hrs) are mainly classified in clusters 3, 6 and 8. Moreover, these clusters are
scarcely represented in the training set, which is mainly formed by patterns classified to
cluster 5. The unified distance matrix represented in Figure 4.17b denoted high distance

between the map positions of the former three clusters and the later one.

These analyses indicate a high dissimilitude between the patterns corresponding to the
period of time represented in Figures 4.13 and 4.16, and the ones used in the model training
phase. Previous studies reveal that usually, the ANNs are not able to extrapolate beyond the
range of data used for training, a solution to this problem being an optimal division of data
into training and testing sets [134]. Thus, an actual state model cannot be used for the
forecast of RO plant performance. Even a periodically retraining of the NN may not assure
an acceptable forecast. In order to overcome this problem, time should be used as an input of

the model.
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Figure 4.16. Comparison of normalized salt passage predictions for different length of time intervals,

for the operational period 1750-1950 hrs. (a) At = 0 hrs (actual state model); (b) At =7 hrs; (c) At =50 hrs;
(d) At=125 hrs. X, experimental data; ¢, NN predictions.

(a) (b)

Figure 4.17. SOM clustering of normalized salt passage operational patterns. (a) 11 separate clusters
with the corresponding number of patterns allocated to each one; (b) Unified distance matrix.
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Figure 4.18. Representation of normalized salt passage operational patterns in 11 clusters. The vertical
dotted line represents the separation between the training data set and test data set.

4.3. Fuzzy ARTMAP approach for modeling plant performance

An alternative approach based on Fuzzy ARTMAP classification has been developed for the
forecasting of the reverse osmosis plant performance in terms of permeate flow rate and salt
passage. The methodology uses the same experimental data presented in Section 4.1 and the
predictive Fuzzy ARTMAP algorithm introduced by Giralt et al. [88] to anticipate the process
performance evolution based on present and past information. Separate models were
developed for normalized permeate flow rate and normalized salt passage with the aim of

predicting these parameters several steps in the future based on their experimental variation.

Accordingly, for each parameter, three parallel Fuzzy ARTMAP models were implemented
using the configuration of input (input pattern to ART. module, called pattern A) and output
(input pattern to ART» module, called pattern B) data as presented in Figure 4.19. Each one
of the three parallel Fuzzy ARTMAP models used the same set of input parameters,
consisting in n successive experimental values of the parameter that is to be modeled. The
present time (time t) together with the previous n-1 measurements, were used to predict the
considered parameter (normalized permeate flow rate or normalized salt passage,
respectively) for the subsequent three time moments. Hence, the first Fuzzy ARTMAP model

was designed for predicting one time step ahead, the second model had the aim of predicting
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two time steps ahead, while the third one was developed for predicting three time steps

ahead.

FA #1
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~
+
N

Loyl || | b

FA #2

Input pattern to ART, module

t,q

Input pattern to ART, module

Figure 4.19. Input and output data configuration for the three parallel Fuzzy ARTMAP models
developed for both normalized permeate flow rate and normalized salt passage.

The number of successive experimental points used to form the input patterns of ARTa
module of the three parallel Fuzzy ARTMAP (FA) models was established in order to avoid
the multi-evaluation. This occurs when two identical input patterns presented to ARTa
module (pattern A) have two different corresponding patterns that are submitted to ARTb
module (pattern B), as presented in Eq. (4.8):

A, =[a,,a,,..,a,] > B, =[b,] w8
A, =[a,,a,,..,a,]> B, =[b,]

Multi-evaluation can be avoided by increasing the length of patterns A, and therefore
increasing n. The smallest number of successive experimental points to avoid multi-
evaluation was found to be 6 for modeling the normalized permeate flow rate and 7 for

modeling the normalized salt passage.

Similar with the approach based on back-propagation algorithm presented in Section 4.2, the
models were trained using the experimental data corresponding to the first three periods of
operation (0-906 hrs). The rest of experimental data, corresponding to the operation periods
starting at t =976 hrs and forward in time were used for testing the models. In order to use at
a maximum level the information presented in the training data set, the formation of the
highest possible number of classes in ART» module was allowed by setting the p» parameter
value very closed to unity. Accordingly, the training data set is perfectly modeled, and

therefore only the test data set prediction will be further presented.
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Figure 4.20. Test data set predictions for the normalized permeate flow rate using the Fuzzy ARTMAP
approach. X, experimental data; *, NN predictions. Normalized permeate flow rate predicted for (a)
one time step ahead; (b) two time steps ahead; (c) three time steps ahead. The vertical dotted lines
represent startup moments after process interruptions for membrane cleaning and/or replacement.

As illustrated in Figures 4.20 and 4.21, the developed Fuzzy ARTMAP models captured very
well the dynamics of the process performance parameters. The predicted normalized
permeate flow rates were in very good agreement with the experimental values, the average
relative error being in all cases lower than 1%. Accordingly, the Fuzzy ARTMAP model
designed to predict the normalized permeate flow rate one time step ahead (Figure 4.20a)
presented an average relative error of 0.89%, with the corresponding standard deviation of
0.76%. The models developed for predicting the normalized permeate flow rate for two and
three time steps ahead presented the average relative errors of 0.84% with standard
deviation of 0.71% (Figure 4.20b) and 0.91% with the corresponding standard deviations of

0.75% (Figure 4.20), respectively.
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Figure 4.21. Test data set predictions for the normalized salt passage using the Fuzzy ARTMAP
approach. X, experimental data; ¢, NN predictions. Normalized salt passage predicted for (a) one time
step ahead; (b) two time steps ahead; (c) three time steps ahead. The vertical dotted lines represent
startup moments after process interruptions for membrane cleaning and/or replacement.

Slightly larger average absolute errors were obtained in the case of the three parallel Fuzzy
ARTMAP models developed for predicting the normalized salt passage for one, two and
three time steps ahead. However, the models predicted the normalized salt passage with a
very good accuracy, since the average relative errors did not exceed 3% in none of the three
cases. The model design for predicting the normalized salt passage for one time step ahead
presented an average relative error of 2.79% with the corresponding standard deviation of
2.29% (Figure 4.21a). The normalized salt passage for two and three time steps ahead was
predicted with similar average relative errors of 2.66% with standard deviation of 2.24%

(Figure 4.21b) and 2.61% with standard deviation of 2.29% (Figure 4.21c), respectively.
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The results of this approach based on Fuzzy ARTMAP encourage in considering the
integration of NN-based RO models in development of optimization and control strategies.
The prediction of process performance parameters was achieved for three time steps ahead
based on the last experimental measurements. Taking into account that the time sampling
period for monitoring the process parameters of the considered RO brackish water
desalination plant was 10 minutes, a 30 minutes forecast could be attained. Hence, the
current approach could be useful for control as it will give sufficient lead time for decision

making.
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5. Conclusions

The RO membrane process operation performance was successfully modeled by means of
artificial neural networks-based on direct analysis of experimental data. Two approaches of
process operation performance modeling were considered: one based on characterizing the
organic compounds passage through RO membranes, and a second one based on modeling

the dynamics of permeate flow and separation performances for a full-scale RO plant.

The passage, sorption and rejection of organics in RO filtration were studied using
quantitative chemical structure-property analysis based on available experimental data for
50 compounds that included specific chemicals of public heath concern in addition to amino
acids and selected antibiotics. It was demonstrated that organic solute passage and sorption
in RO membranes can be qualitatively and quantitatively related to chemical structure. Three
feature selections methods, CFS, SOM-DA and ANNIGMA, were effectively used to
discriminate the most relevant set of molecular descriptors to account for organic solute
sorption by RO membranes and passage through these membranes. Very good agreement
between the three feature selection methods was observed. The most significant molecular
descriptors to characterize the sorbed fraction included size of the smallest ring, dipole
moment, dipole hybridization, LUMO energy and heat of formation, with the dipole vector Y
as additional parameter specific for the polyamide membranes. For the passage fraction the
most relevant molecular descriptors were the size of the smallest ring, molecular weight,
shape index kappa 2 and LUMO energy, with the dipole hybridization as additional
descriptor specific for the cellulose acetate membrane. The chemical space of the 50 organic
compounds and the applicability domain of the models developed were analyzed by means
of PCA and Self-Organizing Maps. Families that included chemicals of public health concern,
amino acids and antibiotics were identified and successfully discriminated by functional

group counts.
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Leave-one-out cross-validation and externally validated quantitative structure-property
relationship models for organic solute sorption and passage for polyamide and cellulose
acetate membranes were developed using artificial neural networks. Three kinds of
ANN-based QSPRs were developed: Independent, Membrane-Composite and MP-
Composite ANQ models. Predictions of organic solute rejection were made based on an
overall mass balance using the predicted solute sorption and passage. Highly performing
Independent ANQ models were built with the explained variance in prediction indices (q?)
exceeding 0.975 for the LOO internal validation and 0.900 in most cases of the external
validation, i.e., with a good correlation between the predicted and experimental values. The
absolute average errors for predicted organic passage, sorption and rejection fractions were
generally lower than 0.077 (70.9%) for all LOO cross-validation and externally validated
models. For the Membrane-Composite ANQ models lower explained variance in predictions
were obtained, i.e. g> as low as 0.928 for the internal validation, and 0.793 for the external
validation, respectively. The average absolute errors of these models were as high as 0.067
(34.9%) for the LOO cross-validation, and 0.088 (52.4%) for the external test set validation,
respectively. Worst results were obtained for the MP-Composite ANQ models built for the
simultaneous predictions of the two experimental fractions. Accordingly, for the internal
validation, the explained variance in prediction index was as low as 0.842, while the average
absolute errors were up to 0.054 (34.7%). For the external test set validation, the g? index
decreased down to 0.692 while the average absolute errors increased up to 0.145 (109.8%).
This was mainly attributed to the reduced number of organic compounds with available
experimental data, and the increase in the number of input parameters for these models.
Therefore, a reduced number of hidden neurons had to be used, which directly affected the

models performance.

Predictions were consistent with the fact that higher organic solute rejection and lower
organic solute passage occur in the polyamide membranes compared to the cellulose acetate
membrane. The results are encouraging and suggest the potential application of the applied
methods for developing comprehensive and predictive ANN-based QSPR models, using
expanded databases, which will provide the analysis and forecasting capability necessary for

public health protection that is afforded by RO water treatment processes.
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The applicability of the ANN-based QSPR models was assessed by means of a mass balance
validating test. The models were tested for the 50 organic compounds with available
experimental data, as well as on a number of 143 organic micro pollutants of health concern,
that were not experimentally characterized. The mass balance test was applied without a
priori prescreening the new compounds with respect to the applicability domain for which
the models were developed. The test results demonstrate the applicability of the QSPR
approach as the mass balance based on predicted fractions was fulfilled in most cases. A
reduced number of compounds out of the total of 193 considered, presented a mass balance
relative error higher than 25%, i.e. 15 compounds in the case of BW30 membrane, 14 in the
case of TFCHR membrane and 15 in the case of CA membrane, respectively. A SOM analysis
revealed that these compounds are not well represented by the set of 50 chemicals used to

train the models.

The performance dynamics of a full-scale brackish water RO desalination plant were
successfully modeled by two different neural networks approaches. A back-propagation
neural network was trained to integrate the effect of operating parameters, feed water
quality and fouling occurrence on the time evolution of permeate flow rate and salt passage.
The experimental data collected from a RO pilot plant in Port Hueneme, California were
normalized following the ASTM 4516-00 method. It was showed that an actual state model
(i.e., which correlate the present time plant performance with the present time process
variables) cannot be used for predictions of operational patterns different from the ones
considered in model training. Therefore, the process past information necessary to make
present time predictions was incorporated into the model by dividing the time space into
equals intervals and selecting the normalized permeate flow rate (or normalized salt passage,
respectively) at the beginning of each time interval as additional model input. The spectrum
of possible network architectures and input variables configuration was scanned to arrive at
the optimal model. The best results were obtained when dividing the time space into equal
intervals of 7 hrs, and a network architecture with 5 neurons in the hidden layer. Using this
approach, reasonable process performance parameters forecasting can be attained and thus
provide the capability of inferring the occurrence of membrane fouling. Accordingly, the test
data set normalized permeate flow rate and normalized salt passage were predicted with

average relative errors of 0.88% and 2.73%, respectively.
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An alternative approach based on the use of Fuzzy ARTMAP was developed for the
forecasting of the two process performance parameters considered. The prediction of
normalized permeate flow rate and normalized salt passage for three time steps ahead was
achieved based on the last 6 and 7 experimental measurements, respectively. The forecasting
average relative error did not exceed 0.89% in the case of normalized permeate flow rate, and
2.79% for the normalized salt passage. These errors are comparable with the ones obtained

using the back-propagation models.
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ANNEXES

ANNEX I. Chemical structures of the 50 organic compounds used for developing

QSPR models.

Chemical structures of the 50 organic compounds with available experimental data

presented in Table 3.1, drawn using ACD/ChemSketch 8.00.
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ANNEX II. Molecular descriptors and reverse osmosis experimental data for the 50

organic compounds used to develop QSPR.

Database containing the molecular descriptors calculated using CAChe Pro Version 6.1
(Oxford Molecular Ltd.) for the 50 organic compounds, together with the average

experimental values and experimental standard deviations for the three fractions measured

for each molecule and each membrane.
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CAS a_count b_count b_single b_double chi0 chil chi2 dipole dipole X

[Debye]  [Debyel]
15972-60-8 38 38 34 4 13.54 8.69 6.68 6.12 -2.23
71-43-2 12 12 9 3 4.24 3.00 2.12 0.00 0.00
80-05-7 33 34 28 6 12.47 8.00 7.74 2.08 -0.45
58-08-2 24 25 21 4 1046  6.54 6.23 5.13 4.95
2921-88-2 29 29 25 4 13.76 8.42 7.68 6.93 -0.69
57-88-5 74 77 76 1 20.10 13.25 13.07 2.26 0.64
51481-61-9 33 33 29 3 12.51 8.27 6.37 6.62 -6.06
76-57-3 43 47 43 4 15.06 10.66 10.23 5.34 -0.49
120-83-2 13 13 10 3 6.85  4.20 3.87 0.57 0.47
94-75-7 19 19 15 4 9.85 6.09 5.63 4.61 4.01
84-66-2 30 30 25 5 11.97 7.70 6.14 1.81 -1.41
56-53-1 40 41 34 7 14.54  9.65 8.18 0.09 -0.08
121-14-2 19 19 14 5 10.01 6.02 5.70 7.27 2.89
57-91-0 44 47 44 3 13.91 9.59 9.38 0.54 0.37
53-16-7 42 45 41 4 13.91 9.59 9.38 2.89 0.35
100-41-4 18 18 15 3 5.82 3.93 2.91 0.38 -0.38
71-00-1 20 20 17 3 8.27 5.20 4.61 3.96 2.25
15687-27-1 33 33 29 4 1142  7.00 6.51 2.75 -1.76
58-89-9 18 18 18 0 9.46 5.46 5.16 2.97 0.72
298-00-0 26 26 21 5 12.18 7.50 6.75 5.95 -0.70
98-95-3 14 14 10 4 6.69 431 3.64 6.93 0.03
104-40-5 40 40 37 3 11.64 7.83 6.04 1.81 -1.37
87-86-5 13 13 10 3 946  5.46 5.16 1.91 -1.64
108-95-2 13 13 10 3 5.11 3.39 2.74 1.70 -1.32
85-44-9 15 16 11 5 7.85 5.29 4.80 8.64 -8.64
57-83-0 53 56 53 3 16.41 10.86 11.01 6.08 1.16
19466-47-8 82 85 85 0 21.68 1420 13.73 2.02 -0.25
58-22-0 49 52 50 2 14.83 9.95 10.06 5.36 5.24
108-88-3 15 15 12 3 5.11 3.39 2.74 0.31 0.00
56-41-7 13 12 11 1 5.16 2.64 2.49 2.61 -1.84
70-47-3 17 16 14 2 7.44 4.04 3.85 2.36 -1.48
56-84-8 16 15 13 2 744  4.04 3.85 5.56 3.57
52-90-4 14 13 12 1 5.86 3.18 2.63 4.05 0.28
79-43-6 8 7 6 1 5.16 2.64 2.49 2.94 1.13
124-40-3 10 9 9 0 2.71 141 0.71 1.50 -0.01
56-40-6 10 9 8 1 4.28 2.27 1.80 2.07 -1.19
56-87-1 24 23 22 1 7.98 4.68 3.72 5.42 -0.22
63-68-3 20 19 18 1 7.28 4.18 3.36 4.09 -2.14
62-75-9 11 10 9 1 4.28 2.27 1.80 4.87 4.05
75-65-0 15 14 14 0 4.50 2.00 3.00 2.05 1.62
72-19-5 17 16 15 1 6.73 3.55 3.35 2.29 1.83
76-03-9 8 7 6 1 6.08 294 3.52 1.64 0.21
57-13-6 8 7 6 1 3.58 1.73 1.73 5.71 0.00
72-18-4 19 18 17 1 6.73 3.55 3.35 3.31 -2.87
85721-33-1 42 45 39 6 16.85 11.56 10.84 13.87 -1.92
564-25-0 56 59 51 8 23.86 14.87 14.85 15.80 10.91
60-00-4 36 35 31 4 15.71 9.20 8.83 15.60 -0.20
85-01-8 24 26 19 7 9.38 6.95 5.99 0.11 0.00
127-18-4 6 5 4 1 5.16 2.64 2.49 0.00 0.00
60-54-8 56 59 51 8 2391 14.77 15.24 4.73 -1.65
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CAS dipoleY dipoleZ  dielEn sterEn heatform mr weight Po r_count
[Debyel [Debyel [kcal/mol] [kcal/mol] [kcal/mol] [Da] [A3]
15972-60-8 -1.41 -5.52 -0.37 -76.89 -76.88 7393 269.77 2990 1
71-43-2 0.00 0.00 -0.09 -8.08 20.16 26.06 78.11 1039 1
80-05-7 2.02 -0.16 -0.46 -9.94 -57.06 68.21 228.29 27.60 2
58-08-2 1.36 -0.06 -0.67 8.24 8.24 48.28 194.19 20.65 2
2921-88-2 -3.40 6.00 -0.58 -144.94 -144.86 79.00 350.58 2793 1
57-88-5 1.90 -1.06 -0.21 63.20 -130.52  120.62 386.66 48.84 4
51481-61-9 2.10 1.64 -1.41 103.49 103.47 7246 25234 2732 1
76-57-3 5.26 0.81 -0.48 73.61 -58.55 84.53 299.37 3430 5
120-83-2 0.32 -0.01 -0.17 -7.69 -38.72 37.36 163.00 1532 1
94-75-7 0.03 -2.28 -0.66 -10.62 -119.78 48.22 221.04 1997 1
84-66-2 0.92 -0.66 -0.44 -78.72 -149.07 58.61 22224 23.63 1
56-53-1 -0.01 -0.05 -0.44 -8.94 -55.98 82.67 268.36 33.64 2
121-14-2 -6.67 -0.23 -1.08 26.02 26.02 4575 18214 1741 1
57-91-0 -0.32 -0.22 -0.41 20.54 -116.44 79.62 27239 3271 4
53-16-7 -1.09 -2.65 -0.47 16.20 -100.53 78.80 270.37 3230 4
100-41-4 -0.03 -0.01 -0.10 -6.77 7.10 35.70 106.17 1424 1
71-00-1 3.20 -0.65 -0.88 -49.20 -49.21 37.00 155.16 1556 1
15687-27-1 1.23 -1.71 -0.37 -17.56 -109.89 60.73 206.28 24.36 1
58-89-9 -1.26 -2.59 -0.38 29.40 -62.10 54.08 290.83 23.06 1
298-00-0 1.63 -5.68 -1.04 -126.28 -126.34 63.19 263.21 20.88 1
98-95-3 -6.93 0.00 -0.41 -7.56 17.57 33.38 123.11 12.87 1
104-40-5 1.19 -0.01 -0.26 -2.09 -88.10 69.60 220.35 28.03 1
87-86-5 0.99 -0.02 -0.17 3.86 -48.17 51.78 266.34 21.70 1
108-95-2 1.06 0.01 -0.24 -7.90 -27.06 2775 9411 11.13 1
85-44-9 0.00 0.00 -0.54 -15.25 -78.58 34.63 148.12 1498 2
57-83-0 5.92 0.78 -0.56 39.93 -120.32 92.80 314.47 37.78 4
19466-47-8 2.00 0.01 -0.16 -161.30 -161.30  128.92 416.73 52.58 4
58-22-0 1.14 0.08 -0.47 43.89 -123.66 84.52 28843 3456 4
108-88-3 0.31 0.03 -0.10 -8.60 12.42 31.10 9214 1236 1
56-41-7 -1.65 -0.84 -0.49 -4.54 -110.98 20.50 89.09 830 0
70-47-3 1.83 -0.17 -0.76 -34.60 -157.44 2836 132.12 11.62 0
56-84-8 2.58 -3.39 -0.96 -19.97 -205.95 26,53 133.10 1091 0
52-90-4 -2.09 -3.46 -0.57 -2.57 -105.23 28.17 12115 924 O
79-43-6 -0.82 2.59 -0.35 8.01 -114.55 2262 12894 9.08 0
124-40-3 -0.37 1.46 -0.11 -5.66 -5.66 14.69 4508 583 0
56-40-6 1.70 -0.04 -0.44 -5.74 -110.18 16.00 75.07 652 0
56-87-1 1.54 -5.19 -0.67 0.86 -127.11 3781 146.19 1510 O
63-68-3 -3.44 -0.55 -0.62 -5.89 -117.37 37.83 149.21 1310 O
62-75-9 2.63 0.59 -0.29 -1.97 3.19 20.05 74.08 754 O
75-65-0 -1.25 0.05 -0.17 3.74 -75.10 2207 7412 864 O
72-19-5 -1.09 -0.85 -0.46 -1.80 -165.19 2646 119.12 1076 0
76-03-9 -1.40 -0.82 -0.28 17.69 -109.16 28.16 163.39 11.17 0
57-13-6 -5.71 0.00 -0.68 -61.97 -56.14 13.14 60.06 531 0
72-18-4 0.29 1.62 -0.44 -1.14 -122.99 2949 117.15 1195 0
85721-33-1 13.74 0.01 -1.20 293.82 -93.10 87.12 331.35 36.69 4
564-25-0 -11.40 -0.67 -1.40 7.23 -27395  113.13 44444 4563 4
60-00-4 -0.06 -15.59 -1.96 62.83 -368.92 62.35 292252521 0
85-01-8 -0.11 0.00 -0.22 -24.64 53.02 58.96 178.23 2456 3
127-18-4 0.00 0.00 -0.04 8.91 -13.27 3095 165.83 1221 0
60-54-8 4.42 0.33 -0.73 -268.98 -268.99 11342 44444 4597 4
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CAS small_ring large ring kierl kier2 kier3 SASA chiOv chilv chi2vnz HOMO

[A?] [eV]
15972-60-8 6 6 16.06 823  4.00 281.99 1196 6.69  4.27 -9.62
71-43-2 6 6 417 222 133 11917 346 200 1.16 -9.75
80-05-7 6 6 1343 533 3.06 25648 10.01 559 472 -8.95
58-08-2 5 6 1052 354 146 21143 818 411 323 -8.96
2921-88-2 6 6 16.06 696 457 31541 1363 871 7.03 -9.74
57-88-5 5 6 2124 792  3.66 420.39 19.34 12.63 12.19 -9.45
51481-61-9 5 5 1506 9.00 593 303.75 10.77 638  4.37 -8.58
76-57-3 5 6 1435 476 164 28685 1295 810 7.11 -8.70
120-83-2 6 6 711 272 170 166.08 595 3.10 244 -9.09
94-75-7 6 6 11.08 502 370 21652 797 415 3.10 -9.46
84-66-2 6 6 1406 735 4.08 24748 936 514 299  -10.29
56-53-1 6 6 1637 785 425 29720 1193 696 4.76 -8.91
121-14-2 6 6 11.08 448 272 19238 676 342 249  -11.03
57-91-0 5 6 13.65 475 196 28530 1218 8.09 744 -8.90
53-16-7 5 6 13.65 475 196 28470 1206 795 722 -8.96
100-41-4 6 6 613 311 180 15566 5.09 297 184 -9.41
71-00-1 5 5 9.09 413 2.84 18392 582 316 223 -9.03
15687-27-1 6 6 13.07 592 417 25481 953 532 440 -9.57
58-89-9 6 6 10.08 340 156 220.87 1027 593 569  -10.33
298-00-0 6 6 1406 6.07 4.08 26177 1036 672 580  -10.37
98-95-3 6 6 711 324 200 14816 4.65 250 159  -10.60
104-40-5 6 6 1406 9.07 7.06 30586 1041 6.61 4.54 -8.94
87-86-5 6 6 10.08 340 156 211.00 9.12 456  3.81 -9.14
108-95-2 6 6 514 234 150 12942 383 213 134 -9.18
85-44-9 5 6 764 280 121 16360 553 314 222 -10.82
57-83-0 5 6 1647 550 229 32212 1486 9.60 925 -10.16
19466-47-8 5 6 2317 874 397 43895 21.13 13.88 1328  -10.24
58-22-0 5 6 1458 475 193 296.84 1340 887 861  -10.08
108-88-3 6 6 514 234 150 13820 439 241 1.66 -9.44
56-41-7 0 0 6.00 222 300 12333 351 163 113 -9.96
70-47-3 0 0 9.00 392 450 15558 470 230 1.62 -9.88
56-84-8 0 0 9.00 392 450 155.62 457 224 154 -10.37
52-90-4 0 0 700 3.06 267 14611 456 241 149 -9.64
79-43-6 0 0 6.00 222 300 12934 420 203 174 -10.88
124-40-3 0 0 3.00 200 200 9215 250 1.00 0.50 -9.38
56-40-6 0 0 500 225 400 10583 264 119  0.60 -9.93
56-87-1 0 0 10.00 576 553 19041 592 337 223 -9.38
63-68-3 0 0 9.00 484 450 18487 615 405 271 -9.17
62-75-9 0 0 500 225 400 11191 330 128 093 -9.82
75-65-0 0 0 500 1.00 0.00 12270 395 172 217  -11.28
72-19-5 0 0 800 311 281 14783 454 222 161 -9.82
76-03-9 0 0 700 185 267 14457 526 238 3.08 -10.94
57-13-6 0 0 400 133 000 9067 206 078 040 -10.10
72-18-4 0 0 8.00 311 281 15613 5.09 254 211 -9.88
85721-33-1 3 6 1742 696  3.13 329.09 13.09 813  6.37 -8.83
564-25-0 6 6 2510 859 337 38428 17.60 10.02  8.79 -9.23
60-00-4 0 0 20.00 10.69 12.49 285.10 10.56 552  4.00 -9.75
85-01-8 6 6 924 387 165 20922 777 482 351 -8.74
127-18-4 0 0 6.00 222 300 14511 554 252 242 -9.22
60-54-8 6 6 2510 829 337 38791 17.66 9.97 8.96 -9.32
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CAS LUMO dipole_Pdipole_.H E1_e-n El e-e El_total E2 res E2_ex [E2_e-e
[eV] [Debye] [Debye] [eV] [eV] [eV] [eV] [eV] [eV]

15972-60-8 -0.03 5.95 0.21 -4682.6  1919.2 -2763.4 -493.8 -2253 18581.4
71-43-2 0.40 0.00 0.00 -1134.7 471.3 -663.4 -169.9 -80.1  2299.9
80-05-7 0.29 1.90 0.25 -3883.7  1607.0 -2276.7 -473.3 -214.9 14339.6
58-08-2 -0.35 5.02 0.76 -3834.2 15825 -2251.6 -372.7 -157.1 113954
2921-88-2 -1.50 7.37 0.74 -5963.3 24732 -3490.1 -378.0 -162.9 17787.2
57-88-5 1.03 1.84 0.61 -5845.5  2398.9 -3446.6 -882.7 -422.1 39378.3
51481-61-9 0.18 5.31 1.31 -4181.6  1728.1 -2453.5 -462.6 -203.7 14120.1
76-57-3 0.28 4.36 1.59 -52979 21785 -31194 -609.5 -2744  25297.7
120-83-2 -0.24 0.75 0.75 -28375 1147.6 -1689.9 -193.5 -84.4  4946.0
94-75-7 -0.48 3.80 0.76 -4257.0 17325 -25245 -286.1 -121.8  9490.8
84-66-2 -0.58 2.00 0.23 -4370.3  1802.2 -2568.1 -424.3 -187.9 14338.1
56-53-1 0.16 0.07 0.04 -4458.4 18424 -2616.0 -564.2 -258.2  18562.4
121-14-2 -1.84 7.63 0.36 -39944  1639.1 -2355.3 -315.6 -130.9  9476.1
57-91-0 0.32 0.84 0.42 -4510.7  1860.3 -2650.3 -584.7 -270.0 21096.9
53-16-7 0.26 3.08 0.60 -4484.6  1849.6 -2635.0 -572.2 -263.9 20331.1
100-41-4 0.39 0.42 0.06 -1535.2 634.7 -900.5 -237.2 -112.7  4080.9
71-00-1 0.59 1.21 2.85 -3179.3  1322.8 -1856.5 -296.0 -124.3  7511.0
15687-27-1 0.04 3.28 0.63 -3561.9 14719 -2090.0 -432.4 -199.3  12420.6
58-89-9 0.06 3.01 0.09 -47952 19142 -2881.1 -200.9 915 10272.8
298-00-0 -2.06 6.00 0.05 -5001.1  2119.3 -2881.8 -369.3 -154.8 13961.5
98-95-3 -1.14 7.17 0.30 -2466.3 10159 -1450.5 -225.6 972  4861.1
104-40-5 0.32 1.47 0.62 -3462.9 14264 -2036.5 -492.0 -232.4  12895.6
87-86-5 -0.79 1.37 0.64 -4595.7  1825.6 -2770.1 -198.5 -83.1  8565.1
108-95-2 0.29 1.21 0.64 -1656.0 687.4 -968.6 -190.7 -85.8  3150.2
85-44-9 -1.41 8.58 0.00 -3009.9 12393 -1770.7 -262.8 -112.3  6450.0
57-83-0 -0.10 5.90 0.21 -5116.7  2107.3  -3009.4 -676.9 -317.7 27439.1
19466-47-8 3.32 1.65 0.58 -6270.5  2570.0 -3700.5 -959.4 -460.4 44978.8
58-22-0 -0.09 4.87 0.74 -4739.7 19522 -2787.5 -622.6 -291.3 24237.6
108-88-3 0.38 0.33 0.04 -1334.4 552.6 -781.9 -203.8 -96.5  3146.6
56-41-7 0.95 2.71 1.09 -1989.3 8275 -1161.8 -166.7 -704  3153.8
70-47-3 0.68 242 0.76 -3028.7  1267.1 -1761.6 -240.2 -97.7  5905.6
56-84-8 0.36 3.54 2.29 -3213.7 13374 -1876.3 -228.4 919 58824
52-90-4 -0.07 2.87 2.16 -2299.3 952.4 -1347.0 -174.3 -745  3995.4
79-43-6 -0.09 3.09 0.51 -2639.1 10674 -1571.7 -104.7 -41.7  2903.9
124-40-3 3.48 0.56 0.99 -759.9 312.6 -447.3 -105.1 -49.1  1088.3
56-40-6 0.75 2.58 1.72 -1789.4 746.2 -1043.2 -133.8 -54.1 22295
56-87-1 1.11 4.06 1.49 -2926.0 12147 -1711.3 -297.2 -130.4  7470.0
63-68-3 0.04 3.20 0.92 -2704.5  1120.7 -1583.8 -241.0 -107.0  5961.1
62-75-9 0.32 4.72 0.84 -1577.0 644.5 -932.5 -139.8 -60.0  2311.7
75-65-0 3.25 1.65 0.64 -1357.9 560.8 -797.2 -161.2 -759  2624.4
72-19-5 0.52 2.75 2.32 -2715.8  1128.8 -1587.0 -219.5 -92.0  5337.9
76-03-9 -0.46 1.63 0.41 -3223.7 12914 -1932.3 -105.1 -412  3885.5
57-13-6 0.99 5.14 0.59 -1406.5 600.3 -806.2 -115.1 -442 14771
72-18-4 0.98 3.27 0.95 -2391.1 991.9 -1399.2 -233.6 -103.0  5291.2
85721-33-1 -0.76 14.63 1.57 -6532.7  2699.5 -3833.2 -636.6 -2749 26156.3
564-25-0 -1.02 15.18 1.49 -8979.7 37163 -5263.3 -841.7 -360.9 45631.9
60-00-4 0.65 13.54 2.03 -6789.4 28139 -3975.4 -510.7 -210.1 22893.2
85-01-8 -0.54 0.10 0.01 -25859 10714 -15415 -381.2 -176.3  8982.0
127-18-4 -0.32 0.00 0.00 -2762.5  1083.4 -1679.1 -70.2 -29.9  2688.0
60-54-8 -0.84 6.81 2.11 -8982.8  3719.2 -5263.6 -841.4 -360.6 45492.9
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CAS E2_e-n E2 n-n E2 el E2_total E_total pmiX pmiY pmiZ
[eV] [eV] [eV] [eV] [eV] [10° g cm?] [1040 g cm?] [104° g cm?]

15972-60-8  -37313.3 189249 193.0 -526.1  -3289.5 2303.1 2533.9 3160.1
71-43-2 -4639.2 24024  63.1 -186.9 -850.3 147.8 147.8 295.6
80-05-7 -28809.5 146535 183.6 -504.6 -2781.3 981.3 3181.7 3537.0
58-08-2 -22949.6 11707.2 152.9 -376.9 -2628.5 811.5 1216.9 2011.3
2921-88-2 -35927.3 182549 114.8 -426.1  -3916.2 1999.1 5346.9 6632.1
57-88-5 -78924.2 398829 336.9 -967.8 -44144 2768.9 10504.2 11382.6
51481-61-9  -28419.6 14485.0 185.6 -480.8 -2934.3 822.5 5801.9 6564.6
76-57-3 -50746.2 25691.5 243.0 -640.9 -3760.3 1698.5 3051.4 4000.4
120-83-2 -9969.3  5100.0 76.7 -201.2  -1891.1 395.1 1131.6 1526.7
94-75-7 -19115.2 97416 1172 -290.8 -2815.2 849.4 2520.4 3282.9
84-66-2 -28829.2 146604 169.3 -4429  -3011.0 13454 1722.7 2699.4
56-53-1 -37272.0 189275 2179 -604.6  -3220.5 965.9 5418.1 5702.2
121-14-2 -19146.0  9804.1 134.2 -312.3 -2667.6 556.6 1558.0 2108.9
57-91-0 -42335.4 21465.6 227.1 -627.5 -3277.8 891.4 4627.4 5086.1
53-16-7 -40813.7 207040 221.4 -614.8 -3249.8 1008.9 4392.1 4870.1
100-41-4 -8211.9 42195 88.5 -261.4  -1162.0 176.2 559.6 723.9
71-00-1 -15163.8  7776.1 123.3 -297.0 -2153.5 294.0 1516.4 1739.9
15687-27-1  -24972.0 127184 167.1 -464.6  -2554.5 631.4 3245.0 3345.3
58-89-9 -20667.0 10473.2 79.0 -213.3  -3094.4 1673.5 1964.1 3244.7
298-00-0 -28329.5 144833 1152 -408.8  -3290.6 787.3 4257.2 4465.3
98-95-3 -9827.6  5058.5 92.1 -230.7 -1681.1 208.1 668.5 876.6
104-40-5 -25906.8 13198.8 187.6 -536.8 -2573.4 299.1 8400.4 8650.0
87-86-5 -17218.2  8733.9 80.9 -200.8 -2970.9 1443.1 18184 3261.5
108-95-2 -6360.5  3284.5 74.1 -202.3  -1170.9 150.6 320.2 470.8
85-44-9 -13027.0 66834 106.4 -268.7 -2039.4 460.1 733.6 1193.7
57-83-0 -55068.9 27889.4 259.7 -735.0 -3744.4 1164.1 6309.5 6634.2
19466-47-8  -90127.3 45514.7 366.2 -1053.7 -4754.2 2051.0 14280.7 15077.1
58-22-0 -48643.2 24646.1 240.4 -673.4  -3460.9 1011.3 4811.4 5315.3
108-88-3 -6337.2  3266.6 75.9 -2243  -1006.2 153.2 328.6 476.3
56-41-7 -6395.1 33109 69.7 -167.5 -1329.3 165.9 259.9 399.5
70-47-3 -11950.9  6146.0 100.7 -237.3  -1998.9 243.6 943.6 1120.3
56-84-8 -11915.2  6130.9 98.1 -222.2  -2098.5 247.1 971.2 1112.3
52-90-4 -8095.3 41722 72.3 -176.6  -1523.6 180.1 733.1 860.7
79-43-6 -5888.6  3030.2 455 -100.9 -1672.7 319.6 431.5 607.2
124-40-3 -2205.0 1158.7 420 -112.2 -559.6 24.2 89.8 101.3
56-40-6 -4543.8 2371.8 575 -130.5 -1173.7 83.1 215.6 288.4
56-87-1 -15055.6 77072 121.5 -306.1 -2017.4 394.1 1344.8 1425.8
63-68-3 -12046.9 61825 96.6 -251.3 -1835.1 240.4 1583.2 1775.9
62-75-9 -4681.7  2431.0 61.0 -138.7 -1071.3 91.2 189.4 269.5
75-65-0 -5297.5 27362  63.0 -174.1 -971.2 177.6 179.3 184.6
72-19-5 -10794.7  5549.5 92.6 -2189 -1805.9 253.5 564.6 695.3
76-03-9 -7853.5 40142 463 -100.0 -2032.3 549.5 616.1 675.5
57-13-6 -3029.7  1600.2  47.6 -111.7 -917.9 73.7 86.3 160.0
72-18-4 -10685.9  5489.6 949 -241.7 -1640.9 295.2 547.5 686.7
85721-33-1  -52577.1 266759 255.2 -656.3  -4489.6 1839.5 6459.3 8188.2
564-25-0 -91632.5 463433 342.7 -859.9 -6123.3 3161.9 9327.4 11807.6
60-00-4 -46117.1 234412 2174 -503.4  -4478.9 2481.2 3062.8 5054.7
85-01-8 -18042.5  9203.2 142.7 -414.7  -1929.2 521.2 15104 2031.6
127-18-4 -5406.4  2746.8 284 -71.7  -1750.8 482.9 602.0 1085.0
60-54-8 -91347.7 46196.2 341.4 -860.7 -6124.3 3147.9 9616.8 11652.3
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M fraction P fraction R fraction

average st. dev. average st. dev. average st. dev.
15972-60-8 0.052 0.019 0.004 0.001 0.944 0.020
71-43-2 0.740 0.054 0.260 0.054 0.000 0.000
80-05-7 0.283 0.089 0.031 0.020 0.685 0.105
58-08-2 0.141 0.065 0.179 0.029 0.681 0.093
2921-88-2 0.257 0.135 0.008 0.000 0.735 0.135
57-88-5 0.134 0.013 0.001 0.000 0.865 0.013
51481-61-9 0.134 0.029 0.078 0.033 0.789 0.058
76-57-3 0.131 0.041 0.094 0.047 0.775 0.085
120-83-2 0.926 0.013 0.074 0.013 0.000 0.000
94-75-7 0.060 0.015 0.133 0.071 0.808 0.071
84-66-2 0.370 0.178 0.068 0.040 0.562 0.212
56-53-1 0.373 0.081 0.001 0.001 0.626 0.081
121-14-2 0.949 0.015 0.051 0.015 0.000 0.000
57-91-0 0.776 0.128 0.002 0.001 0.222 0.128
53-16-7 0.696 0.233 0.006 0.002 0.298 0.234
100-41-4 0.964 0.004 0.036 0.004 0.000 0.000
71-00-1 0.062 0.018 0.162 0.010 0.776 0.022
15687-27-1 0.184 0.007 0.162 0.025 0.655 0.028
58-89-9 0.663 0.056 0.024 0.009 0.314 0.059
298-00-0 0.120 0.019 0.010 0.001 0.870 0.019
98-95-3 0.996 0.001 0.004 0.001 0.000 0.000
104-40-5 0.366 0.058 0.003 0.001 0.631 0.059
87-86-5 0.534 0.053 0.004 0.002 0.462 0.053
108-95-2 0.600 0.051 0.354 0.057 0.046 0.047
85-44-9 0.017 0.010 0.068 0.027 0.915 0.036
57-83-0 0.253 0.021 0.000 0.000 0.746 0.022
19466-47-8 0.289 0.094 0.005 0.001 0.706 0.094
58-22-0 0.117 0.034 0.009 0.005 0.874 0.037
108-88-3 0.985 0.000 0.015 0.000 0.000 0.000
56-41-7 0.048 0.007 0.136 0.035 0.815 0.038
70-47-3 0.024 0.007 0.069 0.026 0.907 0.033
56-84-8 0.055 0.026 0.126 0.025 0.819 0.048
52-90-4 0.126 0.013 0.178 0.064 0.696 0.064
79-43-6 0.078 0.011 0.165 0.044 0.757 0.054
124-40-3 0.069 0.018 0.347 0.044 0.584 0.037
56-40-6 0.034 0.008 0.149 0.044 0.817 0.051
56-87-1 0.031 0.008 0.140 0.032 0.829 0.039
63-68-3 0.079 0.027 0.241 0.055 0.679 0.072
62-75-9 0.186 0.022 0.868 0.068 0.000 0.000
75-65-0 0.071 0.018 0.184 0.038 0.745 0.048
72-19-5 0.040 0.006 0.092 0.025 0.867 0.026
76-03-9 0.088 0.012 0.244 0.054 0.668 0.058
57-13-6 0.014 0.001 0.894 0.021 0.092 0.022
72-18-4 0.046 0.014 0.230 0.064 0.725 0.061
85721-33-1 0.027 0.014 0.021 0.020 0.952 0.032
564-25-0 0.105 0.025 0.033 0.008 0.862 0.030
60-00-4 0.030 0.009 0.053 0.015 0.917 0.021
85-01-8 0.997 0.000 0.003 0.000 0.000 0.000
127-18-4 1.000 0.000 0.000 0.000 0.000 0.000
60-54-8 0.077 0.009 0.034 0.015 0.889 0.016
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average st. dev. average st. dev. average st. dev.
15972-60-8 0.200 0.039 0.023 0.006 0.777 0.039
71-43-2 0.767 0.041 0.233 0.041 0.000 0.000
80-05-7 0.255 0.075 0.019 0.007 0.726 0.081
58-08-2 0.191 0.044 0.206 0.042 0.603 0.059
2921-88-2 0.596 0.111 0.007 0.001 0.397 0.110
57-88-5 0.179 0.034 0.001 0.000 0.821 0.034
51481-61-9 0.341 0.021 0.196 0.064 0.463 0.057
76-57-3 0.477 0.066 0.154 0.052 0.369 0.115
120-83-2 0.826 0.361 0.070 0.106 0.104 0.256
94-75-7 0.173 0.021 0.158 0.063 0.669 0.081
84-66-2 0.315 0.089 0.049 0.016 0.636 0.102
56-53-1 0.217 0.057 0.001 0.001 0.782 0.057
121-14-2 0.965 0.008 0.035 0.008 0.000 0.000
57-91-0 0.859 0.085 0.017 0.006 0.124 0.084
53-16-7 0.998 0.001 0.002 0.001 0.000 0.000
100-41-4 0.968 0.002 0.032 0.002 0.000 0.000
71-00-1 0.079 0.007 0.160 0.025 0.761 0.026
15687-27-1 0.089 0.029 0.045 0.016 0.867 0.041
58-89-9 0.583 0.102 0.021 0.005 0.396 0.100
298-00-0 0.282 0.068 0.015 0.002 0.703 0.068
98-95-3 0.995 0.001 0.005 0.001 0.000 0.000
104-40-5 0.210 0.031 0.003 0.001 0.786 0.032
87-86-5 0.447 0.064 0.029 0.016 0.525 0.068
108-95-2 0.633 0.054 0.304 0.074 0.063 0.069
85-44-9 0.031 0.012 0.080 0.048 0.889 0.056
57-83-0 0.342 0.063 0.003 0.001 0.655 0.064
19466-47-8 0.486 0.043 0.005 0.000 0.509 0.043
58-22-0 0.279 0.101 0.023 0.012 0.697 0.109
108-88-3 0.916 0.009 0.084 0.009 0.000 0.000
56-41-7 0.056 0.024 0.185 0.065 0.758 0.073
70-47-3 0.067 0.010 0.220 0.030 0.713 0.029
56-84-8 0.035 0.006 0.157 0.019 0.808 0.021
52-90-4 0.050 0.009 0.101 0.030 0.850 0.038
79-43-6 0.080 0.013 0.306 0.071 0.613 0.070
124-40-3 0.206 0.123 0.337 0.081 0.456 0.090
56-40-6 0.046 0.016 0.269 0.027 0.685 0.031
56-87-1 0.069 0.021 0.142 0.033 0.789 0.051
63-68-3 0.251 0.098 0.167 0.070 0.582 0.088
62-75-9 0.141 0.018 0.808 0.086 0.052 0.102
75-65-0 0.052 0.012 0.170 0.026 0.779 0.038
72-19-5 0.036 0.005 0.118 0.023 0.846 0.024
76-03-9 0.069 0.023 0.233 0.067 0.698 0.061
57-13-6 0.083 0.137 0.851 0.102 0.066 0.042
72-18-4 0.088 0.024 0.215 0.088 0.697 0.107
85721-33-1 0.187 0.038 0.106 0.057 0.708 0.080
564-25-0 0.145 0.015 0.044 0.020 0.812 0.023
60-00-4 0.091 0.038 0.143 0.053 0.766 0.069
85-01-8 0.853 0.087 0.005 0.001 0.143 0.087
127-18-4 0.997 0.002 0.003 0.002 0.000 0.000
60-54-8 0.189 0.017 0.071 0.026 0.740 0.040
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M fraction P fraction R fraction
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15972-60-8 - - - - - -
71-43-2 0.640 0.119 0.195 0.056 0.165 0.172
80-05-7 0.161 0.036 0.011 0.005 0.828 0.039
58-08-2 0.218 0.049 0.146 0.041 0.636 0.075
2921-88-2 0.212 0.033 0.011 0.001 0.777 0.033
57-88-5 0.126 0.028 0.003 0.001 0.872 0.027
51481-61-9 0.290 0.027 0.052 0.017 0.658 0.040
76-57-3 0.389 0.028 0.121 0.026 0.491 0.027
120-83-2 0.977 0.010 0.023 0.010 0.000 0.000
94-75-7 0.039 0.004 0.048 0.010 0.913 0.013
84-66-2 0.299 0.037 0.055 0.012 0.646 0.042
56-53-1 0.184 0.062 0.002 0.001 0.814 0.061
121-14-2 0.983 0.003 0.017 0.003 0.000 0.000
57-91-0 0.673 0.065 0.007 0.001 0.320 0.066
53-16-7 0.837 0.046 0.009 0.001 0.154 0.046
100-41-4 0.981 0.001 0.019 0.001 0.000 0.000
71-00-1 0.080 0.014 0.173 0.023 0.747 0.035
15687-27-1 0.086 0.018 0.052 0.022 0.862 0.034
58-89-9 0.373 0.058 0.011 0.003 0.616 0.059
298-00-0 0.239 0.067 0.013 0.002 0.748 0.069
98-95-3 0.997 0.001 0.003 0.001 0.000 0.000
104-40-5 0.234 0.007 0.003 0.000 0.763 0.007
87-86-5 0.607 0.036 0.007 0.001 0.386 0.035
108-95-2 0.653 0.022 0.347 0.022 0.000 0.000
85-44-9 0.031 0.004 0.061 0.013 0.909 0.016
57-83-0 0.232 0.078 0.000 0.000 0.767 0.078
19466-47-8 0.143 0.057 0.005 0.002 0.852 0.059
58-22-0 0.412 0.161 0.017 0.009 0.571 0.167
108-88-3 0.810 0.048 0.190 0.048 0.000 0.000
56-41-7 0.058 0.011 0.155 0.030 0.788 0.035
70-47-3 0.074 0.033 0.120 0.027 0.806 0.051
56-84-8 0.028 0.012 0.097 0.022 0.875 0.031
52-90-4 0.058 0.011 0.155 0.030 0.788 0.035
79-43-6 0.071 0.007 0.234 0.015 0.695 0.019
124-40-3 0.288 0.030 0.313 0.034 0.399 0.031
56-40-6 0.064 0.006 0.228 0.049 0.707 0.046
56-87-1 0.024 0.003 0.062 0.018 0.914 0.018
63-68-3 0.041 0.008 0.103 0.016 0.856 0.019
62-75-9 0.005 0.007 0.842 0.018 0.152 0.022
75-65-0 0.062 0.006 0.259 0.042 0.679 0.047
72-19-5 0.039 0.004 0.120 0.018 0.841 0.021
76-03-9 0.020 0.005 0.128 0.027 0.852 0.029
57-13-6 0.017 0.003 0.955 0.028 0.029 0.026
72-18-4 0.049 0.017 0.122 0.020 0.829 0.032
85721-33-1 0.305 0.039 0.076 0.023 0.619 0.050
564-25-0 0.160 0.014 0.053 0.004 0.787 0.015
60-00-4 0.021 0.002 0.067 0.023 0.912 0.023
85-01-8 0.993 0.002 0.007 0.002 0.000 0.000
127-18-4 0.999 0.000 0.001 0.000 0.000 0.000
60-54-8 0.176 0.038 0.035 0.015 0.789 0.046
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15972-60-8 0.212 0.066 0.024 0.008 0.764 0.073
71-43-2 0.786 0.034 0.214 0.034 0.000 0.000
80-05-7 0.240 0.050 0.006 0.002 0.754 0.051
58-08-2 0.174 0.045 0.148 0.035 0.678 0.028
2921-88-2 0.526 0.068 0.007 0.002 0.467 0.069
57-88-5 0.133 0.046 0.004 0.001 0.863 0.046
51481-61-9 0.261 0.040 0.140 0.092 0.600 0.115
76-57-3 0.168 0.058 0.077 0.029 0.756 0.072
120-83-2 0.980 0.006 0.020 0.006 0.000 0.000
94-75-7 0.096 0.030 0.060 0.029 0.844 0.056
84-66-2 0412 0.123 0.015 0.003 0.574 0.124
56-53-1 0.477 0.106 0.001 0.000 0.521 0.106
121-14-2 0.981 0.005 0.019 0.005 0.000 0.000
57-91-0 0.849 0.127 0.005 0.002 0.146 0.127
53-16-7 0.998 0.000 0.002 0.000 0.000 0.000
100-41-4 0.984 0.002 0.016 0.002 0.000 0.000
71-00-1 0.046 0.012 0.117 0.034 0.838 0.028
15687-27-1 0.104 0.015 0.040 0.011 0.857 0.015
58-89-9 0.663 0.100 0.009 0.002 0.327 0.101
298-00-0 0.256 0.064 0.035 0.047 0.709 0.064
98-95-3 0.996 0.001 0.004 0.001 0.000 0.000
104-40-5 0.699 0.170 0.003 0.001 0.298 0.169
87-86-5 0.687 0.079 0.051 0.018 0.262 0.088
108-95-2 0.647 0.028 0.351 0.030 0.002 0.005
85-44-9 0.034 0.009 0.081 0.022 0.884 0.021
57-83-0 0.339 0.218 0.000 0.000 0.661 0.218
19466-47-8 0.248 0.040 0.004 0.000 0.748 0.040
58-22-0 0.145 0.044 0.005 0.002 0.849 0.045
108-88-3 0.881 0.006 0.119 0.006 0.000 0.000
56-41-7 0.042 0.006 0.102 0.044 0.856 0.047
70-47-3 0.066 0.014 0.319 0.044 0.615 0.050
56-84-8 0.055 0.005 0.147 0.037 0.798 0.034
52-90-4 0.057 0.012 0.070 0.018 0.873 0.024
79-43-6 0.088 0.011 0.258 0.049 0.654 0.055
124-40-3 0.079 0.012 0.286 0.042 0.635 0.037
56-40-6 0.054 0.005 0.180 0.039 0.766 0.040
56-87-1 0.038 0.010 0.107 0.028 0.855 0.029
63-68-3 0.065 0.007 0.200 0.056 0.735 0.057
62-75-9 0.213 0.021 0.787 0.021 0.000 0.000
75-65-0 0.101 0.016 0.239 0.033 0.660 0.039
72-19-5 0.049 0.010 0.106 0.010 0.845 0.018
76-03-9 0.065 0.025 0.290 0.087 0.645 0.098
57-13-6 0.017 0.001 0.900 0.018 0.082 0.019
72-18-4 0.051 0.011 0.111 0.050 0.838 0.059
85721-33-1 0.121 0.045 0.066 0.026 0.813 0.068
564-25-0 0.167 0.047 0.102 0.078 0.730 0.080
60-00-4 0.020 0.008 0.111 0.037 0.869 0.041
85-01-8 0.983 0.021 0.005 0.000 0.013 0.021
127-18-4 1.000 0.000 0.000 0.000 0.000 0.000
60-54-8 0.145 0.043 0.029 0.009 0.826 0.051
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15972-60-8 - - - - - -
71-43-2 0.434 0.032 0.566 0.032 0.000 0.000
80-05-7 0.991 0.001 0.009 0.001 0.000 0.000
58-08-2 0.101 0.006 0.755 0.035 0.144 0.032
2921-88-2 0.971 0.005 0.029 0.005 0.000 0.000
57-88-5 0.165 0.149 0.003 0.001 0.833 0.148
51481-61-9 0.217 0.024 0.599 0.068 0.184 0.064
76-57-3 0.262 0.030 0.573 0.050 0.165 0.070
120-83-2 0.976 0.004 0.024 0.004 0.000 0.000
94-75-7 0.053 0.011 0.437 0.099 0.510 0.103
84-66-2 0.835 0.006 0.165 0.006 0.000 0.000
56-53-1 0.997 0.001 0.003 0.001 0.000 0.000
121-14-2 0.929 0.008 0.071 0.008 0.000 0.000
57-91-0 0.975 0.005 0.025 0.005 0.000 0.000
53-16-7 0.973 0.003 0.027 0.003 0.000 0.000
100-41-4 0.666 0.075 0.256 0.057 0.078 0.099
71-00-1 0.088 0.009 0.453 0.035 0.459 0.032
15687-27-1 0.205 0.022 0.580 0.056 0.216 0.077
58-89-9 0.985 0.004 0.015 0.004 0.000 0.000
298-00-0 0.978 0.002 0.022 0.002 0.000 0.000
98-95-3 0.655 0.030 0.345 0.030 0.000 0.000
104-40-5 0.960 0.036 0.007 0.001 0.033 0.037
87-86-5 0.978 0.003 0.022 0.003 0.000 0.000
108-95-2 0.283 0.018 0.717 0.018 0.000 0.000
85-44-9 0.062 0.012 0.291 0.085 0.647 0.088
57-83-0 0.985 0.002 0.015 0.002 0.000 0.000
19466-47-8 0.282 0.090 0.007 0.001 0.711 0.090
58-22-0 0.744 0.059 0.210 0.043 0.046 0.055
108-88-3 0.522 0.032 0.478 0.032 0.000 0.000
56-41-7 0.068 0.014 0.539 0.082 0.393 0.078
70-47-3 0.007 0.002 0.650 0.045 0.343 0.044
56-84-8 0.085 0.023 0.342 0.045 0.573 0.049
52-90-4 0.094 0.024 0.439 0.063 0.468 0.049
79-43-6 0.062 0.010 0.413 0.041 0.525 0.048
124-40-3 0.133 0.013 0.549 0.039 0.318 0.029
56-40-6 0.067 0.017 0.564 0.044 0.369 0.037
56-87-1 0.093 0.010 0.518 0.042 0.389 0.042
63-68-3 0.086 0.020 0.469 0.044 0.445 0.049
62-75-9 0.035 0.001 0.941 0.046 0.024 0.047
75-65-0 0.040 0.004 0.874 0.045 0.085 0.044
72-19-5 0.075 0.025 0.457 0.040 0.467 0.020
76-03-9 0.042 0.004 0.601 0.050 0.357 0.053
57-13-6 0.031 0.004 0.906 0.025 0.063 0.024
72-18-4 0.056 0.017 0.627 0.061 0.316 0.067
85721-33-1 0.270 0.053 0.351 0.115 0.378 0.077
564-25-0 0.306 0.056 0.180 0.038 0.514 0.069
60-00-4 0.075 0.019 0.481 0.053 0.444 0.065
85-01-8 0.996 0.001 0.004 0.001 0.000 0.000
127-18-4 0.678 0.055 0.308 0.052 0.014 0.020
60-54-8 0.144 0.028 0.323 0.098 0.533 0.081
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CAS - chemical abstracts service; a_count — atom count (all atoms); b_count — bond count (all bonds);
b_single — bond count (single bonds); b_double — bond count (double bonds); chi0 — connectivity
index (order 0, standard); chil — connectivity index (order 1, standard); chi2 — connectivity index
(order 2, standard); dipole — dipole moment [Debye]; dipoleX — dipole vector X [Debye]; dipoleY —
dipole vector Y [Debye]; dipoleZ - dipole vector Z [Debye]; dielEn — dielectric energy [kcal/mole];
sterEn — steric energy [kcal/mole]; heatform — heat of formation [kcal/mole]; mr — molar refractivity;
weight — molecular weight [Da]; Po — polarizability [A%]; r_count - ring count (all rings); small_ring —
size of smallest ring; large_ring — size of largest ring; kierl — shape index (basic kappa, order 1); kier2
— shape index (basic kappa, order 2); kier3 — shape index (basic kappa, order 3); SASA - solvent
accessibility surface area [AZ]; chiOv — valence connectivity index (order 0, standard); chilv - valence
connectivity index (order 1, standard); chi2v — valence connectivity index (order 2, standard); HOMO
- HOMO energy [eV]; LUMO - LUMO energy [eV]; dipole_P - dipole point-charge [Debye];
dipole_H - dipole hybridization [Debye]; E1_e-n — one term electron-nuclear [eV]; E1_e-e — one term
electron-electron [eV]; E1_total — one term total [eV]; E2_res — two center resonance [eV]; E2_ex — two
center exchange [eV]; E2_e-e — two center electron-electron [eV]; E2_e-n — two center electron-nuclear
[eV]; E2_n-n — two center nuclear-nuclear [eV]; E2_el — two center total electrostatic [eV]; E2_total —
two center total [eV]; E_total — total energy [eV]; pmiX — moments of inertia A [104° g cm?]; pmiY —
moments of inertia B [104 g cm?]; pmiZ — moments of inertia C [104° g cm?]; M fraction — solute
fraction sorbed by the membrane; P fraction — permeating fraction of the solute; R fraction — rejected
solute fraction; average — average of several replicate measurements; st. dev. — experimental standard
deviation of several replicate measurements for a membrane-solute combination.
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ANNEXII. Internal validation performance of the ANN-based QSPRs built.

For each model are presented the explained variance in prediction index (g°), the average
absolute error (&), the standard deviation of the absolute error (o,) and the maximum

absolute error (¢, ). In each case, in parenthesis are indicated the corresponding values for

max
the relative error (average relative error, standard deviation of the relative error and
maximum relative error). The presented external validation results refer to the performance

achieved for the test set compounds.
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Internal validation (LOO) for the Independent ANQ models built with parameters selected by the CFS method.

CFS Predicted M fraction Predicted P fraction Calculated R fraction
q ’ g Ge gmax q ’ g Ge gmax q ’ g Ge gmax
CA 0.992 0.018 0.030 0.143 0.993 0.012 0.020 0.098 0.978 0.020 0.030 0.119
(12.4%) (404%)  (270.2%) (3.3%) (4.4%) (18.0%) (11.1%) (19.0%) (66.8%)
BW30 0.999 0.006 0.009 0.042 0.996 0.005 0.010 0.059 0.998 0.007 0.011 0.060
(5.1%) (11.8%) (73.1%) (5.2%) (8.5%) (39.8%) (1.2%) (1.6%) (7.3%)
ESPA2 0.989 0.013 0.031 0.213 0.998 0.004 0.006 0.036 0.987 0.015 0.031 0.215
(6.4%) (9.4%) (40.4%) (2.1%) (2.0%) (8.3%) (3.2%) (5.8%) (28.7%)
LFC1 0.998 0.010 0.013 0.055 0.995 0.007 0.012 0.055 0.996 0.012 0.018 0.110
(5.1%) (8.5%) (38.2%) (7.7%) (17.3%)  (100.0%) (3.9%) (11.6%) (72.2%)
TFCHR 0.997 0.010 0.018 0.082 0.998 0.004 0.006 0.028 0.996 0.012 0.018 0.081
(6.3%) (15.0%) (74.7%) (3.3%) (3.6%) (11.6%) (2.4%) (3.0%) (9.4%)
Internal validation (LOO) for the Independent ANQ and Membrane-Composite ANQ models built with parameters selected by the SOM-DA method.
SOM-DA Predicted M fraction Predicted P fraction Calculated R fraction
q 3 o, Emax q 3 o, Emax q g o, Emax
CA 0.996 0.014 0.021 0.124 0.981 0.014 0.028 0.137 0.978 0.020 0.030 0.126
(8.2%) (13.5%) (73.7%) (3.0%) (3.9%) (16.7%) (11.6%) (18.5%) (69.2%)
BW30 0.998 0.008 0.014 0.078 0.992 0.008 0.014 0.084 0.997 0.010 0.016 0.078
(4.2%) (5.3%) (24.3%) (7.0%) (12.8%) (68.7%) (1.8%) (4.2%) (26.2%)
ESPA2 0.998 0.008 0.011 0.064 0.995 0.005 0.019 0.133 0.998 0.008 0.011 0.061
(3.7%) (5.9%) (25.2%) (1.9%) (3.9%) (16.4%) (2.4%) (6.7%) (42.7%)
LEC1 0.992 0.015 0.025 0.117 0.990 0.006 0.017 0.113 0.990 0.018 0.029 0.121
(10.0%) (21.7%)  (115.3%) (5.7%) (23.6%)  (139.2%) (4.9%) (15.3%) (73.8%)
TFCHR 0.999 0.006 0.007 0.028 0.976 0.007 0.027 0.186 0.994 0.010 0.025 0.174
(3.1%) (3.4%) (12.0%) (3.2%) (4.8%) (23.6%) (1.2%) (1.3%) (5.4%)
PA 0.964 0.044 0.046 0.212 0.953 0.024 0.030 0.230 0.952 0.052 0.050 0.212
(26.0%) (29.0%)  (149.6%) (24.4%) (19.9%)  (111.9%) (14.5%) (33.2%)  (370.2%)
PACA 0.939 0.060 0.061 0.322 0.933 0.038 0.043 0.240 0.928 0.067 0.061 0.288
(34.9%) (45.6%)  (274.9%) (33.5%) (39.0%)  (306.9%) (20.1%) (36.7%)  (295.7%)
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Internal validation (LOO) for the Independent ANQ models built with parameters selected by the ANNIGMA method.

ANNIGMA Predicted M fraction Predicted P fraction Calculated R fraction
7 g o, E q 3 o, E max 7 3 o, E max
CA 0.991 0.014 0.035 0.217 0.994 0.009 0.020 0.124 0.975 0.014 0.035 0.216
(7.4%) (17.9%) (105.8%) (2.1%) (3.8%) (19.2%) (9.8%) (20.6%) (100.0%)
BW30 0.988 0.013 0.035 0.230 0.996 0.006 0.010 0.049 0.986 0.017 0.036 0.230
(4.2%) (5.9%) (27.9%) (6.2%) (8.3%) (30.4%) (1.8%) (2.4%) (12.0%)
ESPA2 0.993 0.012 0.025 0.159 0.997 0.005 0.009 0.047 0.991 0.014 0.025 0.161
(5.2%) (12.3%) (75.8%) (2.5%) (3.6%) (17.9%) (4.5%) (11.6%) (60.0%)
LFC1 0.995 0.009 0.021 0.140 0.998 0.004 0.007 0.035 0.995 0.011 0.021 0.127
(3.8%) (6.3%) (28.9%) (7.0%) (15.8%) (68.0%) (2.5%) (6.9%) (43.0%)
TFCHR 0.993 0.012 0.027 0.140 0.997 0.004 0.008 0.043 0.992 0.015 0.027 0.140
(6.6%) (14.8%) (83.7%) (3.8%) (4.6%) (17.9%) (1.8%) (3.0%) (13.6%)
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Internal validation (LOO) for the MP-Composite ANQ models built with parameters selected by the CFS method.

CFS Predicted M fraction Predicted P fraction Calculated R fraction
q ’ g O-s gmax q ’ g Gg ‘C"max q ’ g Ge gmax
CA 0.977 0.033 0.049 0.238 0.947 0.041 0.048 0.180 0.888 0.051 0.062 0.236
(26.7%) (54.3%) (331.5%) (10.7%) (10.1%) (37.0%) (30.9%) (43.3%) (141.1%)
BW30 0.985 0.025 0.032 0.151 0.968 0.018 0.027 0.159 0.975 0.029 0.045 0.256
(14.8%) (19.4%) (81.2%) (16.3%) (22.5%) (100.0%) (2.9%) (3.1%) (12.5%)
ESPA2 0.971 0.035 0.042 0.236 0.976 0.020 0.018 0.082 0.956 0.040 0.051 0.275
(21.1%) (39.6%) (219.4%) (17.5%) (24.1%) (122.8%) (11.4%) (31.2%) (203.1%)
LEC1 0.971 0.033 0.045 0.250 0.948 0.027 0.033 0.134 0.969 0.040 0.042 0.186
(24.1%) (79.5%) (522.7%) (31.5%) (49.2%) (263.8%) (9.1%) (15.1%) (83.8%)
TFCHR 0.954 0.035 0.067 0.413 0.842 0.029 0.064 0.438 0.967 0.033 0.051 0.312
(13.6%) (21.4%) (118.7%) (17.5%) (18.9%) (72.9%) (7.3%) (16.8%) (100.0%)
Internal validation (LOO) for the MP-Composite ANQ models built with parameters selected by the ANNIGMA method.
ANNIGMA Predicted M fraction Predicted P fraction Calculated R fraction
q ’ ‘? O_s gmax q ’ E O_s gmax qz E O_s gmax
CA 0.987 0.030 0.032 0.126 0.941 0.045 0.050 0.220 0.889 0.054 0.059 0.228
(28.2%) (54.5%) (237.0%) (12.3%) (11.3%) (36.4%) (34.7%) (50.5%) (231.2%)
BW30 0.961 0.030 0.059 0.339 0.940 0.022 0.038 0.200 0.981 0.028 0.038 0.209
(13.2%) (19.2%) (92.5%) (13.7%) (15.4%) (72.9%) (5.4%) (15.6%) (100.0%)
ESPA2 0.959 0.037 0.054 0.294 0.932 0.027 0.036 0.198 0.933 0.052 0.061 0.307
(21.4%) (39.7%) (229.6%) (23.9%) (31.0%) (132.3%) (12.9%) (30.6%) (176.2%)
LFC1 0.986 0.025 0.030 0.166 0.958 0.024 0.029 0.161 0.982 0.032 0.033 0.112
(27.2%) (82.4%) (534.0%) (32.8%) (37.3%) (151.8%) (7.4%) (14.7%) (73.4%)
TFCHR 0.980 0.027 0.041 0.196 0.957 0.023 0.029 0.145 0.982 0.029 0.035 0.176
(15.1%) (21.3%) (92.0%) (28.6%) (44.2%) (232.0%) (4.5%) (4.1%) (18.6%)
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ANNEXIV. External validation performance of the ANN-based QSPRs built.

For each model are presented the explained variance in prediction index (¢°), the average
absolute error (&), the standard deviation of the absolute error (o,) and the maximum

absolute error (&, ). In each case, in parenthesis are indicated the corresponding values for

max
the relative error (average relative error, standard deviation of the relative error and
maximum relative error). The presented external validation results refer to the performance

achieved for the test set compounds.
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External validation for the Independent ANQ models built with parameters selected by the CFS method.

CFS Predicted M fraction Predicted P fraction Calculated R fraction
q ’ g Ge gmax q ’ g Ge gmax q ’ g Gg gmax
CA 0.828 0.112 0.135 0.362 0.982 0.041 0.025 0.069 0.331 0.101 0.113 0.394
(44.3%) (67.3%)  (176.8%) (10.1%) (4.5%) (13.4%) (33.9%) (29.6%) (95.7%)
BW30 0.981 0.034 0.040 0.113 0.932 0.024 0.015 0.039 0.959 0.048 0.040 0.108
(17.6%) (14.1%) (42.3%) (42.6%) (49.8%)  (100.0%) (7.5%) (4.7%) (13.4%)
ESPA2 0.905 0.057 0.071 0.190 0.969 0.020 0.008 0.030 0.939 0.046 0.046 0.170
(26.1%) (29.5%) (75.6%) (17.0%) (14.3%) (30.9%) (10.3%) (9.7%) (29.3%)
LFC1 0.987 0.031 0.018 0.054 0.823 0.033 0.027 0.070 0.988 0.034 0.021 0.073
(28.3%) (25.1%) (63.3%) (31.6%) (10.0%) (40.7%) (8.1%) (9.2%) (32.0%)
TFCHR 0.995 0.015 0.017 0.046 0.926 0.025 0.015 0.045 0.981 0.027 0.035 0.117
(8.7%) (13.8%) (36.5%) (38.5%) (25.2%) (56.4%) (5.9%) (8.0%) (23.4%)

External validation for the Independent ANQ and Membrane-Composite ANQ models built with parameters selected by the SOM-DA method.

SOM-DA Predicted M fraction Predicted P fraction Calculated R fraction
q 3 o, Emax q 3 o, Emax q g o, Emax
CA 0.999 0.012 0.008 0.024 0.963 0.043 0.030 0.072 0.904 0.061 0.056 0.203
(8.5%) (10.6%) (27.0%) (10.4%) (5.3%) (14.6%) (30.1%) (33.0%)  (100.0%)
BW30 0.929 0.066 0.064 0.171 0.922 0.018 0.021 0.053 0.982 0.044 0.054 0.171
(70.9%) (88.2%)  (225.4%) (44.5%) (70.2%)  (148.5%) (7.8%) (9.4%) (30.4%)
ESPA2 0.988 0.034 0.019 0.068 0.839 0.036 0.028 0.074 0.934 0.060 0.070 0.230
(28.5%) (19.5%) (51.2%) (43.4%) (31.9%) (88.4%) (12.6%) (10.1%) (28.0%)
LEC1 0.976 0.041 0.044 0.118 0.961 0.019 0.012 0.039 0.972 0.037 0.051 0.153
(23.5%) (28.6%) (81.3%) (8.6%) (3.5%) (12.6%) (5.0%) (6.4%) (20.0%)
TFCHR 0.997 0.017 0.012 0.032 0.943 0.021 0.003 0.024 0.992 0.025 0.023 0.072
(20.2%) (27.2%) (66.6%) (15.9%) (3.3%) (19.5%) (3.7%) (2.8%) (8.4%)
PA 0.940 0.063 0.046 0.184 0.904 0.027 0.025 0.106 0.942 0.069 0.060 0.192
(43.3%) (37.0%) (93.8%) (52.4%) (41.5%)  (100.0%) (12.9%) (15.2%) (54.5%)
PACA 0.873 0.088 0.081 0.345 0.793 0.052 0.057 0.226 0.936 0.065 0.062 0.271
(43.4%) (51.6%)  (238.4%) (45.2%) (39.5%)  (135.1%) (13.4%) (15.5%) (79.0%)
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External validation for the Independent ANQ models built with parameters selected by the ANNIGMA method.

ANNIGMA Predicted M fraction Predicted P fraction Calculated R fraction
q 3 o, Emax q & o, & max q & o, Emax
CA 0.993 0.025 0.019 0.057 0.885 0.060 0.039 0.127 0.889 0.045 0.050 0.155
(15.6%) (18.4%) (45.0%) (18.7%) (8.5%) (30.7%) (35.9%) (54.0%) (144.8%)
BW30 0.966 0.053 0.035 0.093 0.987 0.013 0.007 0.022 0.942 0.059 0.039 0.132
(165%)  (121%)  (29.1%) (8.8%) (4.9%)  (14.8%) (7.1%) (52%)  (17.7%)
ESPA2 0.972 0.041 0.024 0.076 0.972 0.017 0.009 0.027 0.954 0.049 0.021 0.085
(45%)  (151%)  (44.1%) 17.9%)  (17.4%)  (42.1%) (165%)  (26.6%)  (81.9%)
LFC1 0.944 0.060 0.055 0.138 0.968 0.020 0.009 0.036 0.941 0.049 0.046 0.144
(29.8%)  (34.0%)  (86.0%) (45.0%)  (73.3%)  (154.7%) (10.7%) 9.1%)  (24.4%)
TFCHR 0.927 0.077 0.063 0.176 0.874 0.030 0.019 0.065 0.946 0.057 0.056 0.176
(55.1%) (48.3%) (125.7%) (28.3%) (25.1%) (60.3%) (10.1%) (9.1%) (26.7%)




[4%8

UNIVERSITAT ROVIRA I VIRGILI

MODELING THE RESERVE OSMOSIS PROCESSES PERFORMANCE USING ARTIFICIAL NEURAL NETWORKS

Dan Mihai Libotean
ISBN:978-84-691-2701-8/DL:T.386-2008

External validation for the MP-Composite ANQ models built with parameters selected by the CFS method.

CFS Predicted M fraction Predicted P fraction Calculated R fraction
q ’ g O-s gmax q ’ g Gg ‘C"max q ’ g Ge gmax
CA 0.989 0.041 0.029 0.088 0.963 0.057 0.038 0.105 0.925 0.042 0.046 0.095
(163%)  (23.7%)  (64.2%) (9.2%) (82%)  (16.8%) (86.6%)  (91.6%)  (151.3%)
BW30 0.916 0.076 0.053 0.157 0.919 0.018 0.017 0.033 0.880 0.085 0.052 0.149
(51.0%) (31.2%) (85.7%) (18.2%) (14.5%) (43.2%) (12.5%) (9.7%) (25.0%)
ESPA2 0.747 0.134 0.074 0.267 0.815 0.032 0.021 0.061 0.692 0.145 0.086 0.287
(109.8%)  (70.8%)  (177.0%) (21.9%)  (145%)  (35.1%) (44.6%)  (67.8%)  (181.4%)
LFC1 0.875 0.109 0.051 0.175 0.908 0.022 0.018 0.054 0.831 0.113 0.066 0.188
(77.9%) (65.1%) (161.2%) (24.9%) (18.6%) (56.6%) (13.5%) (10.0%) (27.4%)
TFCHR 0.837 0.117 0.082 0.246 0.827 0.031 0.024 0.076 0.797 0.120 0.091 0.280
(85.8%)  (86.9%)  (184.7%) (21.3%) (9.3%)  (31.9%) (13.9%)  (10.7%)  (32.4%)

External validation for the MP-Composite ANQ models built with parameters selected by the ANNIGMA method.

ANNIGMA Predicted M fraction Predicted P fraction Calculated R fraction
q & o, & max q g o, & max q g o, & max
CA 0.980 0.048 0.037 0.099 0.908 0.080 0.068 0.209 0.843 0.052 0.048 0.122
(65.1%) (107.3%) (279.7%) (15.2%) (6.4%) (23.1%) (58.6%) (90.7%) (194.0%)
BW30 0.967 0.052 0.042 0.119 0.764 0.039 0.019 0.062 0.976 0.035 0.031 0.081
(36.9%)  (56.1%)  (135.4%) (53.8%)  (71.1%)  (197.5%) (4.9%) @4.7%)  (12.1%)
ESPA2 0.956 0.044 0.042 0.114 0.962 0.018 0.012 0.032 0.954 0.039 0.028 0.081
(22.3%) (22.9%) (61.3%) (9.8%) (6.4%) (14.0%) (14.2%) (20.7%) (55.1%)
LFC1 0.840 0.081 0.071 0.192 0.855 0.027 0.025 0.072 0.843 0.090 0.068 0.178
(39.8%)  (21.6%)  (68.7%) (34.3%)  (385%)  (83.5%) (163%)  (10.6%)  (31.1%)
TFCHR 0.813 0.109 0.131 0.361 0.871 0.026 0.019 0.047 0.757 0.116 0.129 0.362
(99.3%) (144.2%) (347.5%) (22.4%) (19.0%) (46.3%) (23.0%) (23.8%) (54.4%)




UNIVERSITAT ROVIRA I VIRGILI

MODELING THE RESERVE OSMOSIS PROCESSES PERFORMANCE USING ARTIFICIAL NEURAL NETWORKS
Dan Mihai Libotean

ISBN:978-84-691-2701-8/DL:T.386-2008

ANNEX V. List of 143 new organic compounds used for validating the QSPR

models

Organic compounds of public health concern including endocrine disruptors,
pharmaceutically active compounds, antibiotics and antimicrobial agents, neuroactive drugs,
insecticides, herbicides, pesticides, disinfect byproducts, solvents, industrial pollutants, fuel
hydrocarbons and amino acids, with the identification of application and/or effects. These
compounds were not experimentally characterized in terms of membrane sorption, passage

or rejection, nor used for models development.
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CAS Name Compounds class, known use and/or toxicity endpoint
100-75-4 1-Nitrosopiperidine Carcinogen
1031-07-8 6,7,8,?,19,10—Hexachloro—l,5,5a,6,9,9a-hexahydro—6,9—methano—Z,4,3-benzodioxathiepin Pesticide
3,3-dioxide (Endosulfan sulfate)
103-23-1 Adipic acid bis (2-ethylhexyl) ester Plasticizer-Industrial/household waste water product
103-90-2 4-Acetamidophenol Pharmaceutical-Analgesic-Human drug
106-44-5 1-Hydroxy-4-methylbenzene Wood preservative-Industrial/household waste water product
106-46-7 14-Dichlorobenzene Fumigant-Carcinogen-Industrial/household waste water
product
108-67-8 1,3,5-Trimethyl benzene Fuel hydrocarbon
108-86-1 Bromobenzene Solvent
1141-38-4  2,6-Naphthalenedicarboxylic acid Manufacture polyethylenenaphthalate and
polyethylenepthalate polymers
115-29-7 1,%,3,4,7,7'-Hexachloro—1,5,5a,6,9,9a—hexahydro—6,9—methan0—2,4,3-benzodioxathiepin—3— Endocrine disruptor
oxide (Thiosulfan)
115-32-2 1,1-Bis-(p-chlorophenyl)-2,2,2-trichloroethanol (Dicofol) Endocrine disruptor
115-86-6 Triphenyl phosphate (TPP) Plasticizer-Industrial/household waste water product
115-96-8 Tris(2-chloroethyl)phosphate (TCEP) Plasticizer-Industrial/household waste water product
117-81-7 1,2-Benzenedicarboxylic acid bis(2-ethylhexyl) ester Carcinogen
117-84-0 1,2-Benzenedicarboxylic acid, dioctyl ester Plasticizer
118-74-1 Hexachlorobenzene Endocrine disruptor
120-12-7 Anthracene Polycyclic aromatic hydrocarbon
121-82-4 1,3,5-Triaza-1,3,5-trinitrocyclohexane Carcinogen
122-11-2 6-Sulfanilamido-2,4-dimethoxypyrimidine (Sulfadimethoxine) Pharmaceutical human/veterinary antibiotic
122-34-9 1-Chloro-3,5-bisethylamino-2,4,6-triazine (Simazine) Carcinogen
124-48-1 Dibromochloromethane Disinfection byproduct
127-79-7 Sulfamerazine Pharmaceutical human/veterinary antibiotic
12789-03-6  1,2,4,5,6,7,10,10-octachloro-4,7,8,9-tetrahydro-4,7-methyleneindane (Chlordane) Endocrine disruptor
128-37-0 2,6-bis(1,1-Dimethylethyl)-4-methylphenol Antioxidant/antiskimming agent
128-39-2 2,6-bis(1,1-Dimethylethyl)phenol Intermediate for preparation of antioxidants and UV stabilizer
129-00-0 Pyrene Polycyclic aromatic hydrocarbon
13071-79-9  O,0O-diethyl S-(((1,1-dimethylethyl)thio)methyl) phosphorodithoic acid (Terbufos) Insecticide
134-62-3 N,N-diethyl-3-methylbenzamide Insecticide
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CAS Name Compounds class, known use and/or toxicity endpoint

136-85-6 5-Methyl-1H-benzotriazole Antioxidant-Industrial/household waste water product

139-13-9 Nitrilo-2,2',2"-triacetic acid Carcinogen

1401-69-0 Tylosin Pharmaceutical human/veterinary antibiotic

14345-90-8  Cylindrospermopsin Algal toxin

144-82-1 2-(p-Aminobenzenesulfonamido)-5-methyl-1,3,4-thiadiazole (Sulfamethizole) Pharmaceutical human/veterinary antibiotic

154-21-2 Lincomycin Pharmaceutical human/veterinary antibiotic

1610-18-0  2-Methoxy-4,6-bis(isopropylamino)-1,3,5-triazine (Pramitol) Herbicide

1634-04-4  Methyl tert-butyl ether (MTBE) Fuel hydrocarbon-Carcinogen

1646-88-4  2-methyl-2-(methylsulfonyl)propanal O-((methylamino)carbonyl)oxime (Aldoxycarb) Agricultural product residue

16655-82-6  2,3-Dihydro-2,2-dimethyl-3,7-benzofurandiol, 7-(methylcarbamate) Pesticide

1672-46-4  Digoxigenin Pharmaceutical human drug

16752-77-5  Acetamidic acid, thio-, N-[(methyl-carbamoyl)oxy]-, methyl ester (Methomy]l) Endocrine disruptor

1836-75-5  2,4-Dichloro-1-(4-nitrophenoxy)benzene (Nitrofen) Endocrine disruptor

18559-94-9  (alphal-((tert-Butylamino)methyl)-4-hydroxy-m-xylene-alpha,alpha-diol) (Salbutamol) Pharmaceutical human drug

1912-24-9  1-Chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine (Atrazine) Endocrine disruptor

206-44-0 1,2-(1,8-Naphthalenediyl)benzene (Fluoranthene) Polycyclic aromatic hydrocarbon
(3beta,5beta,12beta)-3-[(O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-O-2,6-

20830-75-5 dideoxy-beta-D-ribo-hexapyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo- Pharmaceutical human drug
hexopyranosyl)oxy]-12,14-dihydroxycard-20(22)-enolide (Digoxin)

21087-64-9  4-Amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one (Metribuzin) Endocrine disruptor

2136-79-0 2,3,5,6-Tetrachloro-1,4-benzenedicarboxylic acid (Chlorthal) Herbicide

2169-87-1  2,3-Naphthalenedicarboxylic acid Plasticizer

2212-67-1  1H-Azepine-1 carbothioic acid, hexahydro-S-ethyl ester (Molinate) Herbicide

2385-85-5 1,2,3,4,5,5-Hexachloro-1,3-cyclopentadiene dimer (Mirex) Endocrine disruptor

25013-16-5  2(3)-tert-Butyl-4-hydroxyanisole Antioxidant-Industrial/household waste water product

25812-30-0  2,2-Dimethyl-5-(2,5-xylyloxy)valeric acid (Gemfibrozil) Pharmaceutical human drug

26638-19-7  Dichloropropane Chen.lical interme.diate of perchloroethylene and other

chlorinated chemicals

2,3,4,5,6,6a,7,7-Octachloro-1a,1b,5,5a,6,6a-hexahydro-2,5-methano-2H-indeno[1,2- . .

27304-13-8 bloxirene, (1laalpha,1bbeta 2alpha,5alpha,5abeta,6beta,6aalpha) (Oxychlordane) Endocrine disruptor

298-04-4 O,0-diethyl 5-(2-(ethylthio)ethyl) phosphorodithioate (Disulfoton) Insecticide
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CAS Name Compounds class, known use and/or toxicity endpoint

3018-12-0  Dichloroacetonitrile Disinfection byproduct

302-17-0 1,1,1-Trichloro-2,2-ethanediol Disinfection byproduct

309-00-2 1,'2,3,4,10,10—Hexachloro—1,4,4fa,5,8,8a—hexahydro—endo—1,4—exo—5,8— Insecticide
dimethanonaphthalene (Aldrin)

3252-43-5  Dibromoacetonitrile Disinfection byproduct

330-54-1 1,1-Dimethyl-3-(3,4-dichlorophenyljurea (Diuron) Herbicide

330-55-2 1-Methoxy-1-methyl-3-(3,4-dichlorophenyl)urea (Linuron) Herbicide

333-41-5 O,0-Diethyl O-(2-isopropyl-4-methyl-6-pyrimidinyl) thiophosphoric acid (Diazinon)  Insecticide

3380-34-5  2,4,4-Trichloro-2-hydroxydiphenyl ether (Triclosan) Antimicrobial-Industrial/household waste water product

34256-82-1  2-Chloro-2'-methyl-6'-ethyl-N-ethoxymethyl-acetanilide (Acetochlor) Herbicide

35523-89-8  Saxitoxin Algal toxin

42399-41-7 Diltiazem Pharmaceutical human drug

474-86-2 1,3,5(10),7-Estratetraen-3-ol-17-one (Equilin) Pharmaceutical-Sex/steroid hormone

486-56-6 (5)-1-Methyl-5-(3-pyridinyl)-2-pyrrolidinone (Cotinine) Nicotine metabolite

50-27-1 1,3,5(10)-Estratriene-3,16a,17b-triol (Estriol) Pharmaceutical-Sex/steroid hormone

50-29-3 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) Endocrine disruptor

50-32-8 3,4-Benzopyrene Polycyclic aromatic hydrocarbon
(lalpha,2alpha,3aalpha,4beta,7beta,7aalpha)-1,2,4,5,6,7,8,8-Octachloro-2,3,3a,4,7,7a- .

>105-71-9 hexahydro-4,7-methano-1H-indene (cis-Chlordane) Insecticide

51218-45-2  2-Chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)-o-acetoluidide (Metolachlor) Pesticide

51-28-5 2,4-Dinitrophenol Released from mines, metals, petroleum and dye plants

513-88-2 1,1-Dichloroacetone Disinfection byproduct

517-04-4 beta-Estradiol Pharmaceutical-Estrogen-Sex/Steroid hormone

517-09-9 1,3,5-10,6,8-Estrapentaen-3-ol-17-one (Equilenin) Pharmaceutical-Sex/steroid hormone

53-41-8 3alpha-Hydroxy-17-androstanone (Androsterone) Pharmaceutical-Sex/steroid hormone

54910-89-3  Fluoxetine Pharmaceutical-Human drug

55-18-5 N-nitrosodiethylamine Carcinogen

5589-96-8  Bromochloroacetic acid Disinfection byproduct

56-45-1 2-Amino-3-hydroxypropionic acid (Serine) Amino acid

57-60-5 7-Chloro—4—(dimethylamino)-1,4,4a,5,5a,6,11,1?a—octahydro-3,6,10,.12,12a—pentahydroxy- Pharmaceutical human/veterinary antibiotic
6-methyl-1,11-dioxo-2-naphthacenecarboxamide (Chlorotetracycline)

57-68-1 2-(p-Aminobenzenesulfonamido)-4,6-dimethylpyrimidine (Sulfamethazine) Pharmaceutical human/veterinary antibiotic
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CAS Name Compounds class, known use and/or toxicity endpoint

5902-51-2  3-tert-Butyl-5-chloro-6-methyluracil (Terbacil) Herbicide

59-89-2 4-Nitrosomorpholine Carcinogen

60-57-1 1,.2,3,4,10,10—Hexachloro—6i7-epf)xy—1,4,4a,5,6,7,8,8a—octahydro-1,4—endo—exo—5,8— Insecticide-Industrial/household waste water product
dimethanonaphthalene (Dieldrin)

606-20-2 1,3-Dinitro 2-methyl benzene Production of polyurethane foams, ammunition and explosives

608-73-1 1,2,3,4,5,6-Hexachlorocyclohexane Carcinogen

611-59-6 3,7-Dihydro-1,7-dimethyl-1H-purine-2,6-dione (Paraxanthine) Caffeine metabolite

61-82-5 Triazol-3-amine (Diurol) Endocrine disruptor

61869-08-7 Paroxetine Pharmaceutical human drug

61-90-5 2-Amino-4-methylvaleric acid (Leucine) Amino acid

621-64-7 N-nitroso di-n-propylamine Carcinogen

631-64-1 Dibromoacetic acid Disinfection byproduct

63-25-2 1-Naphthalenol methylcarbamate Endocrine disruptor

637-92-3 2-Ethoxy-2-methylpropane (ETBE) Fuel oxygenate-Carcinogen

63-91-2 2-Amino-3-phenylpropanoic acid Amino acid

64285-06-9  1-[(1R,6R)-9-Azabicyclo[4.2.1]non-4-en-5-yl]ethanone (Anatoxin-a) Algal toxin

657-24-9 1,1-Dimethylbiguanide (Metformin) Pharmaceutical human drug

66357-35-5  Ranitidine Pharmaceutical human drug

67-66-3 Trichloromethane Disinfection byproduct-Carcinogen

67708-83-2  Dibromochloropropane Carcinogen

6804-07-5 2-(2-Quinoxalinylmethylene)hydrazine-carboxylic acid methyl ester N,N'-dioxide Pharmaceutical human/veterinary antibiotic
(Carbadox)

68-22-4 17a-Ethynyl-19-nor-delta4-androstan-17b-ol-3-one (Norethindrone) Form of progesterone

70458-96-7  Norfloxacin Pharmaceutical human/veterinary antibiotic

719-22-2 2,6-bis(1,1-Dimethylethyl)-2,5-cyclohexadiene-1,4-dione Insecticide

72-14-0 2-(p-Aminobenzenesulfonamido)thiazole (Sulfathiazole) Pharmaceutical human/veterinary antibiotic

72-33-3 17a Ethynyl-estradiol-3-methyl ether (Mestranol) Pharmaceutical-Sex/steroid hormone

723-46-6 4-Amino-N-(5-methyl-3-isoxazolyl)benzenesulfonamide (Sulfamethoxazole) Pharmaceutical human/veterinary antibiotic

72-43-5 1,1,1-Trichloro-2,2-bis(p-anisyl)ethane (Methoxychlor) Endocrine disruptor

72-54-8 1,1-bis(p-Chlorophenyl)-2,2-dichloroethane (DDD) Endocrine disruptor

72-55-9 1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) Pesticide-Carcinogen
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CAS Name

Compounds class, known use and/or toxicity endpoint

738-70-5 2,4-Diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine (Trimethoprim)
74-83-9 Bromomethane

74-95-3 Dibromomethane

74-97-5 Bromochloromethane
75-09-2 Dichloromethane

75-25-2 Tribromomethane
75-27-4 Dichlorobromomethane
75-71-8 Dichlorodifluoromethane

759-94-4 Dipropylthiocarbamic acid S-ethyl ester
7601-90-3  Perchloric acid
76420-72-9  Enalaprilat

76-44-8 1(3a),4,5,6,7,8,8-Heptachloro-3a(1),4,7,7a-tetrahydro-4,7-methanoindene (Heptachlor)
79-01-6 Trichloroethylene (TCE)

79-34-5 1,1,2,2-Tetrachloroethane

79-57.0 4-(Dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,6,10,12,12a-hexahydroxy-6-

methyl-1,11-dioxo-2-naphthacenecarboxamide (Terramycin)
80-32-0 Sulfachlorpyridazine
83463-62-1 Bromochloroacetonitrile
84-74-2 1,2-Benzenedicarboxylic acid dibutyl ester
87-68-3 1,1,2,3,4,4-Hexachloro-1,3-butadiene
924-16-3 N-nitrosodibutylamine
930-55-2 1-Nitroso-pyrrolidine
93106-60-6  Enrofloxacin

93-76-5 2,4,5-Trichlorophenoxyacetic acid

944-22-9 O-ethyl S-phenyl ethylphosphonodithioate (Fonofos)
95-47-6 1,2-Dimethylbenzene

95-48-7 1-Hydroxy-2-methylbenzene

95-50-1 1,2-Dichlorobenzene

95-63-6 1,2,4-Trimethylbenzene

994-05-8 2-Methyl-2-methoxybutane
99-87-6 1-Methyl-4-isopropylbenzene (Cymene)

Pharmaceutical human/veterinary antibiotic
Fumigant-Solvent

Solvent-Intermediate in production of herbicides
Disinfect byproduct

Solvent-Found in aerosol and pesticide products, photographic
film

Disinfection byproduct-Carcinogen

Disinfect byproduct

Refrigerant gas

Herbicide

Used to produce perchlorate, oxidant-Carcinogen
Pharmaceutical human drug

Endocrine disruptor

Solvent-Carcinogen

Solvent

Antibiotic

Pharmaceutical human/veterinary antibiotic
Disinfect byproduct

Plasticizer

Used to make rubber compounds-Solvent
Carcinogen

Carcinogen

Antibiotic-Industrial/household waste water product
Endocrine disruptor

Insecticide

Fuel hydrocarbon-Carcinogen

Intermediate for production of pesticides, pharmaceuticals
Fumigant

Fuel hydrocarbon

Solvent

Manufacture of synthetic resins
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ANNEX VI. Performance of training, validation and test data sets for the
normalized permeate flow rate and normalize salt passage models based on
back-propagation

Performance of all developed models is presented. For each length of time (7 to 125 hrs)

considered for dividing the time space in equal intervals, several ANN models were built by

varying the number of hidden neurons from 2 to 11. The model performance is characterized
by the explained variance in prediction index (g*), the correlation of determination ( R*), the
average relative error (&), the standard deviation of the relative error (o,) and the

maximum relative error (&, )-
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Performance of normalized permeate flow rate models.

NN TRAINING SET VALIDATION SET TEST SET
archeology qz R? £ 0. Enax qz R? £ 0. & qz R? £ 0, &,
[%] [%] [%] [%] [%] [%] [%] [%] [%]
Equal time intervals of 7 hrs
7:2:1 0.86 0.86 052 0.40 2.87 0.86 0.87 052 041 323 081 0.75 1.10 0.86 8.44
7:3:1 0.87 0.87 050 0.39 294 0.87 0.87 050 0.39 242 085 0.78 0.98 0.81 5.38
7:4:1 0.87 0.87 0.50 0.39 290 0.87 0.87 0.51 0.39 3.03] 0.87 0.80 0.93 0.73 6.00
7:5:1 0.86 0.86 051 0.40 346/ 0.86 0.86 051 039 249 0.88 0.81 0.88 0.70 592
7:6:1 0.87 0.87 050 0.38 2.85 0.86 0.86 0.51 042 3.19] 0.87 0.82 0.94 0.72 7.66
7:7:1 0.87 0.87 050 0.39 2.83] 0.85 0.85 0.49 041 3.07] 0.83 0.75 1.02 0.86 6.58
7:8:1 0.87 0.87 049 0.38 3.06/ 0.87 0.87 050 0.39 243 085 0.77 1.02 0.77 6.37
7:9:1 0.87 0.87 0.50 0.38 3.64/ 0.88 0.88 0.49 0.39 290, 0.86 0.77 0.96 0.73 8.94
7:10:1 0.88 0.88 048 0.38 278 0.86 0.86 0.51 0.39 3.11 0.86 0.80 0.97 0.72 7.79
7:11:1 0.87 0.87 049 0.38 3.34 0.87 0.87 050 0.38 2.61] 0.85 0.76 1.00 0.78 7.01
Equal time intervals of 15 hrs
7:2:1 0.84 0.84 054 042 3.14 0.85 085 0.52 041 3.05 0.76 0.70 1.08 0.81 7.99
7:3:1 0.85 0.85 051 040 3.17] 0.85 0.85 054 041 227 083 0.76 091 0.70 5.81
7:4:1 0.85 0.85 052 041 2.64 0.84 084 054 042 312 0.80 0.73 0.97 0.77 6.39
7:5:1 0.86 0.86 0.51 0.39 3.45 0.85 0.85 0.53 0.41 256 0.84 0.78 0.87 0.65 5.17
7:6:1 0.86 0.86 051 039 2.71] 0.84 0.84 052 041 3.14 0.82 0.75 094 0.72 7.75
7:7:1 0.86 0.86 051 0.40 3.11) 0.86 0.86 0.51 039 214 079 0.72 1.02 0.73 6.62
7:8:1 0.86 0.87 050 0.39 3.12] 0.86 0.86 0.49 0.37 210, 0.83 0.81 0.90 0.68 6.68
7:9:1 0.86 0.86 0.50 0.39 3.26] 0.85 0.85 0.53 042 3.50, 0.85 0.79 0.87 0.66 5.63
7:10:1 0.87 0.87 049 038 295 0.85 0.85 0.52 041 2.69 081 0.74 095 0.77 842
7:11:1 0.86 0.86 0.50 0.39 3.32] 0.85 0.85 0.52 0.40 2.62] 0.84 0.84 0.85 0.70 6.92
Equal time intervals of 25 hrs
7:2:1 0.84 0.84 054 041 342/ 0.85 0.85 051 041 221 0.76 0.73 1.08 0.76 6.64
7:3:1 0.85 0.85 0.52 0.40 3.23] 0.86 0.86 0.53 0.40 2.45 0.81 0.76 0.93 0.68 6.88
7:4:1 0.86 0.86 051 0.40 325 0.84 0.84 053 041 248 077 0.69 1.03 0.75 7.00
7:5:1 0.85 0.85 053 041 329 0.84 084 053 041 1.99 0.83 0.79 0.86 0.67 8.61
7:6:1 0.84 0.84 054 041 343 0.85 085 0.53 040 2.00, 0.80 0.73 0.98 0.71 7.68
7:7:1 0.86 0.87 050 0.39 3.19] 0.86 0.86 051 040 259 076 0.79 1.03 0.81 7.21
7:8:1 0.85 0.85 0.53 0.41 3.32 0.85 0.85 0.52 0.40 2.89 0.77 0.69 0.98 0.81 6.92
7:9:1 0.87 0.87 049 0.38 3.09 0.88 0.88 0.50 0.38 2.11] 0.84 0.81 0.83 0.68 4.84
7:10:1 0.86 0.86 0.50 0.39 3.37] 0.85 0.85 0.52 0.39 239 0.80 0.83 0.94 0.74 7.89
7:11:1 0.87 0.87 0.49 0.39 240 0.86 0.86 0.50 0.40 3.21] 0.84 0.81 0.83 0.68 7.15
Equal time intervals of 50 hrs
7:2:1 0.84 0.84 054 042 350, 0.85 0.85 0.52 0.39 244 0.69 0.65 125 090 8.32
7:3:1 0.84 0.84 053 041 338 0.84 084 056 044 3.03) 0.77 0.71 1.00 0.84 7.17
7:4:1 0.84 0.84 053 042 347 0.86 086 0.52 041 224 077 0.74 1.00 0.87 7.83
7:5:1 0.85 0.85 0.53 041 342 0.85 0.85 0.53 042 3.18 0.78 0.74 1.00 0.84 7.95
7:6:1 0.86 0.86 051 0.40 337 0.87 0.87 049 038 279 082 0.78 091 0.73 6.59
7:7:1 0.84 0.84 053 041 2.83 0.84 084 056 043 355 079 0.71 098 0.79 7.46
7:8:1 0.86 0.86 0.51 0.40 2.74 0.85 0.85 0.51 041 359 079 0.77 1.00 0.73 7.94
7:9:1 0.86 0.86 0.51 0.40 3.18 0.85 0.85 0.53 0.39 2.62] 0.83 0.74 091 0.70 9.31
7:10:1 0.86 0.86 0.50 0.39 3.35 0.86 0.86 0.50 0.39 297 0.80 0.72 0.94 0.80 6.84
7:11:1 0.87 0.87 049 0.39 292 0.87 0.87 0.49 0.37 255 0.79 0.71 1.00 0.78 8.35
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NN TRAINING SET VALIDATION SET TEST SET

archeology q : R’ r O, Emax q ? R’ g O, Emax q ’ R’ g O, €max
[%] [%] [%] [%o] [%] [%] [%] [%] [%]

Equal time intervals of 75 hrs
7:2:1 0.84 0.84 054 042 3.000 0.83 0.83 055 042 285 072 0.69 1.13 0.93 7.99
7:3:1 0.82 0.82 057 043 3.76] 0.84 0.84 055 043 223 074 0.64 1.12 0.84 7.67
7:4:1 0.85 0.85 0.52 0.41 3.94 0.83 0.83 055 041 2.69 077 070 1.04 0.80 7.41
7:5:1 0.85 0.85 052 040 3.16/ 0.85 0.85 051 040 3.08 0.76 0.67 1.09 0.80 7.87
7:6:1 0.84 0.84 053 042 390 0.85 0.85 055 043 273 0.77 0.74 1.07 0.80 7.34
7:7:1 0.85 0.85 052 042 4.16 0.85 085 052 041 259 078 0.71 1.01 0.85 5.95
7:8:1 0.87 0.87 0.50 0.39 3.07] 0.84 0.84 0.53 0.40 241 0.76 0.72 1.00 0.88 8.30
7:9:1 0.86 0.86 0.50 0.39 3.03| 0.86 0.87 0.51 0.39 2.83 0.78 0.75 1.01 0.81 7.98
7:10:1 0.86 0.86 052 040 321 0.84 0.84 053 042 3.15 074 0.76 1.10 0.86 7.92
7:11:1 0.86 0.86 051 0.40 347 0.85 0.85 052 042 250 074 0.72 1.10 091 7.75

Equal time intervals of 100 hrs
7:2:1 0.83 0.83 057 043 3.83 0.83 0.83 056 043 2.69 072 061 1.16 0.87 6.1
7:3:1 0.85 0.85 053 042 297 0.84 0.84 053 040 2.68 075 0.67 1.08 0.87 7.18
7:4:1 0.85 0.85 052 0.40 298 0.86 0.86 053 042 340, 0.75 0.66 1.06 0.87 7.90
7:5:1 0.83 0.83 056 043 353 0.84 084 054 042 268 079 0.73 1.02 0.77 6.50
7:6:1 0.86 0.86 0.50 0.39 3.13] 0.85 0.85 0.52 041 3.17] 0.77 0.80 1.08 0.81 8.57
7:7:1 0.85 0.85 052 041 3.74 0.84 084 054 042 280 074 0.69 1.15 0.83 7.83
7:8:1 0.87 0.87 050 039 3.30 0.85 0.85 052 041 3.17| 0.71 0.59 1.19 095 6.46
7:9:1 0.86 0.86 050 0.39 342 0.85 0.85 052 041 290, 0.77 0.68 1.03 0.85 5.83
7:10:1 0.85 0.85 0.53 0.41 3.58 0.85 0.85 0.52 0.40 3.10] 0.66 0.63 1.30 0.93 7.09
7:11:1 0.85 0.85 0.52 0.41 3.73] 0.84 0.84 0.53 0.42 3.22] 0.73 0.66 1.17 0.81 9.34

Equal time intervals of 125 hrs
7:2:1 0.83 0.83 055 0.42 325 0.84 084 055 046 4.14 078 0.71 1.03 0.80 7.37
7:3:1 0.84 0.84 054 042 401 0.84 084 053 041 270 0.72 0.61 1.12 0.90 7.09
7:4:1 0.86 0.86 050 0.40 263 0.86 086 051 041 344 062 056 135 1.01 8.15
7:5:1 0.86 0.86 051 0.40 3.33 0.87 0.87 050 0.38 2.89 0.68 0.69 130 0.88 9.72
7:6:1 0.84 0.84 053 042 433 0.84 084 052 043 337 073 0.65 1.15 0.87 6.14
7:7:1 0.85 0.85 053 041 3.69 0.83 0.83 053 041 219, 0.79 0.73 0.99 0.81 11.74
7:8:1 0.86 0.86 0.49 0.39 3.34 0.87 0.87 0.50 0.39 276 0.74 0.68 1.16 0.80 7.61
7:9:1 0.87 0.87 049 038 270 0.87 0.87 050 040 324 072 071 1.15 095 827
7:10:1 0.86 0.86 050 0.39 3.68 0.86 0.86 0.50 039 2.04 0.69 056 1.26 0.90 6.64
7:11:1 0.87 0.87 048 0.38 2.80 0.86 0.86 0.50 0.39 2.09] 0.66 0.70 1.34 0.92 11.07
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Performance of normalized salt passage models.

NN TRAINING SET VALIDATION SET TEST SET
archeology qz R? £ 0. & qz R? £ 0. Enax qz R? £ O, Enax
[%] _[%] [%] [%] %] [%] [%] [%] [%]
Equal time intervals of 7 hrs
7:2:1 095 096 1.80 1.56 16.01] 095 095 1.85 1.58 8.65 0.90 093 292 232 35.37
7:3:1 0.96 096 1.60 1.48 16.02 095 095 1.69 1.61 1526/ 090 0.93 2.85 2.30 35.47
7:4:1 096 096 1.63 1511580 096 096 1.67 1511494 090 093 297 2.30 35.27
7:5:1 0.96 096 1.61 1461512 095 095 1.65 1.67 15.83 090 0.93 2.73 229 35.52
7:6:1 0.96 096 1.60 1.49 1535 096 096 1.56 1.50 1594 090 0.92 2.81 2.31 35.64
7:7:1 0.96 096 1.61 1451599 096 096 157 1591548 091 0.93 2.89 227 35.35
7:8:1 0.96 0.96 158 1.4615.67] 096 096 1.65 1.58 14.67| 091 0.93 2.79 2.24 3545
7:9:1 096 096 159 1451557 096 096 1.62 1.5616.10f 0.92 091 251 229 35.57
7:10:1 0.96 096 159 14715500 096 096 1.67 1531642 093 091 244 212 36.34
7:11:1 0.96 0.96 1.61 1.46 1586 096 096 1.58 1.5216.69] 091 091 2.72 221 35.52
Equal time intervals of 15 hrs
7:2:1 094 094 211 1791571 095 095 208 1.7412.87 091 0.90 254 227 37.03
7:3:1 094 094 210 1781574 095 095 2.01 1.76 12.64 091 0.90 252 228 37.41
7:4:1 0.95 095 199 1.6712.05 094 094 2.04 1.7517.74 091 0.90 253 222 37.18
7:5:1 0.95 095 2.03 1.6917.68 095 095 195 1.6912.02] 091 0.90 2.54 2.37 3592
7:6:1 095 095 195 1.6917.22 095 095 197 1.7110.29 091 090 2.62 2.35 36.02
7:7:1 0.95 095 1.88 1.6717.13 095 095 1.88 1.6211.64 091 0.90 2.62 2.33 37.66
7:8:1 0.95 095 192 1.6416.76) 095 095 1.89 1.64 9.61 091 0.90 2.58 2.35 37.20
7:9:1 0.95 095 190 1.6217.10[ 095 095 1.89 1.6315.66] 090 0.90 2.70 2.42 36.10
7:10:1 0.96 096 1.85 1.5613.000 095 095 1.98 1.7918.02/ 090 0.89 2.75 2.42 36.91
7:11:1 0.95 095 1.87 1.6216.38 0.96 096 192 155 7.69 091 0.89 2.68 2.38 36.00
Equal time intervals of 25 hrs
7:2:1 093 093 236 2.0223.07 092 092 247 2.0613.53 0.89 087 2.88 258 39.24
7:3:1 092 092 250 2122337 093 093 244 2.06 1255 0.89 0.87 2.85 2.59 38.73
7:4:1 094 094 224 1.802338 094 094 223 1.8111.96 090 0.87 2.86 246 38.25
7:5:1 0.93 0.93 228 1932275 093 093 237 2.0012.76/ 0.88 0.86 3.05 2.65 38.51
7:6:1 0.94 094 220 1902277 094 094 222 1.9013.55 0.89 0.86 2.97 259 38.45
7:7:1 0.95 095 2.07 1.7113.82( 093 093 2.07 1.9923.49 0.88 0.87 3.12 2.69 40.59
7:8:1 094 094 217 1.8221.84 094 094 2.17 1.7513.74 0.88 0.85 3.07 2.64 39.09
7:9:1 094 094 2.09 1782297 095 095 206 1.7411.22] 0.87 0.85 3.35 2.87 37.55
7:10:1 0.95 095 190 1.6823.37] 095 095 194 1.7113.20] 0.87 0.84 3.42 2.67 40.88
7:11:1 0.95 095 1.83 1.6522.80 095 095 193 1.64 11.06] 0.84 0.82 3.60 3.04 38.65
Equal time intervals of 50 hrs
7:2:1 0.90 0.90 2.78 2273138 092 092 274 21213.05 0.74 0.73 4.19 3.82 42.32
7:3:1 091 091 274 2232896 091 091 270 2131212 0.71 0.75 4.45 3.92 42.33
7:4:1 091 091 2.63 2233354 091 091 271 21213.77] 0.73 0.73 4.20 3.97 41.22
7:5:1 091 091 263 2181826 091 091 2.64 2232726 074 0.72 449 3.94 37.13
7:6:1 0.92 092 259 21628.07] 092 092 254 2.0711.21f 0.70 0.70 4.74 4.00 39.17
7:7:1 0.93 0.93 232 1982956/ 093 0.93 237 1911346/ 0.69 0.73 4.94 4.07 42.86
7:8:1 0.89 0.89 294 2413315 0.89 0.89 298 24514.41 0.72 0.71 4.47 4.00 39.91
7:9:1 0.94 094 218 1.842831 094 094 214 1781283 0.70 0.73 4.61 4.10 43.50
7:10:1 094 094 211 1.722832 095 095 2.11 1.6910.53 0.71 0.71 4.53 4.02 40.67
7:11:1 0.95 0.95 2.01 1.7328.15 095 095 2.04 1.7110.53] 0.70 0.73 4.77 4.22 39.46
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NN TRAINING SET VALIDATION SET TEST SET

archeology qz R? z O, &, qz R? z O, & qz R’ g 0. &...
[%] [%] [%] [%] [%] [%] [%] [%] [%]

Equal time intervals of 75 hrs
7:2:1 0.86 0.86 3.37 3.0118.76/ 0.85 0.85 3.48 3.1017.47] 0.67 0.65 5.39 4.18 39.72
7:3:1 0.90 0.90 2.82 2301879 0.89 0.89 2.88 2.3614.53] 0.67 0.66 4.96 4.47 41.37
7:4:1 0.90 090 290 2281791 091 091 2.80 2.1113.70] 0.66 0.62 4.86 4.88 41.57
7:5:1 091 091 272 2281892 091 091 2.69 2.3013.46 0.67 0.65 546 4.28 41.30
7:6:1 0.89 0.89 298 2.6917.88 0.88 0.88 3.03 2.751549 0.61 0.59 6.00 4.57 41.48
7:7:1 0.92 092 254 21915020 090 091 263 2.3414.65 0.64 0.67 547 4.71 41.34
7:8:1 0.92 092 246 22216500 092 092 241 2211713 0.62 0.60 540 5.01 42.24
7:9:1 094 094 229 1871790 094 094 229 1.8110.96 055 0.63 6.10 4.91 43.28
7:10:1 093 093 225 2.011599 094 094 232 2.091598 0.62 0.65 571 4.41 38.11
7:11:1 0.88 0.88 3.10 2.76 20.18 0.88 0.88 3.11 2.60 14.77] 0.63 0.57 5.54 4.84 42.82

Equal time intervals of 100 hrs
7:2:1 0.87 0.87 324 2772155 0.86 086 321 2.8120.81 046 047 7.19 525 43.21
7:3:1 0.89 0.89 2.83 2.7019.86/ 0.88 0.88 290 2.8518.46| 048 0.52 6.85 4.96 42.39
7:4:1 0.90 0.90 296 2311541 090 090 297 2351685 047 0.49 7.11 5.16 44.19
7:5:1 0.92 092 256 2.1819.69 092 092 254 2.1311.89 0.48 0.50 6.99 528 44.44
7:6:1 094 094 215 1751835 095 095 2.08 1.6910.22] 0.55 0.55 6.50 4.69 44.21
7:7:1 094 094 220 1791746 093 093 235 2.0111.73 049 054 7.15 5.12 46.99
7:8:1 0.95 095 199 1.6518.66] 095 095 205 1.68 897 047 0.47 7.26 526 44.85
7:9:1 0.95 0.95 2.00 1.5917.07] 095 095 2.04 1.6310.87| 0.51 0.53 7.00 5.07 43.89
7:10:1 095 095 2.00 1.6516.92 095 095 2.05 1.6815.38 0.53 0.56 6.82 4.56 44.43
7:11:1 094 094 233 1941685 092 092 252 2121177 050 0.52 7.15 455 41.70

Equal time intervals of 125 hrs
7:2:1 0.88 0.88 3.08 2.5717.75 0.86 0.86 3.15 2.7326.30] 0.68 0.72 576 4.11 37.07
7:3:1 091 091 2.69 2292763 0.89 0.89 2.84 2401956 0.71 0.69 5.16 4.31 36.06
7:4:1 0.89 0.89 296 259 33.60 0.88 0.88 291 2531697 0.73 0.69 4.81 4.08 39.75
7:5:1 0.90 0.90 2.79 2342859 090 090 276 2351537 0.73 0.69 4.86 4.17 42.34
7:6:1 0.89 0.89 291 242 16.11] 0.89 0.89 290 2.5026.17| 0.67 0.65 5.66 4.24 44.23
7:7:1 0.92 092 238 2142691 091 091 251 2.2419.29] 0.67 0.68 5.55 3.98 39.96
7:8:1 0.88 0.88 298 2591779 0.86 0.86 3.04 2.7126.19] 0.66 0.65 543 4.53 41.42
7:9:1 091 091 269 2151786 090 090 273 2222579 0.56 0.60 6.56 4.66 42.91
7:10:1 0.93 093 247 1972725 094 094 238 1.8621.19] 058 0.56 6.58 5.22 40.87
7:11:1 0.89 0.89 2.88 245 30.67] 0.89 0.89 291 244 17.62] 0.63 0.64 5.68 4.63 39.91
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