

WateReuse Webcast Series © 2019 by the WateReuse Association

Membranes 101: The Basics and Beyond

September 26, 2019

A Few Notes Before We Start...

- Today's webcast will be 60 minutes.
- There is one (1) Professional Development Hour (PDH) available for this webcast.
- A PDF of today's presentation can be downloaded when you complete the survey at the conclusion of this webcast.
- If you have questions for the presenters please send a message by typing it into the chat box located on the panel on the left side of your screen.

← Ask a Question

Type your question

Send

Today's Presenter

Dan Hugaboom Chief Technologist, MF/UF Membranes Carollo Engineers, Inc. carolo

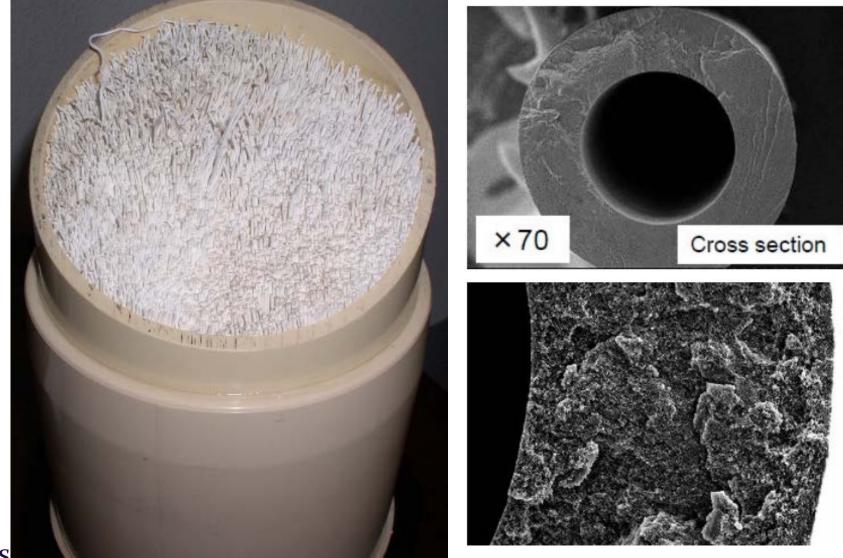
Engineers...Working Wonders With Water®

Agenda

- Microfiltration/Ultrafiltration Membranes & Applications
- Membrane Bioreactor applications & Applications
- Desalting Membrane applications & Applications

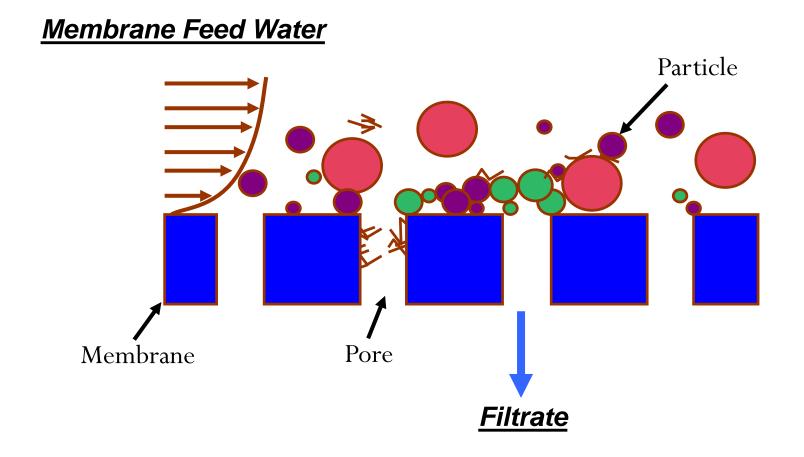
Micro and Ultra filtration (MF/UF) Work on Size Exclusion Principal

- Membrane Filtration
 - Pressure driven, liquid phase, separation process based on size exclusion utilizing a thin layer of semipermeable material
 - MF/UF Membranes have distinct pores



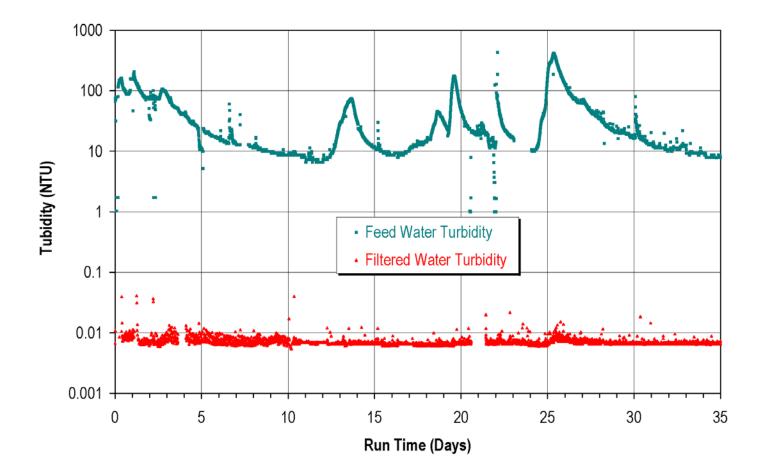
CEI image (1500x) of the filtrate side of a pre clean fiber

MF/UF Membranes have many Forms, but the Most Common is Polymeric Hollow Fiber (HF)



WATEREUS

MF/UF Membrane Rack, 1.5 mgd Capacity



Solids Removal is nearly Complete as long as the membrane is intact

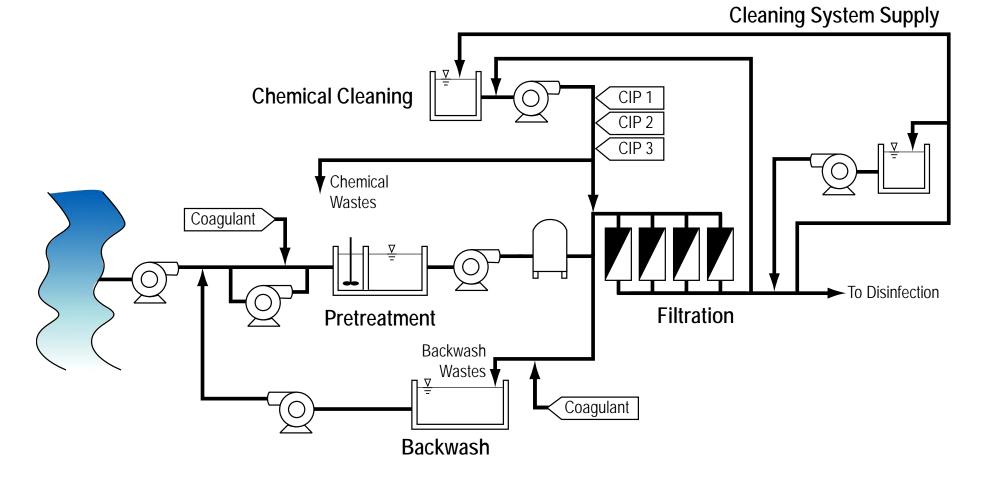
MF/UF Membranes are also classified in water treatment by rejection characteristics

California Surface Water Treatment Rule Alternative Filtration Technology - Membrane Filtration

					Treatment Com	mittee - June 20	10		
Manufacturer			Pathogen Removal Standards (log credit)			Turbidity Standards		Conditions During Demonstration	
	Model	Туре	Virus	Giardia	Crypto	95% of time	Max	Max Flux Lph/m2 (gfd)	Max TMP (psi)
Aquasource	Advent	UF	4, *	4	4	0.1 NTU	0.5 NTU	136 (80)	29
BASF Inge	D5000	UF	3.5, *	4	4	0.1 NTU	0.5 NTU	156 (92)	29
Dow	UF SFX2860	UF	2.5, *	4	4	0.1 NTU	0.5 NTU	102 (60)	30
Evoqua (formerly Siemens, who acquired US Filter)	Memcor PVdF (S10V, L10V, L20V)	UF	1.5, *	4	4	0.1 NTU	0.5 NTU	88 (52)	22
	PVdF	MF	0.5, *	3.5	4	0.1 NTU	0.5 NTU	85 (50)	29
	L10N, L20N, S10N	UF	1, *	4	4	0.1 NTU	0.5 NTU	263 (155)	22 (L10N, L20N) 12.3 (S10N)
	Polypropylene	MF	0.5, *	4	4	0.1 NTU	0.5 NTU	110 (66.9)	15
	(M10B, M10C, S10T)	MF	0, *	4	4	0.1 NTU	0.5 NTU	160 (93.6)	17
GE Zenon	Homespring UF211	UF	3.5, *	4	4	0.1 NTU	0.5 NTU	93.4 (55)	20
	ZeeWeed 500 series	UF	2, *	4	4	0.1 NTU	0.5 NTU	85 (49.8)	11.8
	ZeeWeed 1000 V2 & V3	UF	3.5, *	4	4	0.1 NTU	0.5 NTU	93.4 (55)	12 (vac)
	ZeeWeed 1000 V4	UF	1, *	4	4	0.1 NTU	0.5 NTU	102 (60)	13
	ZeeWeed 1500 ZeeWeed 1500-600 CPX	UF	1, *	4	4	0.1 NTU	0.5 NTU	170 (100)	45
Hydranautics	HYDRAcap	UF	4, *	4	4	0.1 NTU	0.5 NTU	119 (69.3)	18
Koch	PMPW	UF	4, *	4	4	0.1 NTU	0.5 NTU	173 (102)	35
METAWATER (NGK)	431011	UF	*	4	4	0.1 NTU	0.5 NTU	(175)	55
Norit X-Flow	S 225	UF	•	4	4	0.1 NTU	0.5 NTU	127.3 (75)	31
	SXL-225	UF	*	4	4	0.1 NTU	0.5 NTU	127.3 (75)	31
Pall	Microza USV 6203 Microza USV 5203 Microza UNA 620A	MF	0.5 *	4	4	0.1 NTU	0.5 NTU	203.7 (120)	43.5
	UNA 620A1	UF	4, *	4	4	0.1 NTU	0.5 NTU	102 (60)	51
Seccua	SeccuMem Pro 1000	UF	1, *	4	4	0.1 NTU	0.5 NTU	90 (53)	36
Toray (Torayfil)	HFS-2020	UF	1.5, *	4	4	0.1 NTU	0.5 NTU	202 (120)	29
	LSU-1515	UF	1.5, *	4	4	0.1 NTU	0.5 NTU	83 (49)	10
Toyobo	Durasep (UPF0860, UPF0870)	UF	1.5, *	4	4	0.1 NTU	0.5 NTU	119 (70)	35
WesTech Polymem	12052	UF	*	4	4	0.1 NTU	0.5 NTU	45 (27)	21

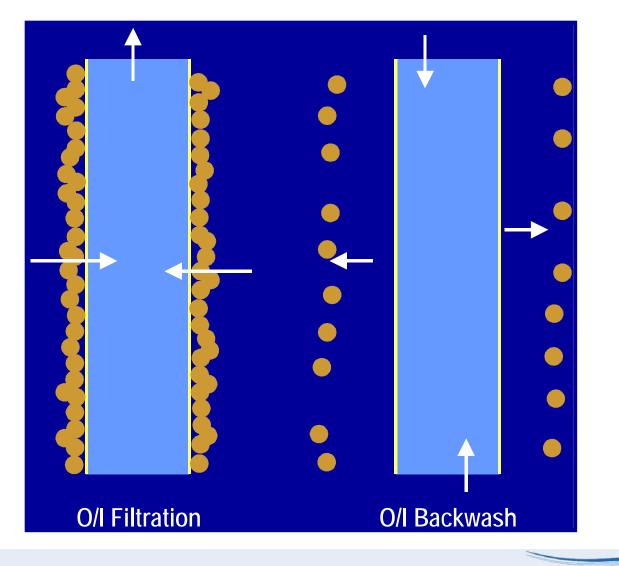
California Surface Water Treatment Rule Alternative Filtration Technology - Membrane Filtration SWRCB-DDW Water Treatment Committee - June 2018

Note *: Although virus removal may have been successfully demonstrated and accepted by DDW in the past, each plant is required to provide a minimum of 0.5-log Giardia and 4-log virus inactivation through disinfection. Credit for virus removal cannot be demonstrated on a daily basis currently via pressure decay testing per the USEPA Membrane Filtration Guidance manual.

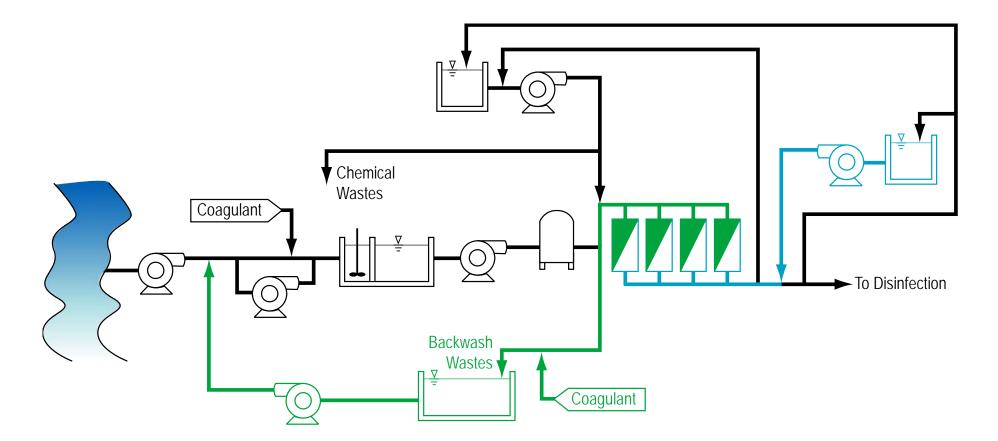


The Operational Challenge is Not Water Quality its Production

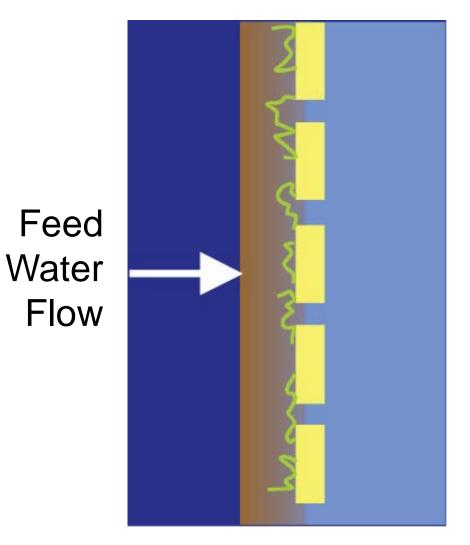
Process Flow Diagram



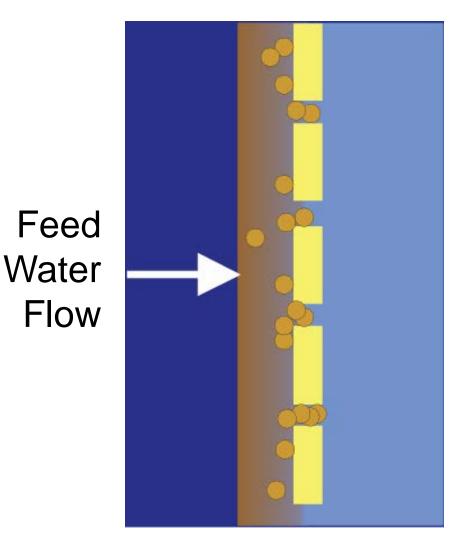
Process Flow Diagram - Filtration



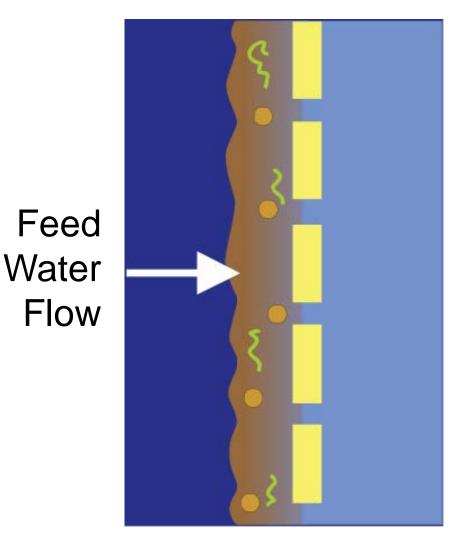
Flow of Water in an <u>Outside to Inside</u> Flow Membrane Fiber



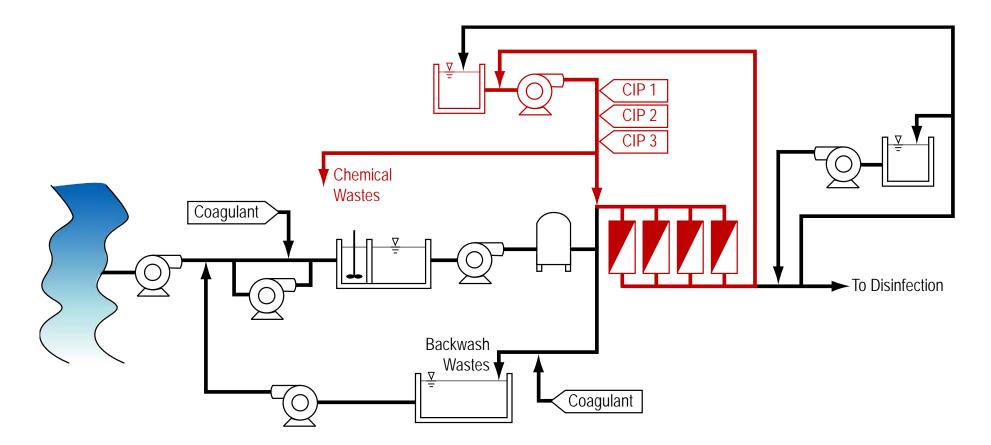
Process Flow Diagram - Backwash



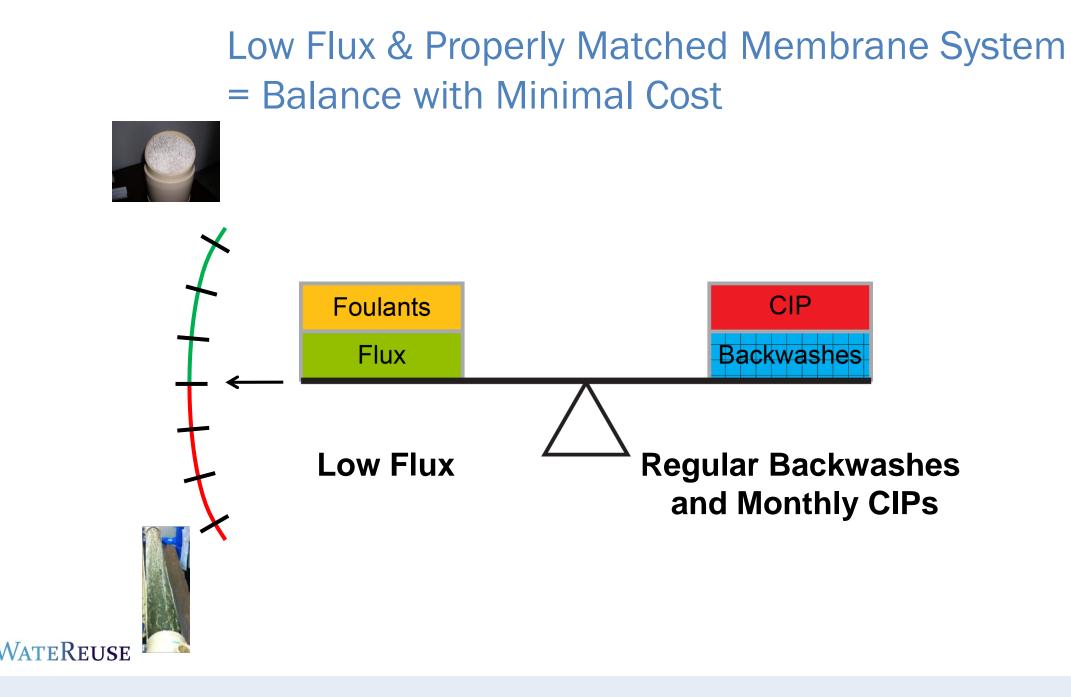
Some Causes of Irreversible Fouling – NOM Adsorption

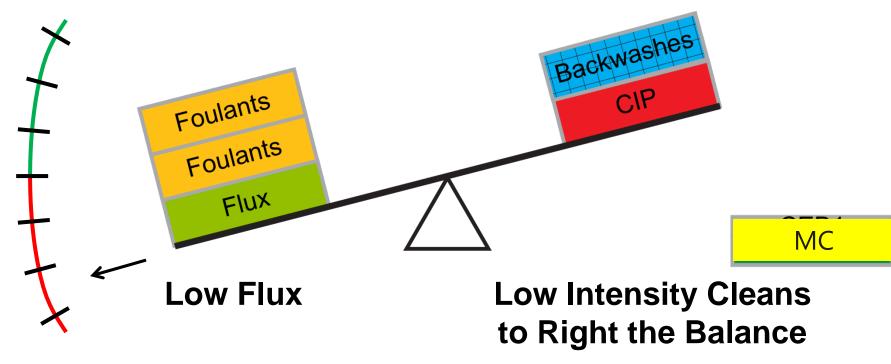


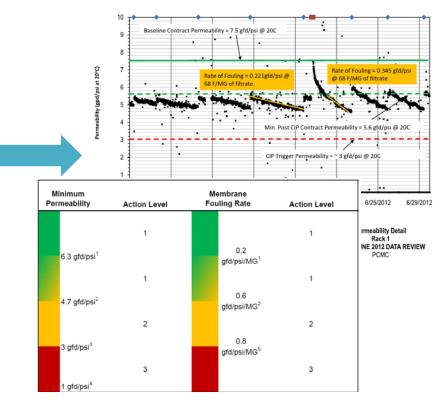
Some Causes of Irreversible Fouling – Pore Penetration



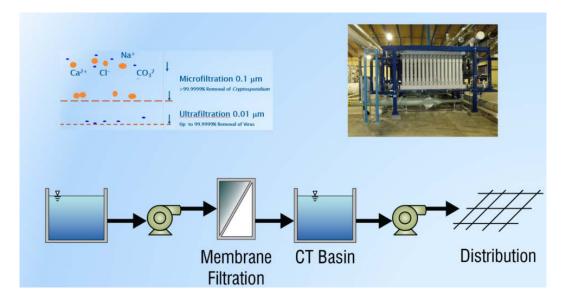
Some Causes of Irreversible Fouling – Cake Formation

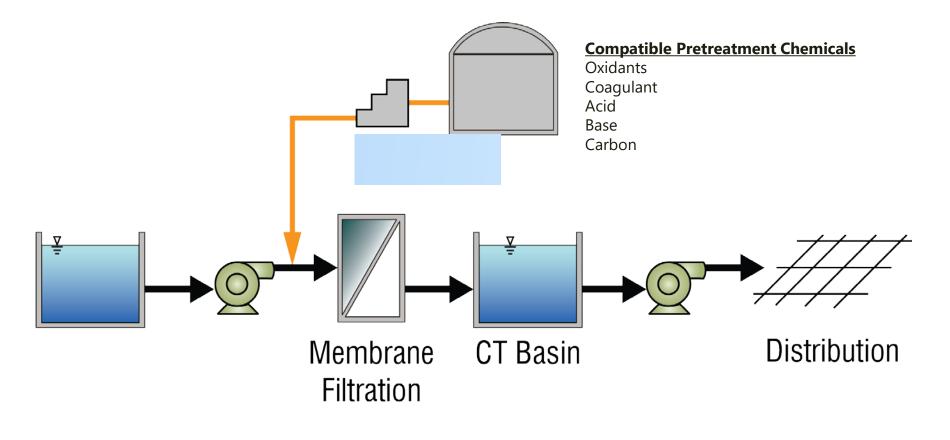



Process Flow Diagram – Chemical Cleaning


Feed Water Quality Upsets Can put you out of Balance

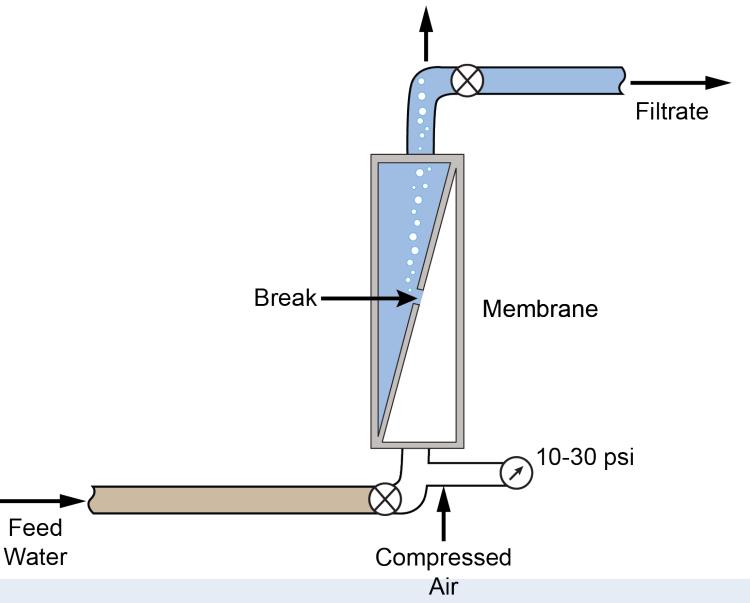
Pilot Testing Reduces Uncertainty by Defining the Right Balance




MF/UF Applications in Drinking Water

Treatment Objective	Regulation	Standard
Surface Water Filtration	Surface Water Treatment Rule	<0.3 NTU
Cryptosporidium	LT2	2.5 to 5.5 log removal
GWUDI Filtration		<0.3 NTU

MF/UF Membranes Can be Combined with Pretreatment Chemicals to Target Specific Contaminants


Key Considerations – Integrity Testing as Required by the USEPA MFGM

- Direct Integrity Testing A direct integrity test is defined as a physical test applied to a membrane unit in order to identify and isolate integrity breaches.
- Indirect Integrity Testing indirect integrity monitoring is defined as monitoring some filtrate water parameter that is indicative of the removal of particulate matter

Direct Integrity Test Example – Pressure Decay Tests

WATEREUSE

Pressure Decay Test Results Tell us about the condition of the membrane

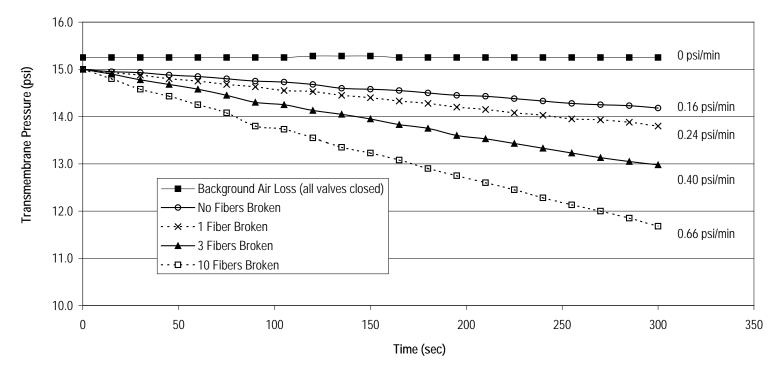


Figure 5.13 PRESSURE DECAY TESTS - PERIOD 3 CDHS CERTIFICATION STUDY - POLYMEM UF120S2 WESTECH/POLYMEM

The PDT Result (psi/min) is Used in an Equation to Estimate the Amount of water Bypass Treatment and Log Removal – Pencils Down... Its done in the Control System

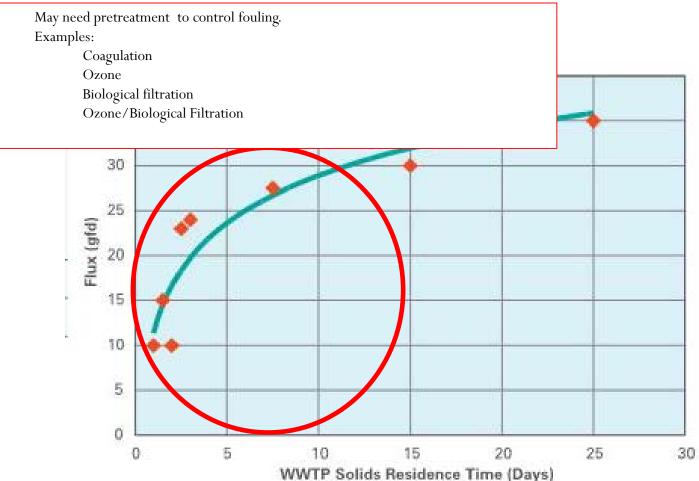
$$LRV_{DIT} = \log\left(\frac{Q_p \bullet ALCR \bullet P_{atm}}{\Delta P_{test} \bullet V_{sys} \bullet VCF}\right)$$

Equation 4.9

Where:	LRV _{DIT}	=	direct integrity test sensitivity in terms of LRV (dimensionless)
	Qp	=	membrane unit design capacity filtrate flow (L/min)
	ALCR	=	air-liquid conversion ratio (dimensionless)
	\mathbf{P}_{atm}	=	atmospheric pressure (psia)
	ΔP_{test}	=	smallest rate of pressure decay that can be reliably
			measured and associated with a known integrity breach
			during the integrity test (psi/min)
	V_{sys}	=	volume of pressurized air in the system during the test (L)
	VĆF	=	volumetric concentration factor (dimensionless)

Indirect Integrity Testing Methods

- **Turbidity monitoring**
- Particle counting
- Particle monitoring



Membranes in Tertiary Applications – Key Considerations

- Water Quality
 - Seasonal variations in secondary effluent quality
 - TSS
 - TOC
 - BOD
 - Phosphorus Concentrations and Speciation
 - WWTP characteristics, especially SRT
 - FOG pretreatment

Key Considerations in WW Applications – Solids Residence Time and Flux

MF/UF Membranes are Used in Tertiary Filtration Applications

Non – Potable Reuse

Typical Filtration Goal:

Filtrate Turbidity <0.2 NTU

MF/UF Membranes are Used in Tertiary Filtration Applications

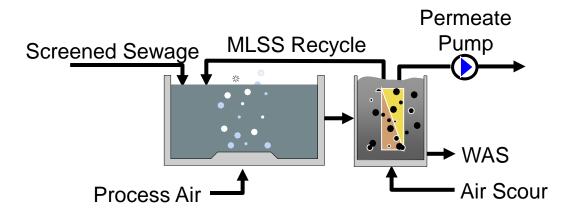
Low Phosphorus Discharges


Typical Filtration Goals:

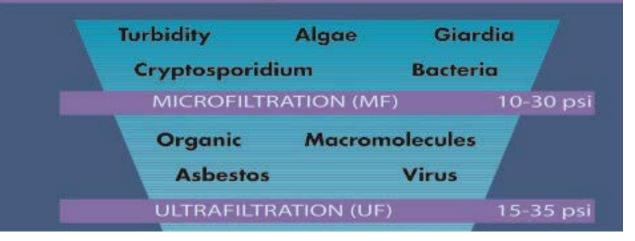
0.1 mg/L without coagulant 0.02 mg/L to 0.05 mg/L with coagulant

MF/UF Membranes are Used in Tertiary Filtration Applications

Potable Reuse


Typical MF/UF Filtration Goals:

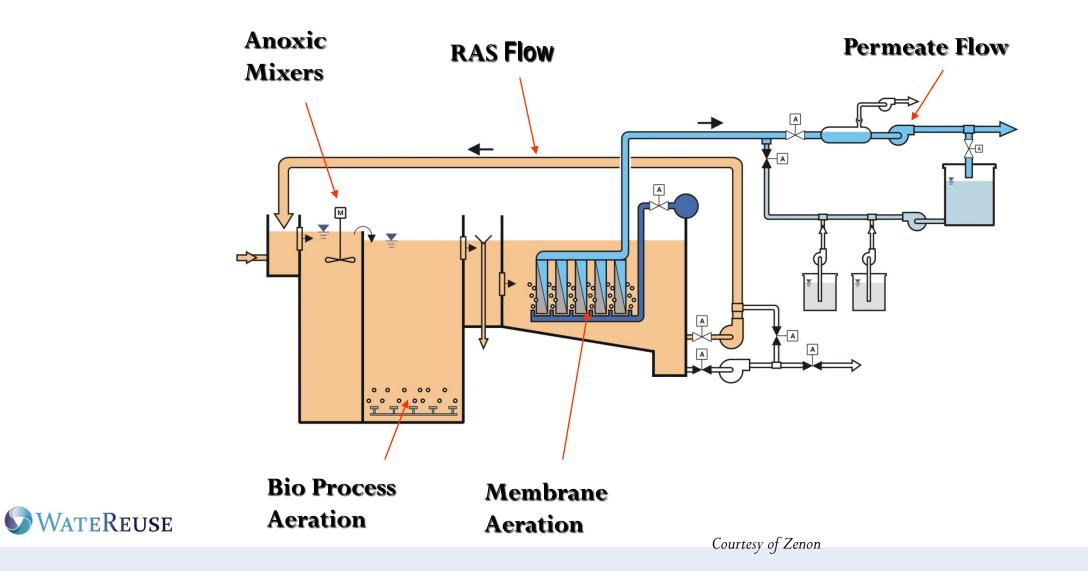
RO pretreatment - SDI<3 Cryptosporidium Removal – 4 Log Giardia Removal – 4 log


The Membrane Bioreactor (MBR) Process

 Membrane bioreactor process - An activated sludge biological treatment process that uses membrane filtration rather than secondary clarification for solids separation and conventional filtration

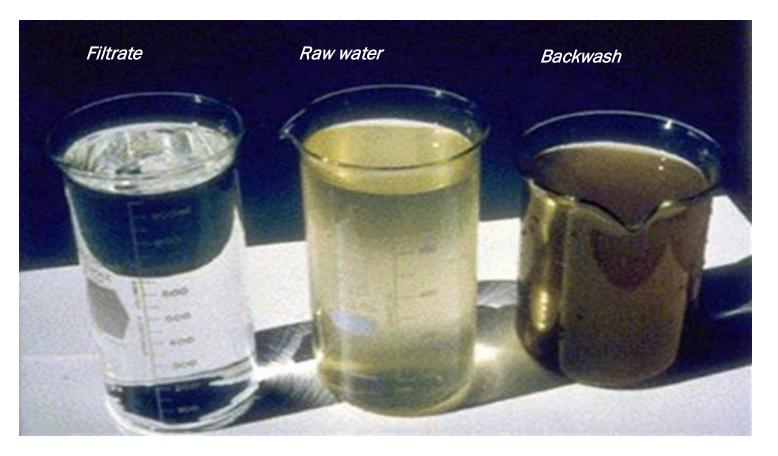
Membrane Separation Processes

MF and UF Membranes are used in MBR Applications, in Hollow Fiber and Flat Sheet Forms



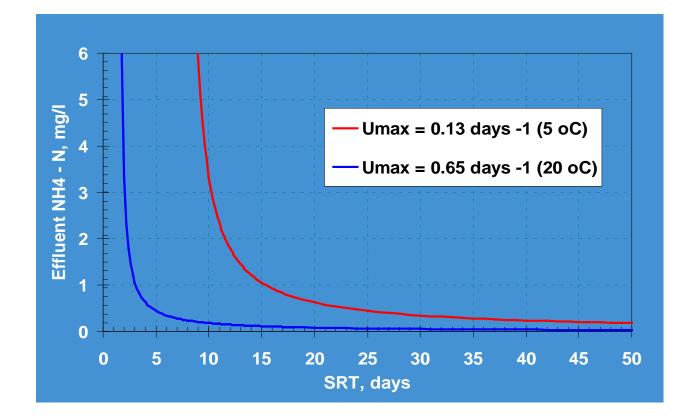
Groups of modules are connected to Filtrate Piping by Small Diameter Pipe and/or Hoses

MBR Schematic – A Little More Detail

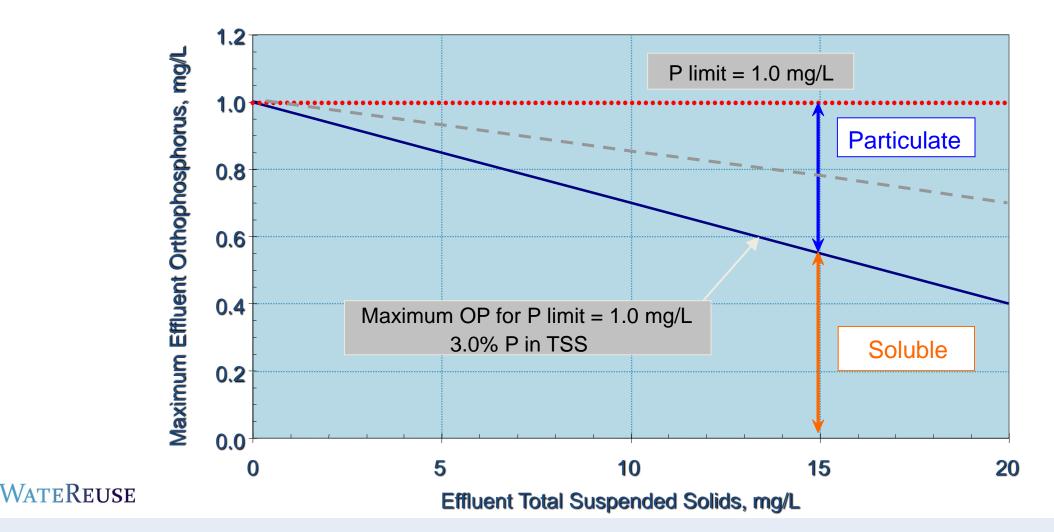


Key Elements of an MBR

- Use of membrane filtration to separate biomass from effluent
- Higher MLSS concentrations in aeration basins
- High solids recycle rate from membrane tank to aeration basin
- Membranes scoured with air
- Biological elements remain essentially the same

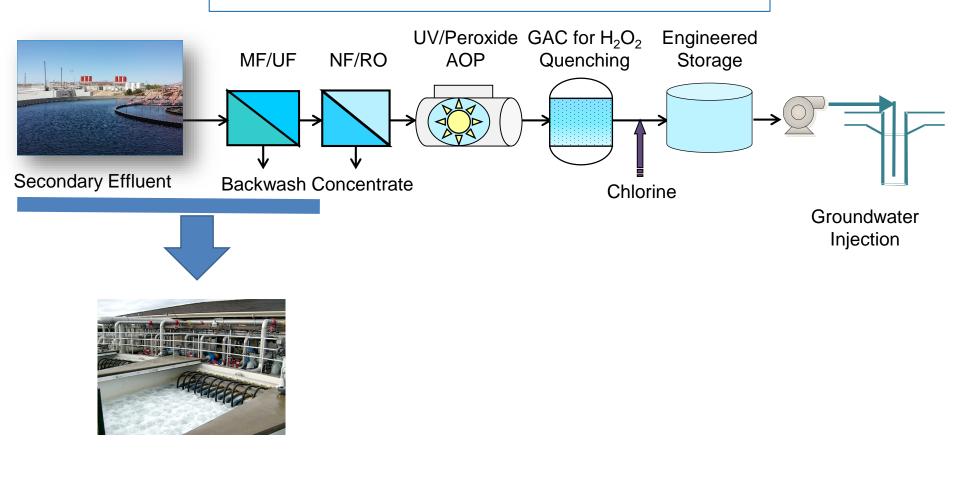


MBRs Provide Reliably Low Effluent TSS



MBR Applications: Long SRTs and Low Effluent Ammonia Concentrations

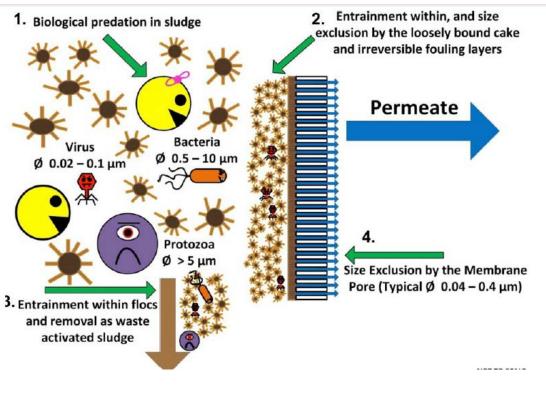
MBR Applications: Low effluent Phosphorus Due to Solids Separation Capabilities



Example Effluent Phosphorus Concentrations at Operating Full-Scale MBR Plants

Plant	Permit Limit (mg/L)	Typical Effluent TP (mg/L)
Cauley Creek, GA	0.13	80.0
Arapahoe County, CO	0.05	0.035
Rubes Creek, GA	0.12	0.10
Traverse City, MI	0.50	0.06 to 0.25
Epping, NH	0.28	0.09
Milton, ON	0.07	0.04

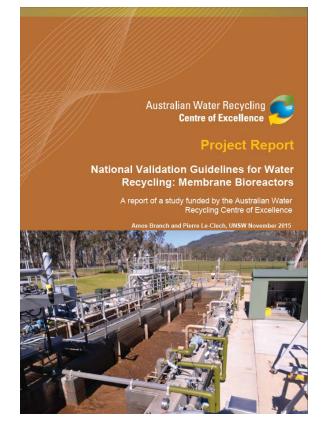
MBRs in Potable Reuse, the Next Frontier?



A pressure based Direct Integrity test would say No.

	MBR	WTP
System	System 1	System Type 1
Test Start Pressure	5 psi	13 psi
Test End Pressure	3.2 psi	11 psi
Breach Size Resolution ⁽²⁾	10 micron	3 micron
Pressure Decay Rate	30 psi/min (over 15 sec)	0.186 psi/min
Calculated Log Removal per MFGM Equations	<1.8 log	4 log

Pathogen Rejection in MBR is a Complex Phenomena Not Defined by the Membrane Alone



MBR are Being Considered for Log Removal Credits in Potable Reuse Trains

- No adequate data set was available to correlate influencing factors on LRV through MBR. "MBR removal mechanisms are complex and synergistic, leading to difficulties when applying simplistic modelling approaches".
- Likelyhood that poor LRV correlates with low HRT, high flux, high permeability, low TMP, high turbidity, low MLSS and high DO, resulting in an "operational envelope".

Pathogen credit for MF and UF is well understood

Pathogens	Removal	Primary/	MF	RO	UV/ H ₂ O ₂	Subsurface	Total
	Goal	Secondary				Travel Time	Credits
log viruses	12	1.9	0.0	1.5	6	6	15.4
log Giardia	10	0.8	4.0	1.5	6	0	12.3
log Crypto	10	1.2	4.0	1.5	6	0	12.7

WATEREUSE

Credits based upon DIT results

MBR-based potable reuse treatment provides insufficient credit for IPR GW injection

Pathogens	Removal Goal	MBR	RO	UV/ H ₂ O ₂	Subsurface Travel Time	Total Credits
log viruses	12	??	1.5	6	6	13.5+
log Giardia	10	??	1.5	6	0	7.5+
log Crypto	10	??	1.5	6	0	7.5+

Additional 2.5 LRV needed for protozoa

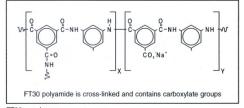
Experimental Evidence (SCVWD, Carollo 2017) shows MBR can achieve Virus & Protozoa Removal

Pathoge	n Credits for Pota	able Reuse w	vith Pro	posed Cred	its for MBR	
Pathogens	Removal Goal (CDPH, 2014)	MBR ¹	RO	UV AOP	Subsurface Travel Time	Total Credits
log viruses	12	3.0	1.5	6	6	16.5
log Giardia	10	3.2	1.5	6	0	10.7
log Crypto	10	3.2	1.5	6	0	10.7
Notes:						
1. Proposed log red	uction value credits f	or ≤ 0.2 NTU.				

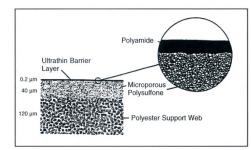
Membrane Desalting

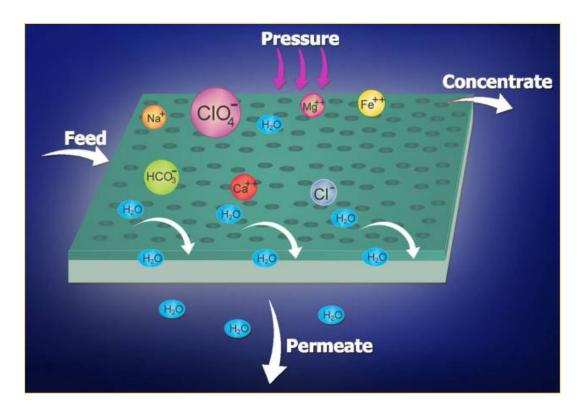
Membrane Separation Processes

Form: Spiral wound, thin film polyamide composite or nanocomposite

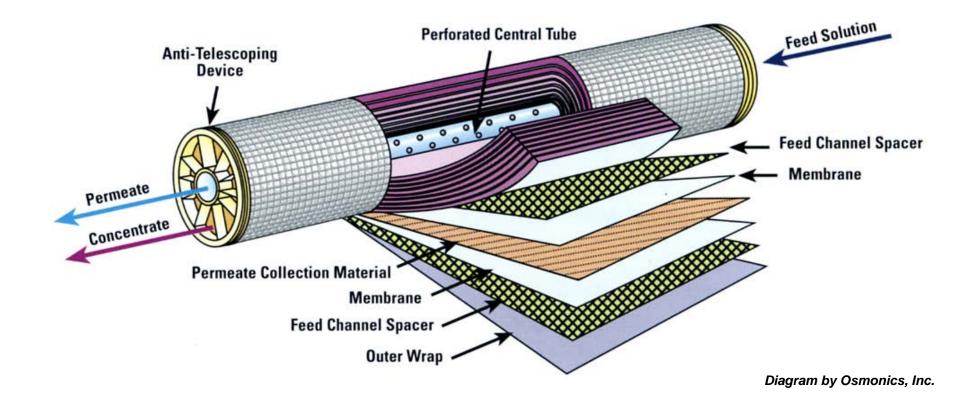

NF vs. RO: What's the Difference?

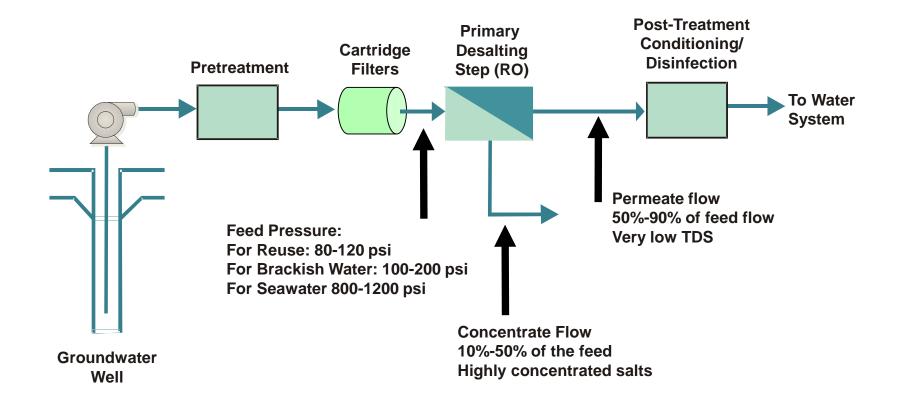
- Both are membrane processes
- With a similar setup (spiral-wound modules)


Parameter	NF	RO
Typical equipment cost	high, may be less than RO	high
Typical operating pressure	50-80 psi (lower power demand)	200+ psi
Typical salt rejection	25-75% (less/no brine waste)	99%+



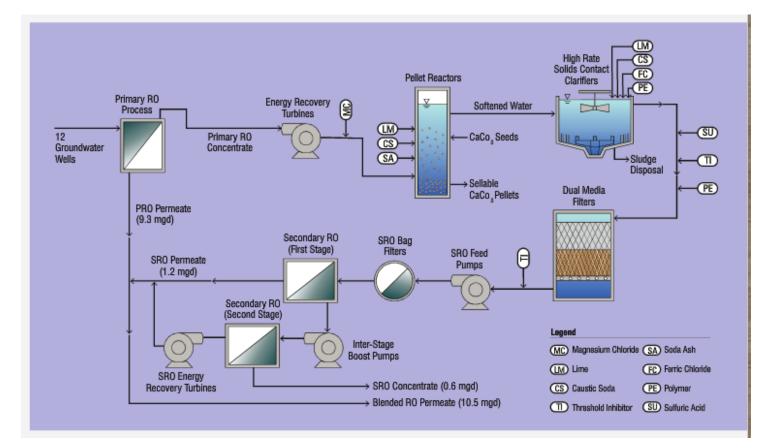
NF/RO Membranes <u>Do Not Have Pores</u> -Salt Rejection is Based Upon Diffusion


FT30 membrane.



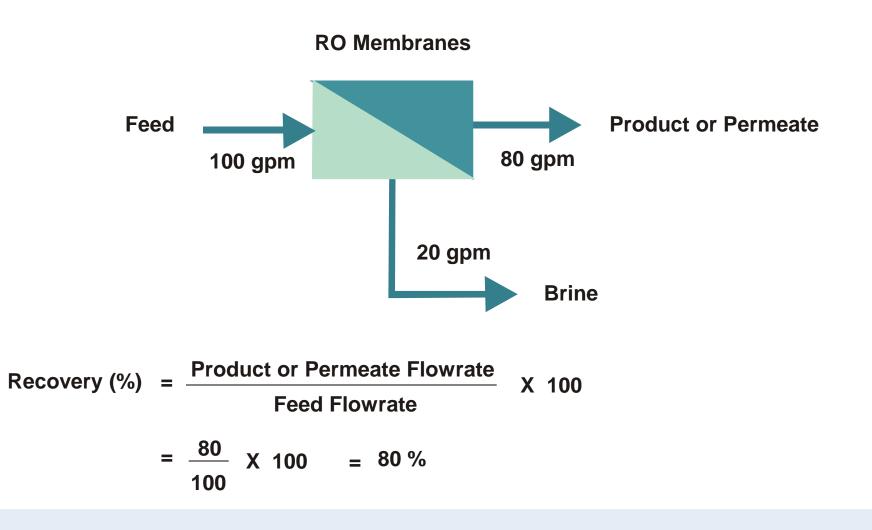
Flat Sheets of Membrane Material and Spacers are Combined into a "Spiral Wound" Membrane Element for Commercial Use

A Primary Desalting RO System has Several Components (Example: Groundwater Desalting)

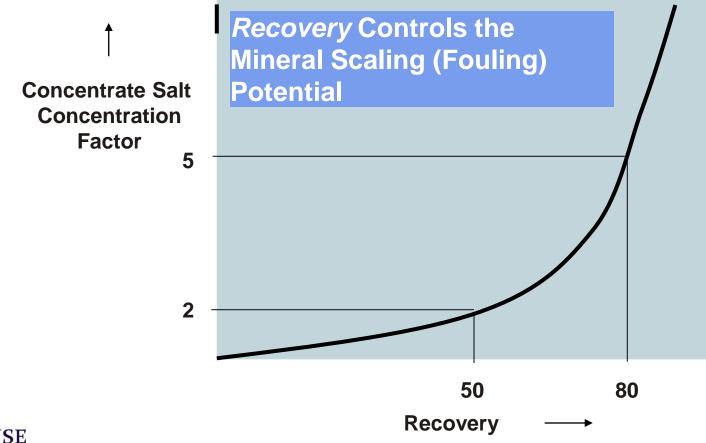


Concentrate Handling Must be a Primary Consideration in the Design of Any RO System

- Disposal options
 - Discharge to Sewer?
 - Ocean Discharge?
 - Surface water discharge ?
 - Injection wells ?
 - Or concentrate reduction.....



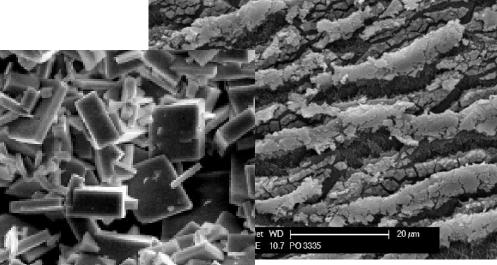
Concentrate reduction can be simple or complex

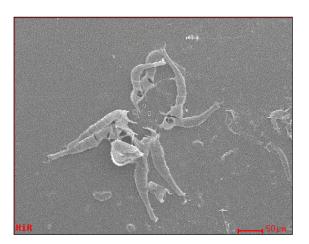


<u>Product Recovery</u> Measures the Percentage of the Feed Stream that Becomes Product

WATEREUSE

As Recovery Increases the Concentrate Salt Concentration Increases Exponentially




Types of Fouling

Biological Foulant

Mineral Scaling

Particle (Silt) Foulant

How is are process parameters determined?

• Starts with water quality analysis

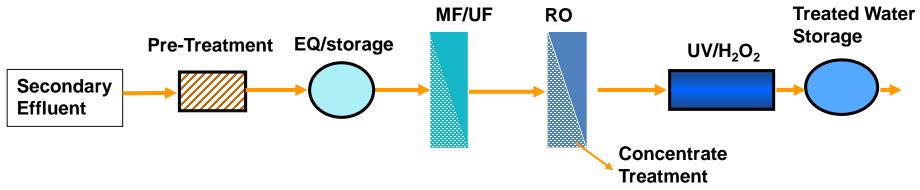
RO FI	ow Table (Stage Le	vel) - I	Pass 1									ATION VALU PROCESS SI		•
Stage	Elements	#PV	#Els per PV	Feed Flow	Fe Recirc Flow	ed Feed Press	Boost Press	Conc Flow	Concentrat Conc Press	Press Drop	Perm Flow	Perm Avg Flux	eate Perm Press	Perm TDS
			PV	(gpm)	(gpm)	(psi)	(psi)	(gpm)	(psi)	(psi)	(gpm)	(gfd)	(psi)	(mg/L)
1	SW30ULE-400	78	6	3,761	0.00	211.3	0.0	1,882	186.6	24.6	1,881	14.5	15.0	2.17
2	SW30ULE-400	39	6	1,882	0.00	229.1	47.0	942.0	204.5	24.6	940.2	14.5	15.0	4.18

RO Solute Concentrations - Pass 1

		Conce	ntrate		Permeate	
	Feed	Stage1	Stage2	Stage1	Stage2	Total
NH4"	0.00	0.00	0.00	0.00	0.00	0.00
К*	2.00	3.99	7.93	0.01	0.03	0.02
Na*	7.27	14.50	28.88	0.04	0.09	0.05
Mg ⁻²	217.0	433.9	866.5	0.13	0.25	0.17
Ca*2	582.0	1,164	2,324	0.33	0.66	0.44
Sr*2	13.40	26.79	53.51	0.01	0.02	0.01
Ba*2	0.00	0.01	0.02	0.00	0.00	0.00
CO3-5	0.66	2.29	7.57	0.00	0.00	0.00
HCO3	74.00	145.8	284.9	0.35	0.54	0.41
NO3"	0.00	0.00	0.00	0.00	0.00	0.00
CI-	12.00	23.98	47.86	0.02	0.04	0.03
F*	3.70	7.38	14.69	0.02	0.05	0.03
504 ⁻²	2,200	4,399	8,785	1.16	2.33	1.55
SiO ₂	8.30	16.53	32.87	0.07	0.15	0.10
Boron	0.02	0.03	0.06	0.00	0.01	0.01
CO2	1.65	2.23	3.93	1.66	2.59	1.97
TD5*	3,120	6,238	12,454	2.17	4.18	2.84
pH	7.7	7.7	7.7	5.6	5.6	5.6

Total Dissolved Solids includes ions, SiQ₂ and B(OH)₈. It does not include NH₈ and CO₂

 Projection software is used to select products, determine recovery and other design parameters


	Summary Report System Flow Diagram						
	States for Sugar						
	Nan-N-O + (Antiscularit)	••••	4				
•		Descriptio	n		flow (gpm)	TDS (mg/L)	Pressure (psi)
1	Raw Feed to Pump				3,764	3,120	0.0
2	Net Feed to Pass 1				3,761	3,123	214.2
4	Total Concentrate from Pass 1				942.0	12,454	204.5
6	Total Permeate from Pass 1				2,821	2.84	15.0
RO	System Overview						
Tot	I # of Trains 1	Online =	1	Standby =	0	RO Recovery	74.9%
Syst	em Flow Rate (gpm)	Net Feed =	3,764	Net Product =	2,821		
Pas		1	1	Pass 1			
Stre	am Name		51	tream 1			
Wat	er Type		Well W	later (SDI < 3)			
Nur	nber of Elements			702			
Tet	il Active Area	(m²)		26087			
	d Flow per Pass	(gpm)		3,761			
	1 TDS ^a	(mg/L)		3,123			
	d Pressure	(psi)		214.2			
	Factor			1.00	-		
	neate Flow per Pass Average flux	(gpm) (gfd)		2,821			
	meate TD5*	(mg/L)		2.84	-		
	Recovery	(mp.c)		75.0 N	-		
	rage NDP	(psi)		163.5	1		
	ofic Energy	(kWh/m*)		0.76	1		
	perature	(°C)		20.0			
			7.7 (Afte	r Adjustment)	1		
pН			10 meh 1	Na.P.O.(100%)			
	mical Dose		1.4 mg/L	rest, form (100.00)			

Desalting Membrane Applications are vast in their scope

- Brackish groundwater desalting
- Groundwater and surface water softening applications
- Desalination
- Industrial applications (semiconductor, food, oil & gas, etc)
- Non Potable Reuse (sodium, boron rejection for irrigation)
- Potable Reuse Applications

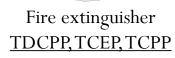
Potable Reuse AWT

- Reverse Osmosis (RO) plays a critical role in this process
 - Removes TDS (salt)
 - Removes TOC (0.5 mg/L)
 - Removes Nitrogen (<2 mg/L as NO₃)
 - Removes UV/AOP scavengers (eg alkalinity)
 - Removes most TOrCs

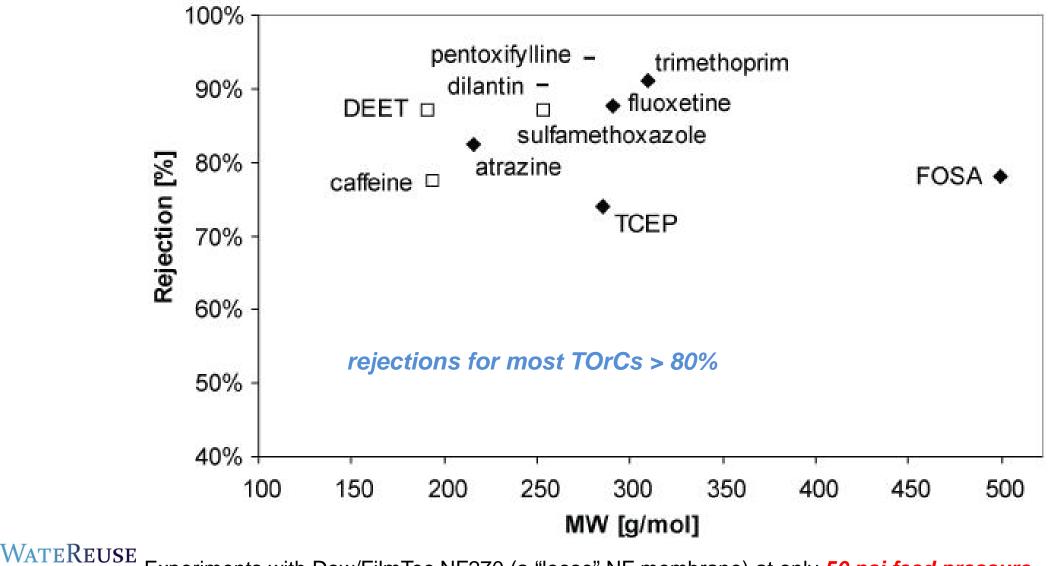
TOrCs Come From Many Sources (a.k.a. PPCPs, EDCs, COCs, Microconstituents, etc.)

Antibacterial hand soap <u>triclosan</u>

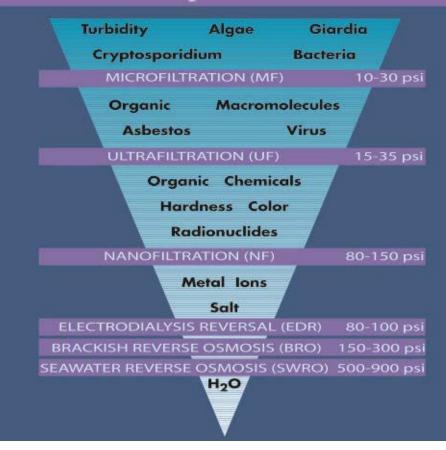
Birth control pill ethinyl estradiol (E2)


Coffee <u>caffeine</u>

Insect repellent <u>DEET</u>


Polycarbonate plastic <u>bisphenol-a (BPA)</u>

Compounds shown represent only a small portion of all compounds analyzed


NF Removal of Various TOrCs

^E Experiments with Dow/FilmTec NF270 (a "loose" NF membrane) at only **50 psi feed pressure**.

Questions?

Membrane Separation Processes

Upcoming Webcasts & Events

Enhanced Source Control for Direct Potable Reuse (Webcast) October 2, 2019 11 am PT | 2 pm ET

Effective Strategies to Mitigate Post Treatment Challenges in Potable Reuse Systems (Webcast)

October 10, 2019 11 am PT | 2 pm ET

2020 WateReuse California Annual Conference

Hyatt Regency San Francisco San Francisco, California March 15 – 17, 2020

