



IBM Research | Science & Technology

## **New Membranes for Solar Desalination Plant**

IBM: Ankit Vora, Young-Hye Na, Jacquana Diep and Geraud Dubois KACST: Radwan Alrasheed, Majed S. Nassar, Abdullah Alhobaib and Suliman Alfadul

THE SAUDI INTERNATIONAL WATER TECHNOLOGIES CONFERENCE November 2011 Riyadh, Saudi Arabia

## Outline

- Why Solar desalination
- Collaboration between KACST & IBM for membrane research & development since 2008.
- Time line for the membrane project
- Site location for solar powered desalination plant with SWCC
- An overview of KACST-IBM membrane development process
  - Reverse osmosis and challenges
  - Development of new membrane anti-foulants coatings for SWRO
  - Coating candidates for seawater RO
  - Future work (Mini-model fabrication and testing).

### Why solar desalination?

- Abundant of solar radiation in the Kingdom.
- Growing needs for fresh water in the Kingdom.
- Reduce dependence on fossil fuels (nonrenewable energy) for operating desalination plants.
- Suitable for remote area.
- Reduction of water cost in the long run.
- Environmentally friendly seawater desalination is highly energy consuming process.
- Gaining knowledge and experience on solar powered desalination plant as future technology







## **IBM/KACST** Joint Project: Energy Efficient Desalination Plant



with IBM Yorktown

High Efficiency CPV Systems

Combination of the most utilized technology in water desalination

#### with IBM Almaden



High Performance Membranes



Source; Solar desalination for the 21st century



## **Seawater Reverse Osmosis Membranes for Solar-Powered Water Desalination**

Nanomembrane Project (Research) Develop New Materials & New Concepts

- 1. Anti-fouling Coatings (MF, UF, NF, or RO)
- 2. New membrane for desalination and toxic substance removal (RO or NF)
- 3. Well-defined Nanostructured Membranes for low energy(cost) operation (enhanced water flux) (NF or RO)



High salt rejection: ≥ 99.5 %, Reasonable water flux: about 35 LMH or More Outstanding anti-fouling efficiency for RO

DMMD Project (Research to Development and Manufacturing) Target: High Performance, fouling resistant RO membranes for use initially in KSA and then beyond



## **IBM-KACST Water Technologies (Nano-Membranes)**



Theme 2: Increase Functionality and Capabilities (toxin removal)

Theme 3: Improve Robustness (Anti-fouling coatings, chlorine tolerance)



## Site assessment for chemical and biological analysis with seasonal variation – In progress





**Production capacity:** 30,000 cubic meters per day For serving 100,000 people

#### Red spots are sample location at Alkhfjee coast

TDS, Temperature, Major Cations, Major Anions, TOC, Turbidity, Trace elements, TSS, BOD5, Chlorophyll, Nutrients, SDI





# An overview of KACST-IBM membrane development process

#### **Reverse Osmosis and Energy Requirement**

#### **Reverse Osmosis**

**Energy Requirement** 



Salt concentration of seawater: 35000 ppm (3.5 %), Osmotic pressure of seawater: 350 psi (26 bar) Normal pressure for seawater purification: 800 psi (55 bar)



## **Membranes for Water Purification**

# Polyamide Barrier Layer Polysulfone Support Porous ( ## nm ~ ## µm)

cking

#### Non-Woven Fabric Mechanical strength





### **Challenges with Membrane Technologies**

• **Performance**: New materials with high throughput & high salt rejection



• Fouling: More robust membrane materials required that will resist fouling



• Chlorine Damage: Current RO membranes oxidized by chlorine





## **KACST-IBM Desalination Membrane Research**

#### **Two Candidates for Module Development**

#### I. *i-phobe* 2: Polyamide Bilayer



#### **II. Fouling Resistant RO**



- Building Infrastructures
- •Process optimization: manufacturing conditions

•In-depth evaluation w/ seawater (salt rejection, water flux, anti-fouling efficiency, etc)



## Conventional RO vs. KACST-IBM's Novel RO (*i-phobe* 1)



High salt rejection (99.0 ~ 99.5 %)
 Water Flux: 20-50 L/M<sup>2</sup>H (LMH)

- Bulky electro-withdrawing group (HFA)
- Improved chlorine resistance



### Membrane evaluation by cross flow filtration and dead-end filtration





### i-phobe: Performance Improvement For Seawater Desalination

(Seawater concentration: 35,000 ~ 47,000 ppm, WHO regulation for drinking water: <1000 ppm)





## Layered polyamide membranes prepared by Sequential Interfacial Polymerization





## **HFA-Layered Polyamides vs. Commercial Membranes**



- Commercial sea water RO membranes
- Commercial brackish water RO membranes
- NF brackish water membranes

★ Layered Polyamide RO membranes
Excellent combination between salt passage and water permeance

Salt passage vs. water permeance curve: provided by Prof Benny Freeman (UT-Austin)



## Seawater Desalination by *i-phobe* (Gen-2) Membrane

- Evaluation done by a RO manufacturer

#### Layered polyamide



**Bilayered PA membrane** 

Feed water: seawater (sand filtration before RO)

Pressure: 5.5 MPa (ca. 800 psi)

➢ pH: 6.5

Temperature: 25 °C

Membrane surface flow velocity: 0.18 m/s

|            | TDS* rejection<br>(%) | Flux<br>(L/M²h) | Boron<br>Rejection (%) |
|------------|-----------------------|-----------------|------------------------|
| Sample 1_A | 99.66                 | 31.25           | 86.0 (pH 6.5)          |
| Sample 2_A | 99.75                 | 24.17           | 90.5 (pH 6.5)          |

\*TDS: total dissolved solid, Sample 1 and Sample 2 were prepared on different support membranes

The performance of KACST-IBM's hand-casted i-phobe II membrane was comparable to commercial high performance sea water desalination membranes made by optimized coating process => Very Promising!

#### I-2. Ultra-Thin Anti-Fouling Materials for RO





#### I-2. Improved Anti-Fouling Efficiency: RO process



## **From Research Materials to Product Development**

#### Phase 1 (Research at ARC)

- Optimize materials (both RO layer and antifouling coating) (Target performance: NaCl rejection ≥ 99. 5 %,
   Water Permeance > 0.6 ~ 1 L m<sup>-2</sup> h<sup>-1</sup> bar<sup>-1</sup>)
- Integrate film stack (Fouling Resistant, RO Membranes)



Thin-film composite membrane

2" diameter, 10" length Phase 2 (Cooperative work between ARC and Vendor 1)

- Prototype module phase (rapid cycles of learning)
- Evaluation of prototype modules at IBM and at KACST
- Optimized membrane module (chemistry and process)

#### Phase 3 (manufacturing)

- Technology transfer to Vendor 2
- Full scale modules for use in CPV-driven desalination plant



8", 16" or 20" diameter, 40" length



## Conclusions

- KACST and IBM has a highly successful collaboration in membrane research and development
- We have introduced two new platforms for RO desalination membranes
- i-phobe2 membrane has superior flux and salt rejection
- Currently we are working on developing partnership with Vendor 1 for small scale module fabrication
- Antifouling coating modified RO membranes showed higher flux than the reference polyamide membranes
- New Applications = New Innovation



## Thank you for your attention!