California Department of Public Health Webcast

Evaluation and Design of Small Water Systems

Analytical Methods and Process Calculations

Dale Newkirk, P.E.

Lecture Objectives

- Learn how to use the Hach DR 890
- Learn typical on-line instrumentation
- Learn about CT calculations and chloramines design

Hach DR 890 Colorimeter-Overview

- Used to test grab samples in the field for parameters which can change
- Never assume that what you hear is correct in the field
- Always verify on-line instruments to see if they are calibrated
- Obtain information on specific parameters of concern (i.e., arsenic)

Water Quality Testing Kit

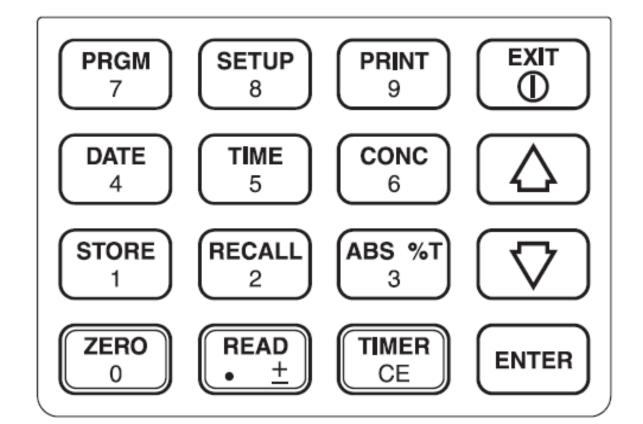
Key Features

- The DR/890 Colorimeter tests for 90+ methods with automatic wavelength detection
- Ready-to-use out of the box
- Easy-to-use software, preprogrammed methods, and prepared reagents

- Data logging capabilities
- Readout in concentration, ABS, and %T
- Dustproof, waterproof, shockproof, and worry free

Testing Methods

- Hach programmed and user-entered program options are available on this instrument.
- The Procedures Manual supplied at the time of purchase contains all currently available Hach programmed methods.
- Up to ten user-programmed methods may be entered into the instrument.

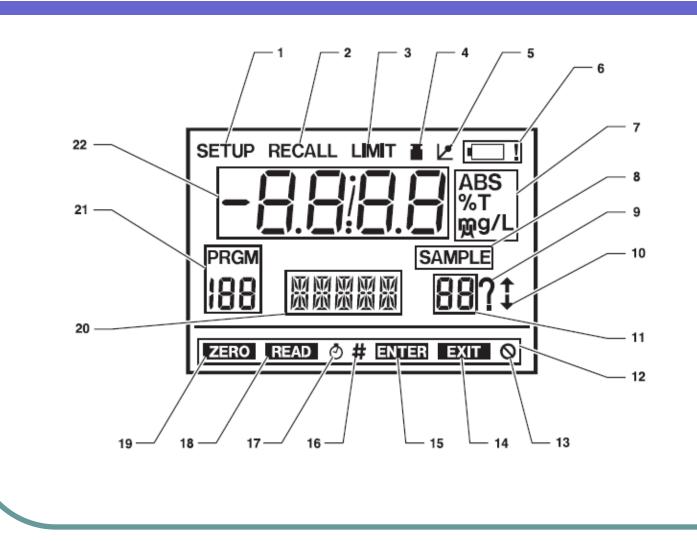

Standard Accessories

- Sample Cells (2) round, with 10 mL, 20 mL and 25 mL marks
- COD/TNT Adapter for use with 16 mm vials used in COD and Test 'N Tube methods
- Batteries (4) AA alkaline
- Documentation Package Includes instrument and procedures manual

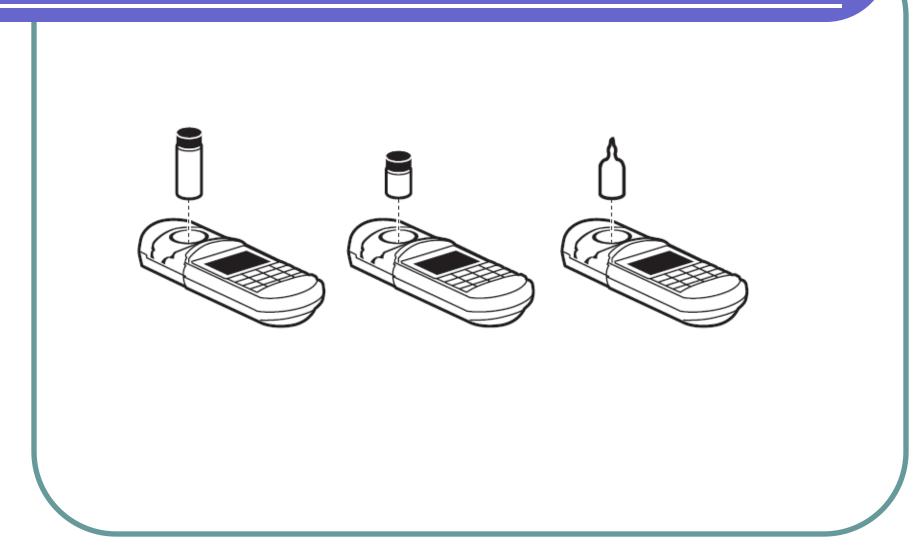
Optional Accessories

- Immunoassay Tube Adapter
- Rechargeable Alkaline Batteries
- External Alkaline Battery Charger
- Data transfer Adapter (for RS232 interface)
- HachLinkTM Software
- Portable Printer
- Instrument Case
- DR/CheckTM ABS Standard

Keypad


KEY	DESCRIPTION
PRGM 7	Allows the user to select a program. Also used as a numeric key function when the "#" icon is illuminated at the base of the display screen.
SETUP 8	Accesses the SETUP menu (the SETUP icon illuminates in the upper left-hand corner of the display screen). The setup menu provides access to options such as reagent blank, standard adjust, user-entered programs, and instrument configurations. Also used as a numeric key function when the "#" icon is illuminated at the base of the display screen.
PRINT 9	Prints currently displayed data. In the RECALL menu, prints recalled data. Also used as a numeric key function when the "#" icon is illuminated at the base of the display screen.
EXIT ①	Use this key to turn the instrument on and, when the instrument is on and the EXIT icon is not illuminated, press this key to turn the instrument off. When the EXIT icon is illuminated at the base of the display screen, the EXIT key cancels the current entry or selection.

KEY	DESCRIPTION
DATE 4	Displays the current date. In the RECALL menu, displays the date the recalled sample was stored. Also used as a numeric key function when the "#" icon is illuminated at the base of the display screen. Used to set the current date from the SETUP menu.
TIME 5	Displays the current time. In the RECALL menu, displays the time the recalled sample was stored. Also used as a numeric key function when the "#" icon is illuminated at the base of the display screen. Used to set the current time from the SETUP menu.
CONC 6	When performing an analysis, this key displays the concentration value of the reading. Used as a toggle key to access alternate chemical forms, if available. Also used as a numeric key function when the "#" icon is illuminated at the base of the display screen.
Δ	Scrolls up through selected menus or stored data.
STORE 1	When performing an analysis, this key allows the user to store a current reading in one of 99 sample locations. The user can store the reading as numbers 1-99 by pressing ENTER . Use the up and down arrow keys to find unused storage numbers or use numeric keys to enter a sample number. Also used as a numeric key function when the "#" icon is illuminated at the base of the display screen.


RECALL 2	Begins the retrieval of stored sample readings (RECALL icon illuminates in the upper- left portion of the screen). Also used as a numeric key function when the "#" icon is illuminated at the base of the display screen.
ABS %T	Toggles between displaying Absorbance and % Transmittance. Also used as a numeric key function when the "#" icon is illuminated at the base of the display screen.
♡	Scrolls down through selected menus or stored data.
ZERO 0	Zeros the instrument on the current sample blank. Also used as a numeric key function when the "#" icon is illuminated at the base of the display screen.
READ + ±	When the READ icon is illuminated at the base of the display screen, this key reads and displays the sample concentration. Also used as a numeric key function when the "#" icon is illuminated at the base of the display screen; the first press is a decimal, the second press toggles the value sign.

TIMER	If using a Hach-stored program, the TIMER key automatically sets the appropriate reaction time. If not in a Hach-stored program, the TIMER key allows the user to set a timer. When the "#" icon is illuminated at the base of the display screen, CE clears the most recent level of action (deletes the whole entry, not just the last number).
ENTER	Within a menu, selects the displayed menu item. During numeric entry, accepts the displayed value.

Screen Indicators

Inserting Sample Containers

Light Shield Placement

General Procedure

Step	Action/Keystroke	Display
1. Turn power on.	Press the EXIT/I/O key.	The instrument defaults to and displays the initial screen of the last program used.
		EXAMPLE: If program 20 was the last program in use, the instrument will automatically recall program 20.
2. Select the Program number to be used.	Press the PGRM key, then enter the program number and press the ENTER key.	After the PGRM key is pressed, a blinking cursor appears with a question mark. Enter the desired program number. Press ENTER to confirm this action and recall the desired program number.
3. As needed, set, then start the TIMER.	Press the TIMER key. In a Hach- stored program, the timer automatically defaults to the appropriate reaction time.	The entered or programmed reaction time will display and count down to zero.
	Press ENTER to start the timer.	

General Procedure

4. ZERO the instrument using the sample blank.	Insert blank and press ZERO.	After the ZERO key is pressed, the instrument zeros on the sample cell.
5. Obtain reading in concentration, absorbance, or % transmittance.	Place the prepared sample into the cell holder. Press READ .	The instrument reads the sample and displays the results.

Error Codes

ERROR Code Number	Error Code Type	Corrective Action
1	Unconfigured instrument	Contact Hach Instrument Service Department
2	Could not read program data	Contact Hach Instrument Service Department
3	Could not write program data	Contact Hach Instrument Service Department
4	Measurement battery error	Replace instrument batteries
5	Measurement A/D error	Contact Hach Instrument Service Department
6	Measurement offset error	Check to be sure instrument light shield (cap) is correctly installed
7	Measurement low light error	Check for light path blockage Zero is out of instrument range; dilute to within range Contact Hach Instrument Service Department
8	Measurement over-range error	Make sure instrument cap is properly installed Contact Hach Instrument Service Department

Laboratory Exercise

- Free Chlorine
- Total Chlorine
- Iron
- Manganese
- Nitrate
- Nitrite
- Hardness
- pH
- Ammonia

Hach Manual

Available online at www.hach.com

(course website will have direct link to manual)

Parameter	Pages	Method
Free Chlorine	143 – 150	8021
Total Chlorine	151 - 156	8167
Hardness	229 – 232	8030
Iron	245 – 251	8008
Manganese	271 – 274	8034
Nitrate	297 – 303	8039
Nitrite	329 – 334	8507
рН	465 – 467	10076
NH ₃ - N	353 – 357	10023

Typical On-Instrumentation

List of most common on line instruments

- Total and free chlorine
- Turbidity
- Particle counting
- Fluoride
- TOC
- Streaming current detector

Issues with on-line instruments

- Representative sampling location
- Length of run to instrument
 - Delay in readings
 - Cleanliness of sample line
 - Design of sample line
- Critical nature of sampling/calibration
- Routine maintenance critical
- Grab sampling for verification
- Duplicate instruments for verification

Total and Free Chlorine Residual

- Measures free and total chlorine on line
- Critical for control of chlorine residual
- Used at plant influent and effluent
- Used in distribution system at chlorine booster stations
- Analyzers also available for ozone and chlorine dioxide

Turbidimeter

- Used for raw and finished water
- Can be configured for control loops (alarms, auto shut down)
- Used on IFEs or CFE

Particle Counting

- Used in same application points as turbidimeter
- Most popular on membrane filtration systems
- Detects membrane fiber breaks or early filter breakthroughs

Fluoride

- On line monitoring of fluoride to avoid under or over feed
- Typically not seen in small water systems due to system size and cost

TOC analyzer

- Used for enhanced coagulation monitoring at influent and effluent of sedimentation basins
- Alerts for source water changes in TOC

Streaming Current Detector (SCD)

- To detect changes in source water requiring jar testing
- Can be used to control coagulant feeds through a control loop to feed pumps

Log Removal Calculations

How do I determine percent and log removal?

Relationship between log and percent inactivation

Log inactivation is a measure of the percent of microorganisms that are inactivated during the disinfection process and is defined as:

$$Log Inactivation = Log \left(\frac{N_o}{N_T} \right)$$

Where,

No = initial (influent) concentration of viable microorganisms

 N_T = concentration of surviving microorganisms

Log = logarithm to base 10

Log inactivation is related to the percent inactivation, defined as:

Percent Inactivation =
$$\left(1 - \frac{N_T}{N_o}\right) * 100$$

Relationship between log and Percent Inactivation

Percent Inactivation
$$= \left(1 - \frac{1}{10^{LogInactivation}}\right) \times 100$$

$$= \log \left(\frac{100}{100 - PercentInactivation}\right)$$

Problem

What is the log removal for 90% inactivation?

Problem

Log inactivation = log(100/100-90)Log inactivation = 1.0

What is the log removal for 95% inactivation?

Solution

Log inactivation = log(100/100-95)Log inactivation = 1.3

Working Equations

Percent Inactivation
$$= \left(1 - \frac{1}{10^{LogInactivation}}\right) \times 100$$

$$= \log \left(\frac{100}{100 - PercentInactivation}\right)$$

Percent Inactivation

A utility wants to provide 0.5 log inactivation with disinfection. What is the percent inactivation they want to achieve?

Solution

% inactivation =
$$100 \times \left(1 - \frac{1}{10^{0.5}}\right)$$

% activation = 68.3%

Calculating CT for disinfection

What is CT?

 CT is the concentration of disinfectant in contact with the water over a period of time.

CT = Concentration X Time

- Concentration is the disinfectant level leaving the disinfection chamber.
- Time is the estimated or measured time it takes for 10% of the water to pass through the basin called T₁₀

Step 1-Determine CT required

- Determine maximum pH
- 2. Determine minimum temperature
- 3. Determine minimum chlorine residual
- Determine required log removal

Instructions for using CT Tables

- Target organism and the type of disinfectant.
 Most likely you will use the *Giardia* inactivation table for free chlorine.
- The tables are also temperature specific. You must use the table that corresponds to your measured minimum temperature.
- The tables are divided into pH sections. Locate the section of the table that corresponds to your measured maximum pH.

Instructions for using CT Tables

- Within the appropriate pH section, locate the column for your required disinfection Log inactivation for *Giardia*.
- Within the appropriate pH section, locate the row for your measured minimum free chlorine residual concentration on the left side of the table.
- Read the CT required value from the table where the chlorine residual row meets the required Log inactivation column.

CT VALUES FOR INACTIVATION OF GIARDIA CYSTS BY FREE CHLORINE AT (5°C)

																	-										
D	Chintrie incontrollines [regit]		L		(= 6 stvator	's		pH = 6.5 Log inactivations							p.H. (*.0 Log) ethations							pH = 7.5 Log Inactivations					
		0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5		2.5	3.0	0.5	1.0	щ	2.0	2.5	gi	ő.	1.0	1.5	2.0	2.5	3.0		
	- 0.4 0.8 0.8 1.2 1.4 1.8 1.8 2.2 2.4 2.6 2.8 3	16 32 49 65 81 97 17 33 50 67 83 100 17 34 52 69 86 103 18 35 53 70 88 105 18 36 54 71 89 107 18 36 55 73 91 109 19 37 56 74 93 111 19 38 57 76 95 114 19 39 58 77 97 116 20 39 59 79 98 118 20 40 60 80 100 120 20 41 61 81 102 122 21 41 62 83 103 124 21 42 63 84 105 126						20 20 21 21 22 22 23 23 23 24 24 25 25	39 40 41 42 42 43 44 45 46 47 48 49 49 50	59 60 61 63 64 66 68 69 70 72 73 74 76	78 80 81 83 85 87 88 90 92 93 95 97 99 101	9B 100 102 104 106 108 110 113 115 117 119 122 123 126	117 120 122 125 127 130 132 135 140 143 148 148 151	23 24 24 25 26 26 27 28 28 29 29 30 30	46 48 49 50 51 52 53 54 55 56 57 58 59 61	70 72 73 75 76 78 79 81 83 85 86 88 89	93 95 97 99 101 103 105 108 110 113 115 117 119	116 119 122 124 127 129 132 135 138 141 143 146 148 152	139 143 146 149 152 155 169 169 172 175 178 182	29 57 86 114 1 29 58 8B 117 1 30 60 90 119 1 31 61 92 122 1 31 62 94 125 1 32 64 96 128 1 33 65 9B 131 1 33 67 100 133 1 34 68 102 136 1 35 70 105 139 1 36 71 107 142 1 36 72 109 145 1					166 171 175 179 183 187 196 200 204 209 213 217 221		
D	Chinina nosetations [regit]	pH = 8.0 Log inactivations						pH = 8.5 Log Inactivations						pH < = 9.0 Log Inactivations													
L		0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0								
	0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2.8 3	33 34 35 36 37 38 39 40 41 42 43 44 44 45	66 68 70 74 76 77 79 81 83 84 86 88	99 102 105 C	132 136 140 req 165 169 172 175 179	207 211 215 219 223	198 204 210 16 21 27 38 43 248 253 258 268	39 44 43 44 44 45 55 53 54	79 81 84 87 89 91 94 96 98 100 102 104 106 108	118 122 126 130 134 137 141 144 147 150 153 156 162	157 163 168 173 178 183 187 191 196 200 204 208 212 216	197 203 210 217 223 228 234 239 245 250 265 270	238 244 252 260 267 274 281 287 294 300 308 312 318 324	47 47 52 55 55 55 55 55 55 55 55 55 55 55 55	93 97 100 104 107 110 112 115 118 120 123 125 127	140 146 151 156 160 165 169 177 181 188 191 196	188 194 201 208 213 219 225 235 241 245 250 255 290	233 243 251 260 267 274 281 288 294 301 307 313 318 324	279 291 301 312 329 337 345 363 361 368 375 389								

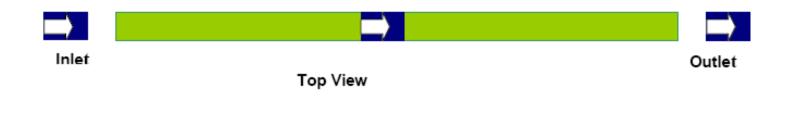
CT Achieved

CT achieved = Disinfectant Conc. x Fsc x <u>Total chamber volume</u> Design Flow (gpm)

How do I determine T₁₀?

- T₁₀ is equal to the short circuiting factor times the theoretical detention time of the disinfection chamber based on capacity and flow.
- The short circuiting factor, size of chamber, and design flow must be known.

Description of estimating T₁₀


Baffling Condition	T ₁₀ /T Ratio	Baffling Description
Unbaffled (mixed flow)	0.1	None, agitated basin, very low length to width ratio, high inlet and outlet flow velocities
Poor	0.3	Single or multiple unbaffled inlets and outlets, no intra-basin baffles
Average	0.5	Baffled inlet <u>or</u> outlet with some intra- basin baffles
Superior	0.7	Perforated inlet baffle, serpentine or perforated intra-basin baffles, outlet weir or perforated launders
Perfect (plug flow)	1.0	Very high length to width ratio (pipeline flow), perforated inlet, outlet, and intra- basin baffles

Concepts on estimating Fsc

If a litre of water passes through the pipe, it comes out the other end as a litre of water. There is **No Mixing** and **No Short-Circuiting**. Water travels through the pipe as a unit.

All the water travels at an 'Average Velocity' through the pipe.

Figure 1: Water Pipeline with No Mixing and No Short Circuiting ($F_{sc} = 1.0$)

Reservoir with no short circuiting

Figure 2: Water Reservoir with No Mixing and No Short Circuiting ($F_{sc} = 1.0$)

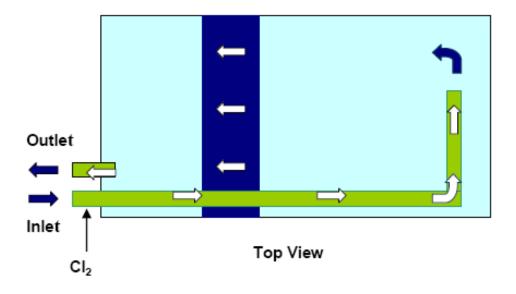


Figure 8: Water Reservoir with Mixing and Short Circuiting (F_{sc} << 0.1)

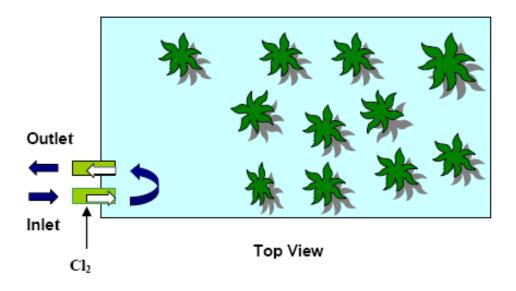


Figure 9: Water Reservoir with Mixing and Short Circuiting (Fsc = 0.1)

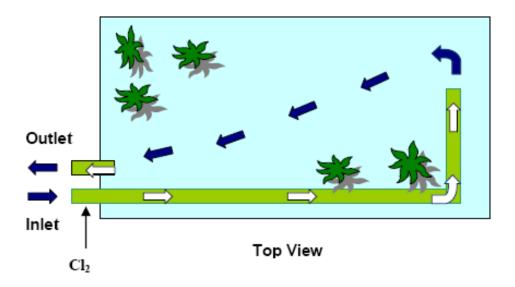


Figure 10: Water Reservoir with Two Baffles Reduced Short Circuiting (F_{sc} = 0.3)

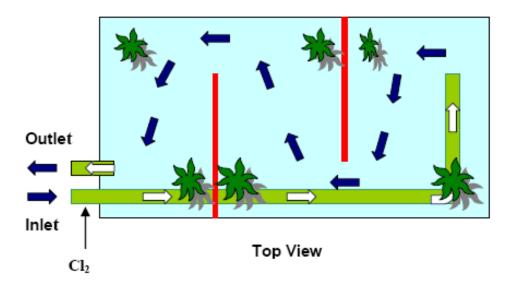
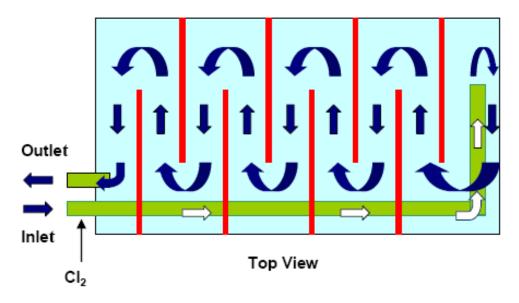



Figure 11: Water Reservoir with Multiple Baffles with Minimal Short Circuiting (F_{sc} = 0.7⁺)

Example of chlorine CT table for *Giardia*

CHLORINE			pH<	=6					pH=	6.5					pH=	7.0			pH=7.5						
CONCENTRATION		Log	Inac	tivati	on			Log	Inac	tivati	on				Log Inactivation										
(mg/L)	0.5 1.0 1.5 2.0 2.5 3.0				0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0			
<=0.4	12	24	37	49	61	73	15	29	44	59	73	88	17	35	52	69	87	104	21	42	63	83	104	125	
0.6		25	38	50	63	75	15	30	45	60	75	90	18	36	54	71	89	107	21	43	64	85	107	128	
0.8		26	39	52	65	78	15	31	46	61	77	92	18	37	55	73	92	110	22	44	66	87	109	131	
1	13	26	40	53	66	79	16	31	47	63	78	94	19	37	56	75	93	112	22	45	67	89	112	134	
1.2	13	27	40	53	67	80	16	32	48	63	79	95	19	38	57	76	95	114	23	46	69	91	114	137	
1.4	14	27	41	55	68	82	16	33	49	65	82	98	19	39	58	77	97	116	23	47	70	93	117	140	
1.6		28	42	55	69	83	17	33	50	66	83	99	20	40	60	79	99	119	24	48	72	96	120	144	
1.8		29	43	57	72	86	17	34	51	67	84	101	20	41	61	81	102	122	25	49	74	98	123	147	
2	15	29	44	58	73	87	17	35	52	69	87	104	21	41	62	83	103	124	25	50	75	100	125	150	
2.2		30	45	59	74	89	18	35	53	70	88	105	21	42	64	85	106	127	26	51	77	102	128	153	
2.4	15	30	45	60	75	90	18	36	54	71	89	107	22	43	65	86	108	129	26	52	79	105	131	157	
2.6		31	46	61	77	92	18	37	55	73	92	110	22	44	66	87	109	131	27	53	80	107	133	160	
2.8		31	47	62	78	93	19	37	56	74	93	111	22	45	67	89	112	134	27	54	82	109	136	163	
3	16	32	48	63	79	95	19	38	57	75	94	113	23	46	69	91	114	137	28	55	83	111	138	166	
CHLORINE			pH=						pH=				pH=9.0												
CONCENTRATION	Log Inactivation					Log Inactivation						Log Inactivation													
(mg/L)	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0							
<=0.4	25	50	75	99	124	149	30	59	89	118	148	177	35	70	105	139	174	209							
0.6	26	51	77	102	128	153	31	61	92	122	153	183	36	73	109	145	182	218							
0.8		53	79	105	132	158	32	63	95	126	158	189	38	75	113	151	188	226							
1	27	54	81	108	135	162	33	65	98	130	163	195	39	78	117	156	195	234							
1.2		55	83	111	138	166	33	67	100	133	167	200	40	80	120	160	200	240							
1.4		57	85	113	142	170	34	69	103	137	172	206	41	82	124	165	206	247							
1.6		58	87	116	145	174	35	70	106	141	176	211	42	84	127	169	211	253							
1.8		60	90	119	149	179	36	72	108	143	179	215	43	86	130	173	216	259							
2	30	61	91	121	152	182	37	74	111	147	184	221	44	88	133	177	221	265							
2.2		62	93	124	155	186	38	75	113	150	188	225	45	90	136	181	226	271							
2.4	32 32	63	95 97	127	158 162	190 194	38 39	77 78	115	153 156	192 195	230	46 47	92 94	138	184 187	230 234	276 281							
2.6		65 66	99	129 131	164	194	40	80	117 120	159	199	234 239	48	96	141 144	191	239	287							
2.8	34	67	101	134	168	201	41	81	122	162	203	243	49	97	144	195	243	292							
	34	67	101	134	100	201	41	01	122	102	203	243	49	31	140	190	243	252							

Example of chlorine CT table for viruses

	Temperature (°C)																									
Inactivation (log)	0.5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
2	6.0	5.8	5.3	4.9	4.4	4.0	3.8	3.6	3.4	3.2	3.0	2.8	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.2	1.0	1.0	1.0	1.0	1.0	1.0
3	9.0	8.7	8.0	7.3	6.7	6.0	5.6	5.2	4.8	4.4	4.0	3.8	3.6	3.4	3.2	3.0	2.8	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.2	1.0
4	12.0	11.6	10.7	9.8	8.9	8.0	7.6	7.2	6.8	6.4	6.0	5.6	5.2	4.8	4.4	4.0	3.8	3.6	3.4	3.2	3.0	2.8	2.6	2.4	2.2	2.0

Example problem

Given water temperature of 10°C

pH = 7.0

Residual = 0.8 mg/L

What is CT for 0.5 log Giardia inactivation

And what is CT for 2 log virus removal?

Solution

Giardia is 18 mg-min/L Viruses is 3 mg-min/L

This is what is needed. You need now find how large a contact chamber you need.

Assume Fsc = 0.3

Flow = 100 gpm

Chlorine residual = 0.8 mg/L

CT Achieved

CT achieved = Disinfectant Conc. x Fsc x <u>Total chamber volume</u>

Design Flow (gpm)

Use chlorine for disinfectiion

Giardia SOLUTION:

18/.8 mg/L = 22.5 minutes

22.5 minutes/0.3 = 75 minutes

Size in gallons = $75 \times 100 \text{ gpm} = 7,500 \text{ gallons}$

Virus SOLUTION:

3/.8 mg/L = 3.75 minutes

3.75 minutes/0.3 = 12.5 minutes

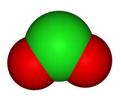
Size in gallons = $12.5 \times 100 \text{ gpm} = 1,250 \text{ gallons}$

Design considerations for use of Chloramine Disinfectant

What are chloramines?

- Chloramines -family of compounds used for disinfection.
 - Monochloramine NH₂CI
 - Dichloramine NHCl₂ H Cl
 - Nitrogen trichloride NCI₃

Chlorine + Ammonia = Chloramines

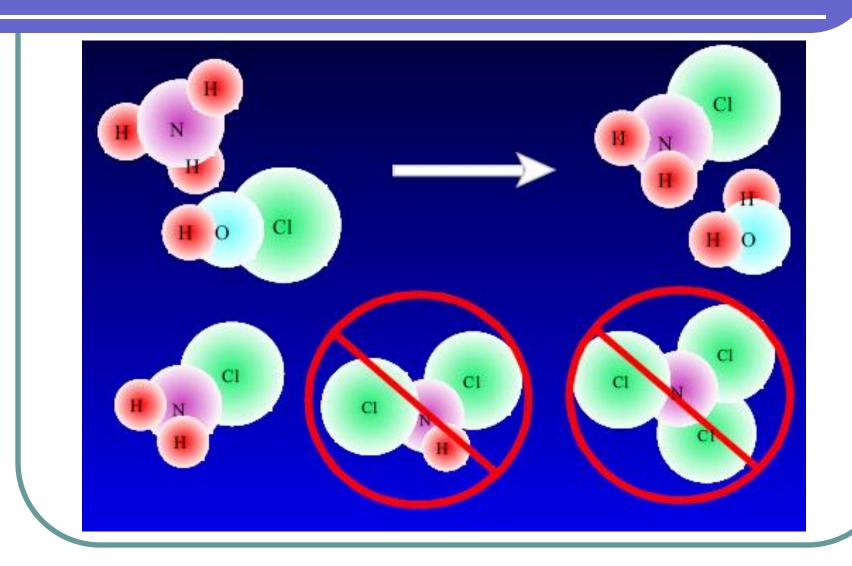

What are chloramines?

- Used in water treatment plants since 1930's
- Less effective than most other disinfectants and a weaker oxidant
- Use of chloramines results in decreased formation of many disinfection byproducts (DBPs)
- Tastes better than chlorine

Why Change to Chloramination?

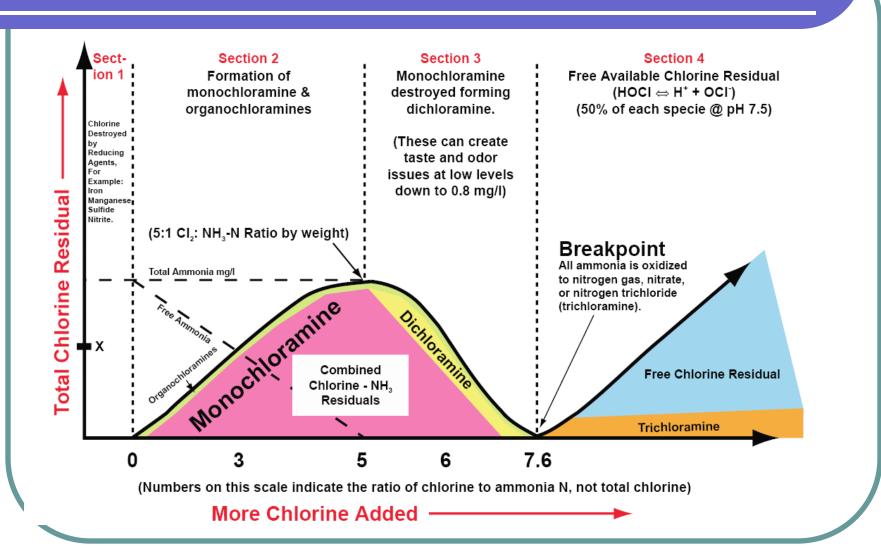
Other disinfectants have DBPs

- Chlorine
 - TTHMs
- Chlorine Dioxide


Chlorite (CIO₂) - Acute respiratory

- (BrO₃) Strongly carcinogenic
- HAAs Carcinogenic

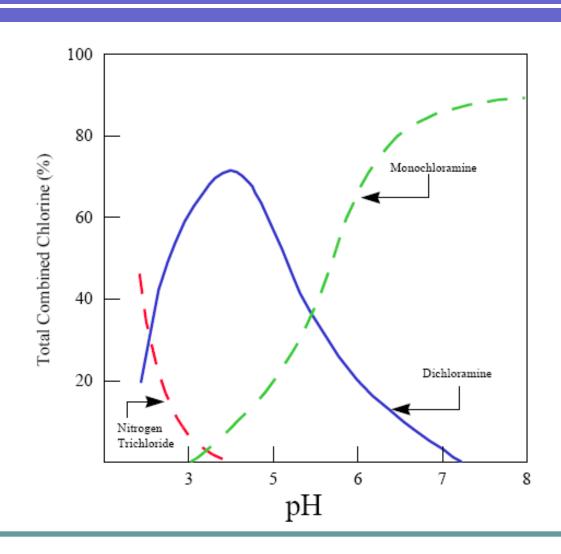
Chloramine Chemistry


Chloramines reactions

$$NH_3 + HOCI \rightarrow NH_2CI + H_2O$$
 (monochloramine)

$$NH_2CI + HOCI \rightarrow NHCI_2 + H_2O$$
 (dichloramine)

$$NHCl_2 + HOCl \rightarrow NCl_3 + H_2O$$
 (nitrogen trichloride)


Breakpoint chloramination curve

Health Effects

- The ingestion of chloramines in drinking water poses little health risk to healthy people.
- Sensitive populations:
 - Dialysis patients
 - Aquatic organisms

Effect of pH on chloramine species

Implementation

- The key is the chlorine to ammonia ratio (your instructor recommends 5:1)
- Forms of Chlorine:
 - Sodium Hypochlorite
 - Gaseous Chlorine
- Forms of Ammonia (NH₃):
 - Anhydrous Ammonia (gas) more common for small water systems
 - Ammonium Hydroxide
 - Ammonium Sulfate (solid)
 - Ammonium Sulfate (liquid)

Implementation issues

- Reducing the risk to sensitive populations
 Chloramines can be removed from water by:
 - Granular activated carbon (GAC)
 - Green sand zeolite
 - Ascorbic acid (Vitamin C)
- Notifying dialysis facilities and fish hobbyists and stores of changes to water due to chloramination can reduce risks
 - Allows implementation of treatment devices

What to measure?

- Free chlorine
 - To find out how much NH3 to apply
- Free Ammonia (Optional)
 - To find out if we applied too much NH3
- Total Ammonia nitrogen
 - To determine the ratio
- Total Chlorine
 - To find out if total residual
- Nitrite in distribution system
 - To determine if nitrification is occurring.

Ammonium Hydroxide (NH₄OH)

Description

- Formed by reaction of NH₃ with water
- Most commonly used in California, however gas is used for small water systems as well
- NH₃ + H₂O 6 NH₄OH
- Sold as 29-30% NH₃ mixtures (keep under 30%)

Storage

- Corrosive to some materials (i.e., copper, aluminum, galvanized surfaces)
- Usually stored in steel or fiberglass tanks
- Should be kept cool due to low boiling point
- Need back pressure device
- The NH₃ vapors that form at high temperatures should be controlled/removed
- Keep away from chlorine!!
- Don't mix chlorine concentrate with ammonia before chemical injection

Ammonium Hydroxide (NH₄OH)

Chemical feed equipment

- Must be compatible
- Requires special materials
- Positive displacement type

Distribution systems

- Will deteriorate rubber in sinks and toilets.
- No red brass pumps
- Use Buna-n rubber for gaskets in distribution system.
- Complaints of black particulates are common.

Calculations

If you desire to feed 2 mg/L chloramines, then how much chlorine and how much ammonia as nitrogen is needed if you choose a ratio of 5:1?

Solution

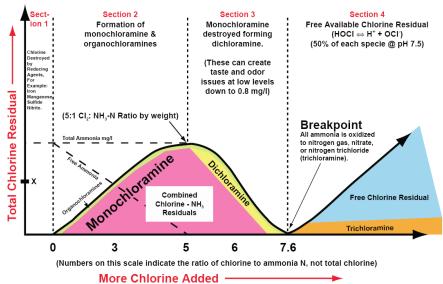
Magic ratio = 5:1

2mg/L = **0.4 mg/L** ammonia as nitrogen 5

Calculations

If you have a reading of 2 mg/L total chlorine and 0.5 mg/L total ammonia, how much free ammonia do you have?

Solution


2mg/L = **0.4 mg/L** ammonia as nitrogen 5

0.5 - 0.4 = 0.1 mg/L free ammonia

Questions

 Where on the break point curve are you for the following examples?

- Free ammonia = >0 mg/L
- Free ammonia = 0 mg/L
- Free chlorine = 0 mg/L
- Free chlorine > 0 mg/L
- Ratio is 5:1

Example of chloramine CT table

	Temperature (°C)																									
	ivation og)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	2	1,243	1,147	1,050	954	857	814	771	729	686	643	600	557	514	471	428	407	385	364	342	321	300	278	257	235	214
;	3	2,063	1,903	1,743	1,583	1,423	1,352	1,281	1,209	1,138	1,067	996	925	854	783	712	676	641	605	570	534	498	463	427	392	356
	4	2,883	2,659	2,436	2,212	1,988	1,889	1,789	1,690	1,590	1,491	1,392	1,292	1,193	1,093	994	944	895	845	796	746	696	646	597	547	497

Giardia inactivation with chloramines

	Temperature (°C)										
Inactivation	≤1	5	10	15	20	25					
0.5 log	635	365	310	250	185	125					
1.0-log	1270	735	615	500	370	250					
1.5-log	1900	1100	930	750	550	375					
2.0-log	2535	1470	1230	1000	735	500					
2.5 - log	3170	1830	1540	1250	915	625					
3.0-log	3800	2200	1850	1500	1100	750					

At pH 6 - 9

Chloramine CT Calculations

0.5 log *Giardia* removal at 15 °C is 250 mg-min/L.

Assume residual @ 2 mg/L; Fsc = 0.3; flow = 100 gpm

How large is your contact chamber?

Chloramine CT Calculations

SOLUTION:

250/2mg/L = 125 minutes

125 minutes/0.3 = 417 minutes

Size in gallons = 417 x 100 gpm= 41,700 gallons

CONCLUSION:

Must use chlorine for *Giardia* inactivation and use chloramine after clearwell

Chloramine CT Calculations

- Try chlorine @ CT = 18 for 0.5 log removal
- Assume 0.8 mg/L, pH 7.0, and other conditions the same

Use chlorine for disinfectiion

SOLUTION:

18/.8 mg/L = 22.5 minutes

22.5 minutes/0.3 = 75 minutes

Size in gallons = 75 x 100 gpm= 7,500 gallons

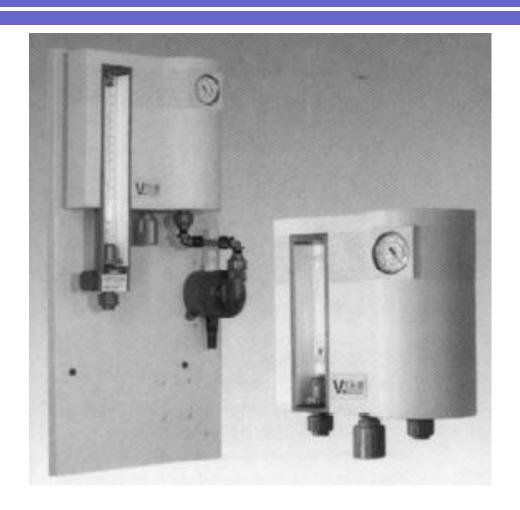
CONCLUSION:

Clearwell is sized more appropriately

Try Using a plug flow reactor

SOLUTION:

18/.8 mg/L = 22.5 minutes


22.5 minutes/1.0 = 22.5 minutes

Size in gallons = 22.5 x 100 gpm= 2,250 gallons

CONCLUSION:

There are many ways to go as long as you understand the fundamentals.

Ammonia gas feeder

