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Pumping System in an IndustryPumping System in an Industry

Centrifugal Pump



Construction and ComponentConstruction and Component



CasingCasing

Volute
- area enlarge along flow direction
- create uniform velocity distribution
Diffuser
- large size centrifugal pump
- guide vanes surround the impeller
- fluid flow decelerated while  

directed to enter the volute



Working PrinciplesWorking Principles
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InstallationInstallation
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Inlet head :
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Outlet head : Total head developed by the pump:
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H = manometric head
hfi = friction loss at inlet
hfi = friction loss at outlet
hin= inlet loss
hout = outlet loss



ImpellerImpeller
Theoretical Assumptions:
 No tangential flow in 

the blade passage
 Impeller blades are 

infinitely thin
 No Velocity variation 

across impeller width
 Analysis only at inlet 

and outlet
 Radial inlet flow
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Flow Capacity/Flow Rate

Head and Flow Capacity  H Head and Flow Capacity  H -- QQ
Theoretical Head Rise / Euler Head
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STODOLA PROPOSAL
eCx 



STODOLA PROPOSAL
If the number of blades is Z, and impeller circumference is 
2r2 then the distance between blades is 2r2/Z = 2e/sin 
Then :



Other Slip Factor
Stodola 20o <  < 30o
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Buseman 30o <  < 80o
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Stanitz 80o <  < 90o
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ExampleExample
The impeller of a centrifugal pump has backward-facing blades inclined at 
30o to the tangent at impeller outlet. The blades are 20 mm in depth at the 
outlet, the impeller is 250 mm in diameter and it rotates at 1450 rpm. The flow 
rate through the pump is 0.028 m3/s and a slip factor of 0.77 may be 
assumed. Assume also the blades of infinitesimal thickness. Determine the 
theoretical and actual head developed by the impeller, and the number of 
impeller blades

Solution:
Flow Capacity/Flow Rate
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For ideal outlet velocity triangle = 30o

  m/s 08.330tan/78.130tan22  oo
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m/s 92.1508.319
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Number of blade

     
     

(ans.)     815.8
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Pump LossesPump Losses
1. Mechanical friction power 

loss, Pm

2. Impeller (Disc) friction 
power loss, Pi

3. Leakage and recirculation 
power loss, Pl

4. Casing power loss, Pc



Pump LossesPump Losses
1. Mechanical friction power loss, Pm



Pump LossesPump Losses
2. Impeller (Disc) friction power loss, Pi

Head loss : hi
Flow rate  : Qi

Pi = g Qi hi



Pump LossesPump Losses
3. Leakage and recirculation power loss, Pl

Head across impeller : Hi
Leakage flow rate  : q = Qi - Q Pl = g qi Hi



Pump LossesPump Losses
4. Casing power loss, Pc

Head loss : hc
Flow rate  : Q Pc = g Qhc



Pump Losses Pump Losses 
HH--Q DiagramQ Diagram



EfficiencyEfficiency
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loss Leakage-impellerby  developedpower  Fluid
outlet casingat power  Fluid                             

inlet casingat power  Fluid
outlet casingat power  FluidEfficiency Casing
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impeller through rate Flow
pump through rate FlowEfficiency Volumetric



EfficiencyEfficiency
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lossimpeller impellerby  developedpower  Fluid
exitimpeller at power  Fluid                             

impeller  tosuppliedpower  Fluid
exitimpeller at power  FluidEfficiencyImpeller 
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shaft  theinput toPower 
impeller  tosuppliedpower  FluidEfficiency Mechanical
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impellerby  developed head lTheoretica
pumpby  developed head ActualEfficiency Hydraulic



Efficiency RelationEfficiency Relation
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Pump Shaft Power, Pump Shaft Power, PPss
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Driven Motor Shaft Power, Driven Motor Shaft Power, PPMM

Transmission Efficiency, Transmission Efficiency, TT
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PumpPump’’s Characteristic Curves Characteristic Curve
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Effect of Flow Rate VariationEffect of Flow Rate Variation
Inlet velocity

Outlet velocity
Q  ; H  Q  ; H 



Effect of Blade Outlet AngleEffect of Blade Outlet Angle
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Effect of Blade Outlet AngleEffect of Blade Outlet Angle
Theoretical 
characteristic curves

Actual 
characteristic curves



Flow in the Discharge CasingFlow in the Discharge Casing
Volute Casing

Function:
1. Collector
2. Diffuser

Deviation in capacity from 
the design condition will 
result in a radial thrust (P):
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Function:
P = radial force (N)
H = Head (m)
D2 = peripheral diameter (m)
B2 = impeller width (m)Circular section to 

reduce losses due to 
friction and impact



Flow in the Discharge CasingFlow in the Discharge Casing
Vaneless Diffuser



Flow in the Discharge CasingFlow in the Discharge Casing
Vaneless Diffuser Continuity:
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Flow in the Discharge CasingFlow in the Discharge Casing
Vaned Diffuser

Number of vanes on the 
diffuser ring:

 Greater number  better 
diffusion but more friction 
loss

 Square cross section of 
diffuser channel  max rh

 Number of diffuser vanes 
have no common factor 
with the number of 
impeller

 Higher rate
 Shorter length
 Higher efficiency

Able to diffuse the outlet 
kinetic energy at:



Flow in the Discharge CasingFlow in the Discharge Casing
Contribution of each section of the pump to total head



Cavitation in PumpsCavitation in Pumps
Vapour bubbles formation of the liquid as the local 
absolute static pressure of a liquid falls below the vapour 
pressure
 occurs mainly at the suction side (at the eye of impeller as the

velocity increases and pressure decreases)
 Local pitting of impeller  cavitation erosion
 Noise
 Decrease pump efficiency



Net Positive Suction Head (NPSH)Net Positive Suction Head (NPSH)
The difference of total suction head in the impeller inlet 
side (impeller eye) above the vapour pressure 
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 A measure of the energy available on the suction side of the 
pump

 A measure to indicate the occurrence of cavitation

Cavitation Parameter (Toma Cavitation Number)
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NPSH Required (NPSHR)
 Net Suction Head as required by the pump 

in order to prevent cavitation for safe and 
reliable operation of the pump. 

 The required NPSHR for a particular pump 
is in general determined experimentally by 
the pump manufacturer (will vary 
depending on the size and speed of the 
pump) and a part of the documentation of 
the pump.

Net Positive Suction Head (NPSH)Net Positive Suction Head (NPSH)

Measurement of NPSHR by 3% 
head reduction

Example of pump documentation



NPSH Available (NPSHA)
 The Net Positive Suction Head 

made available the suction 
system for the pump. 

 The NPSHA can be determined 
during design and construction, 
or determined experimentally 
from the actual physical system 
and calculated with the Energy 
Equation 

Net Positive Suction Head (NPSH)Net Positive Suction Head (NPSH)

Energy at 1 = Energy at 2 + Energy lost between 1 and 2 
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At inlet p2 = pi ; V2 = Vi and  lossesinlet = hin + hfi, then:
NPSH available at impeller inlet :
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To avoid cavitation in a pump operation
Cavitation ~ NPSHCavitation ~ NPSH

RA NPSHNPSH  RA  or



Suction Specific SpeedSuction Specific Speed
A function due to cavitation that influences the efficiency
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ExampleExample
When a laboratory test was carried out on a pump, it was found that, for a 
pump total head of 36 m at discharde of 0.05 m3/s, cavitation began when the 
sum of the static pressure plus the velocity head at inlet was reduced to 3.5 
m. The atmospheric pressure was 750 mmHg and the vapour pressure of 
water 1.8 kPa. If the pump is to operate at a location where atmospheric 
pressure is reduced to 620 mmHg and the vapour pressure of water is 830 
Pa, what is the value of the cavitation parameter when the pump develops the 
same total head and discharge? Is it necessary to reduce the height of the 
pump above the supply, and if so by how much?




