

Biological processes nitrogen & phosphorus

Martin Oldenburg University of Applied Science Ostwestfalen-Lippe 37671 Hoexter, An der Wilhelmshoehe 44 martin.oldenburg@hs-owl.de

WATER HARMONY ERASMUS +

Harmonise teaching and pedagogical approaches in water related graduate education

Learning objective

- Knowledge about the processes of the removal of nitrogen and phosphorus from wastewater by biological processes
- Knowledge about systems with enhanced biological treatment processes

Nitrogen in wastewater

 Nitrogen in domestic wastewater is mainly from human excreta

$$CON_2H_4 + 3H_2O \longrightarrow 2NH_4^+ + OH^- + HCO_3^-$$

 Hydrolysis from urea to Ammonia (ammonification) takes often place in sewer systems

Pathways of nitrogen

- Incorporation in biomass by degradation of organic matter
- Necessity of elimination:
 - Load per person: 10 g N/(cap*d) this is a concentration of 65 g/m³ with a volume of 150 l/(cap*d)
 - Nitrogen content of grown sludge: 0.07 gN/g MLSS
 - Sludge production rate: 40 g BOD/(cap*d) * 1 g MLSS/g BOD₅ = 40 g MLSS/(cap*d) 40 g MLSS/(cap*d) * 0.07 g N/g MLSS = 2.8 gN/(cap *d)
 - Nitrogen removal by incorporation: 2.8 /0.150 l/(cap*d) = 18 gN/m³
 - Nitrogen which has to be eliminated:
 65 18 g N/m³ = 37 g N/m³

\Rightarrow Targeted nitrogen elimination is necessary!

Pathways of nitrogen

- "excess" of nitrogen not bound in biomass has to be eliminated in two steps
- first step: conversion of ammonia to nitrate – Nitrification conversion of nitrate to nitrogen – Denitrification
- Removal of nitrogen from domestic wastewater only by denitrification
- After biological treatment an residual organic nitrogen remains, which is incorporated in non-biodegradable organic substances approx. 1 - 2 g N/m³

Nitrification

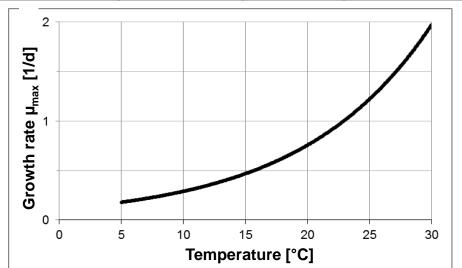
$NH_4^+ + 2O_2 \implies NO_3^- + H_2O + 2H^+ + energy$

- Characteristics of nitrification process:
 - High energy demand : 4,6 g O₂ per g NH₄-N with integration of biomass growth: 4,25 g O₂ per g NH₄-N
 - Production of 2 mol H⁺ per mol NH₄-N
- Energy from the reaction above will be used for the production of new biomass (growth)
- Source for carbon for the production of biomass is anorganic (CO₂/CO₃²⁻)
- Nitrifiers are autotrophic bacteria!!

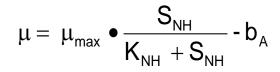
Nitrification

- Nitritation (oxidation of Ammonium) by Nitrosomonas $NH_4^+ + 1,5 O_2 \rightarrow NO_2^- + H_2O + 2 H^+ (+243-352 kJ/mol)$ $15 CO_2 + 13 NH_4^+ \rightarrow 10 NO_2^- + 3 C_5H_7NO_2 + 4 H_2O + 23 H^+ \mu_{max} = 0,47 * 1,103^{(T-15)} [d^{-1}]$
- Nitratation (oxidation of niitrite) by Nitrobacter $NO_2^- + 0.5 O_2 \rightarrow NO_3^- (+63 - 80 \text{ kJ/mol})$ $5 CO_2 + NH_4^+ + 10 NO_2^- + 2 H_2O \rightarrow 10 NO_3^- + C_5H_7NO_2 + H^+$ $\mu_{max} = 0.79 * 1.071^{(T-15)} [d^{-1}]$

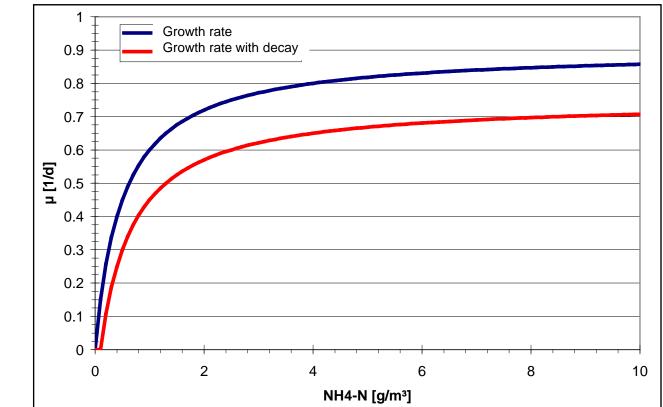
Total


 $\begin{array}{ll} \mathsf{NH_4^+} + 2\ \mathsf{O_2} & \longrightarrow \mathsf{NO_3^-} + \mathsf{H_2O} + 2\ \mathsf{H^+} & (4,57\ \mathsf{g}\ \mathsf{O_2/g}\ \mathsf{NH_4-N}) \\ \mathsf{NH_4^+} + 1,98\ \mathsf{HCO_3^-} + 1,86\ \mathsf{O_2} & \longrightarrow \mathsf{0},98\ \mathsf{NO_3^-} + 0,02\ \mathsf{C_5H_7NO_2} \\ & + 1,88\ \mathsf{H_2CO_3} + 1,04\ \mathsf{H_2O} \end{array}$

Effect of temperature on nitrification


		Sludge age			
Temp.	Nitroso	omonas	Nitrobacter		
[°C]	[1/d]	[h]	[1/d]	[h]	[d]
10	0,29	82,8	0,58	41,4	3,44
20	0,76	31,6	1,04	23,1	1,32
30	1,97	12,2	1,87	12,8	0,53

Biological processes – nitrogen & phosphorus



Kinetics Nitrification

		of the Eu	Iropean Union
Parameter	Unit	Range	common
Maximum growth rate µ _{max} (T = 20 °C)	1/d	0,6 - 0,8	0,8
Half-saturationK _{NH}	g/m³	0,5 - 1,0	1,0
Decay rate b _A	1/d	0,05 – 0,15	0,15
O ₂ -Half saturation	g/m³	0,15 – 2,0	0,4

Co-funded by the Erasmus+ Programme

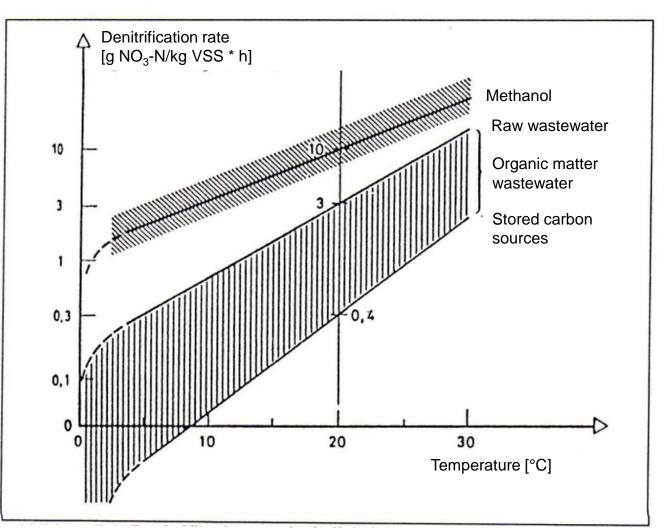
Denitrification

Denitrification:

Reduction of oxidised nitrogen-compounds (nitrite, nitrete) to nitrogen (N_2) by heterotrophic bacteria due to the absence of oxigen (anoxic conditions)

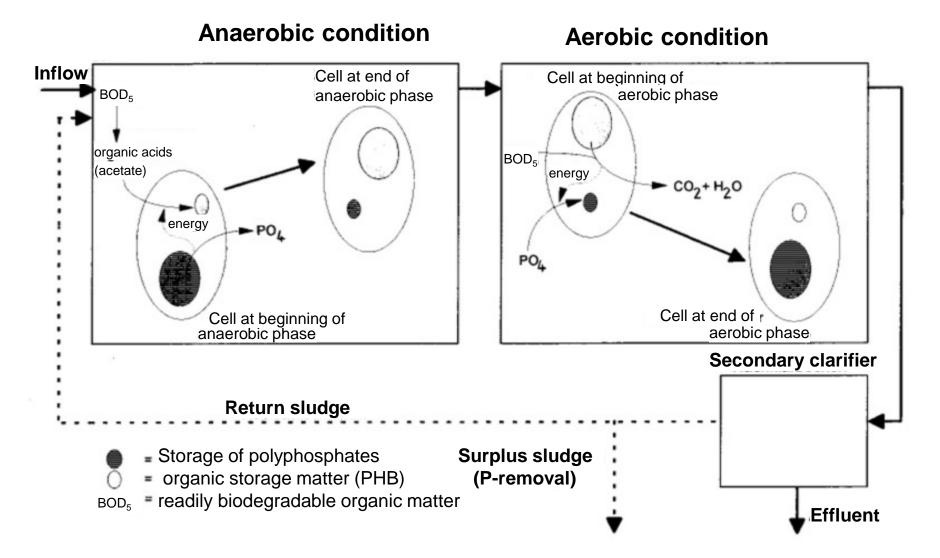
Respiration with oxygen ":

 $2CH_3OH + 3O_2 \Rightarrow CO_2 + 4H_2O$ *"Respiration with nitrate ":*

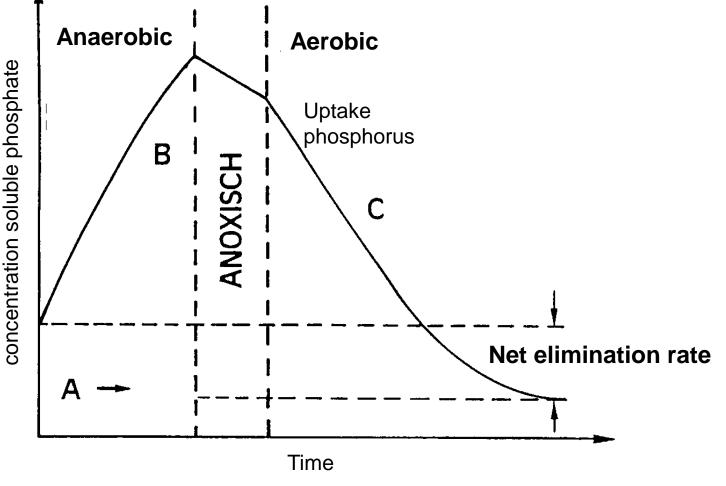

 $5 \text{ CH}_3\text{OH} + 6 \text{ NO}_3^- \Rightarrow 5 \text{ CO}_2 + 7 \text{ H}_2\text{O} + 3 \text{ N}_2 + 6 \text{ OH}^-$ • Energy yield at "respiration of nitrate" 10 % lower than using oxygen \Rightarrow aerobic conditions are preferred instead of aerobic condition by bacteria

- Most of heterotrophic bacteria are able to do both degradation processes
- Yield of buffer capacity (1 mol/mg NO₃-N) Biological processes nitrogen & phosphorus

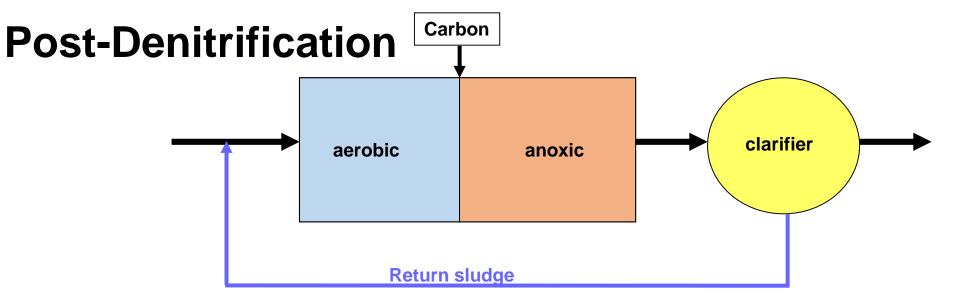
Dependency of denitrification on substrate

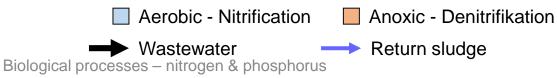

Enhanced biological phosphorus removal

- Principle
 - Sequencing alternation of anaerobic and aerobic conditions
 - Accumulation of phosphorus by organisms (PAO)
 - P-content in sludge increase from 1,5 - 2 % to 3 - 5 %
- Processes
 - Anaerobic condition
 - Degradation of polyphosphate with energy yield (P-removal)
 - Fermentation of readily biodegradable substances (formation of organic acids)
 - Uptake of organic acids for the formation of intracellular storage compounds
 - Aerobic conditions
 - Degradation of storage compounds and yield of energy
 - Uptake of phosphate (degradation of polyphosphates)

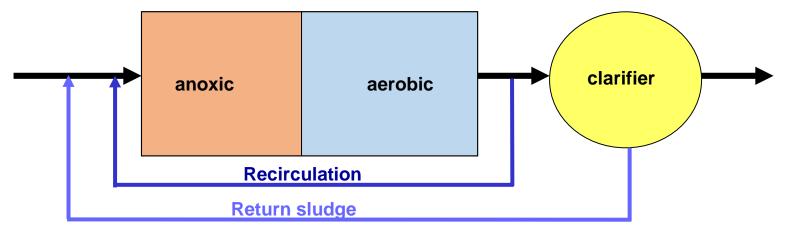

Enhanced biological phosphorus removal (EBPR)




Enhanced biological phosphorus removal (EBPR)


"Net elimination rate " is caused by the incorporation of phosphorus into the grown surplus sludge.

- + nearly every NO₃-N-effluent concentration can be achieved
- + no internal recirculation
- + suitable for biofilm systems
- Costs for chemicals due to dosing of carbon source
- Risk of formation of nitrite
- Risk of enhanced concentrations of organic matter (COD) in the effluent



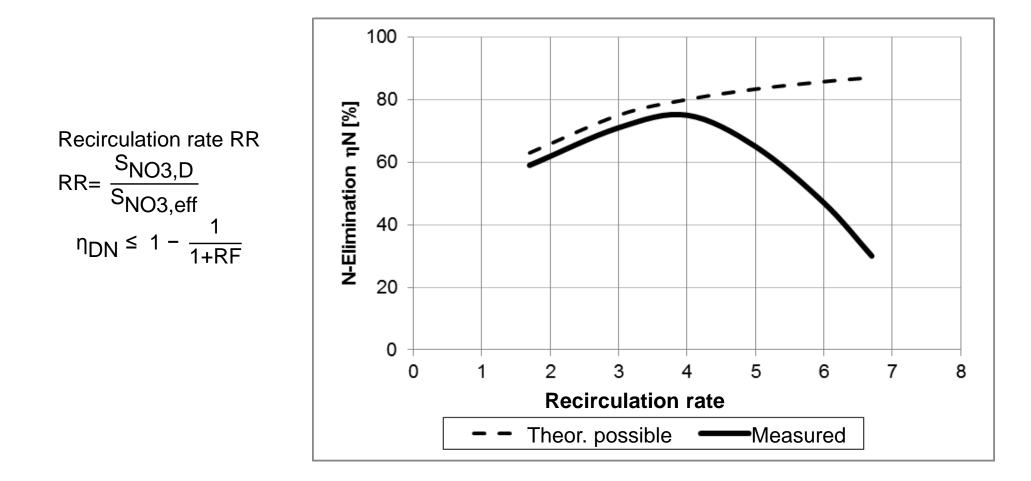
Pre-Denitrification

Sedimentation

Recirculation

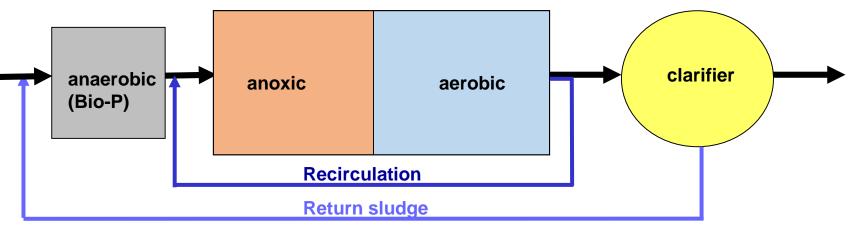
- + optimal use of organic carbon (BOD5) from wastewater
- + small volumes for denitrification due to high denitrification rates
- + alternating zones (aerated/non-aerated) for different loadings and times
- + easy to control
- High internal flow rates

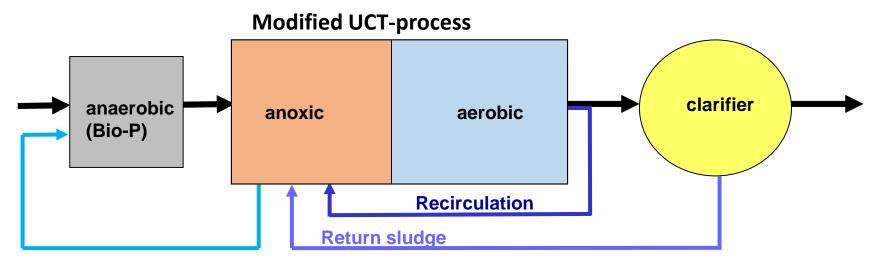
Pre-Denitrification



Biological processes - nitrogen & phosphorus

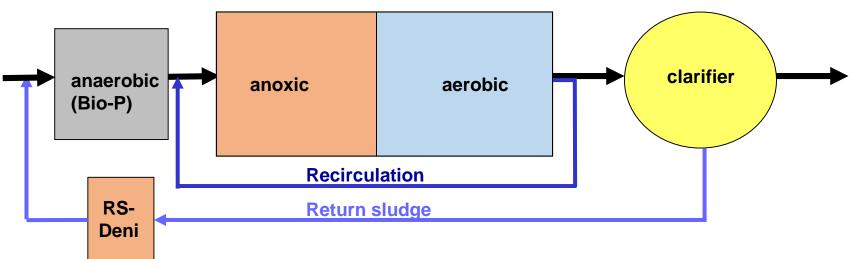
Elimination rates with pre-Denitrification

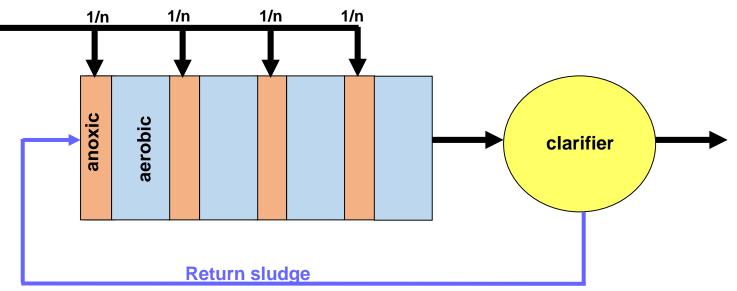


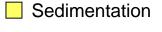


Pre-Denitrification with EBPR

Modified Bardenpho-, Phoredox-, A2/O-process




Pre-Denitrification with EBPR



Cascade Denitrification

- + no internal recirculation flows
- + cascade reactor
- + higher mass of sludge
- Distribution of inflow difficult
- EBPR only in a small amount



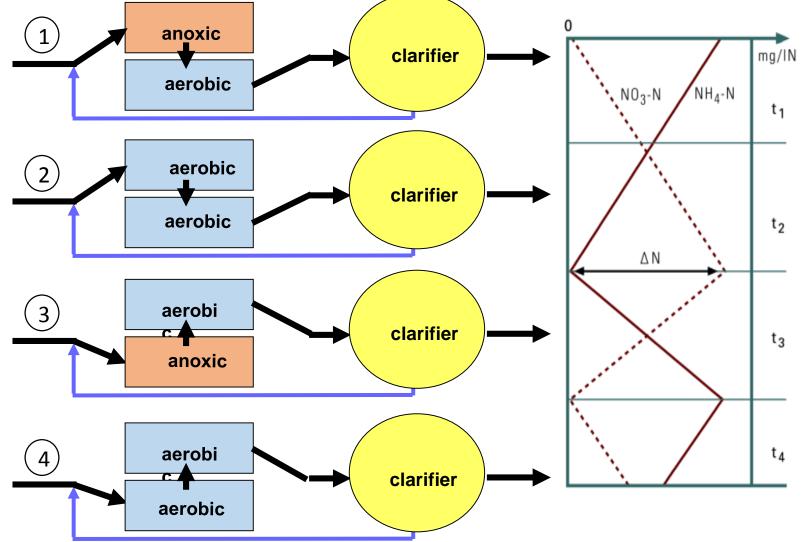
Recirculation

Intermittant Denitrification

- + high flexibility to changing inflow conditions
- + low effluent concentrations can be achieved

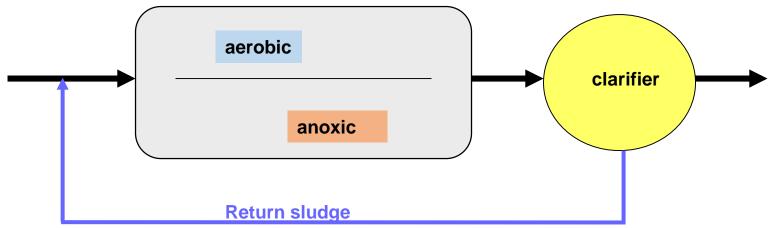
Aerobic - Nitrification

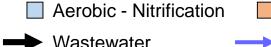
Wastewater


Biological processes – nitrogen & phosphorus

- high effort for mechanical engineering
- high area and volume demands
- Separation of aeration and mixing
- Not suitable for biofilm systems
- Anoxic Denitrifikation
 - Return sludge

----> Recirculation


Alternating Denitrification



Simultaneous Denitrification

- + high flexibility to changing inflow conditions
- + no internal recirculation necessary
- + robust operation
- + mainly for small plants
- Completely mixed systems, small reaction rates
- Large tank volumes (often also for sludge stabilisation)
- Oxygen will be displaced from nitrification to denitrification zones

Return sludge

Anoxic - Denitrifikation

Biological processes – nitrogen & phosphorus

Simultaneous Denitrification

Biological processes – nitrogen & phosphorus