


The calculations provided in this booklet are tools, much like the mechanical and test equipment utilized, that will enable the operator to manage and run a water system as efficiently and smoothly as possible.

Operating a water system can be challenging, yet very rewarding. These systems are designed taking into account various hydraulic and operating conditions, and with equipment that will allow for efficient operation. However, running the equipment alone is not enough to ensure a smooth operation. The operator must use the calculations provided to operate the system effectively. While the operator can choose which calculations to use, it is imperative that the facility is run following operational guidelines in the original design specifications or the manufacturers' O\&M manuals.

We hope you find this guide helpful.
If you have any questions or need further assistance, please call Baxter \& Woodman at 815-459-1260.

## Contents

Definitions \& Abbreviations ..... 2
Conversions ..... 2
Calculations Used in the Daily Operation of a
Potable Water System ..... 3
Chemical Dosage .....  3
Solution Mixing ..... 3
Water Height/Based on Pressure ..... 4
Pumping Calculations ..... 4
Water Main Calculations ..... 5
Chemical Calculations ..... 6
Ion Exchange Softening Calculation ..... 7
Detention Time Calculation ..... 7
Filtration Calculation ..... 8
Baxter \& Woodman Services ..... 9

## Definitions \& Abbreviations

- Cubic feet $\left(\mathrm{ft}^{3}\right)$ - A unit of volume equal to a cube with a dimension of 1 foot on each side.
- Feet per second (ft/sec, or fps) - A unit used to express the rate of movement.
- Gallons per day (gpd) - A unit used to describe the discharge or flow past a fixed point during a 24 hour period.
- Gallons per minute (gpm) - A unit used to describe the discharge or flow past a fixed point during a 1 minute period.
- Grain (gr) - A unit of weight.
- Grain per gallon (gpg) - A unit used in reporting water analysis concentrations.
- Liter (L) - A unit of volume.
- Parts per million (ppm) - A unit of proportion equal to $10^{-6}$.
- Pounds per day (Ib/day) - A unit used to describe the rate at which a chemical is added to water.
- Square foot (ft $\left.{ }^{2}\right)$ - A unit of area equal to a square with a dimension of 1 foot on each side.


## Conversions

- 1 psi $($ pound per square inch $)=2.31$ feet of elevation
- $\quad$ Minutes in a day $=1,440$
- 1 cubic foot of water $=7.48$ gallons
- Weight of 1 cubic foot of water $=62.4$ pounds
- Weight of 1 gallon of water $=8.34$ pounds
- Liters of water in a gallon $=3.785$
- 1 part per million ( ppm ) or 1 milligram per liter $(\mathrm{mg} / \mathrm{L})=1,000$ part per billion ( ppb )
- $1 \mathrm{ppb}=0.001 \mathrm{ppm}$ or $0.001 \mathrm{mg} / \mathrm{L}$
- $\Pi=3.14$
- 1 grain $=17.1 \mathrm{mg} / \mathrm{L}$ of hardness
- $10,000 \mathrm{mg} / \mathrm{l}=1 \%$


## Calculations Used in the Daily Operation of a Potable Water System

Several basic equations are used in calculations to determine things such as Flow Rate, Tank or Pipe Volume, Chemical Dosing, etc. The formulas for area and volume appear below, along with examples.

AREA

| Area | Formula | Example |
| :--- | :--- | :--- |
| Rectangle | $($ Length $) \times($ Width $)$ | $\left(35^{\prime} \mathrm{L}\right) \times\left(12^{\prime} \mathrm{W}\right)=420$ square feet |
| Circle | $(\pi) \times(\text { radius })^{2}$ | $(3.14) \times\left(20^{\prime}\right) \times\left(20^{\prime}\right)=1,256 \mathrm{sq} . \mathrm{ft}$. |
| Sphere (surface area) | $(4) \times(\pi) \times(\text { radius })^{2}$ | $(4) \times(3.14) \times\left(90^{\prime}\right)^{2}=101,736 \mathrm{sq} . \mathrm{ft}$. |

Volume

| Volume | Formula | Example |
| :--- | :--- | :--- |
| Rectangle | $($ Length $) \times($ Width $) \times($ Height $)$ | $\left(80^{\prime} \mathrm{L}\right) \times\left(25^{\prime} \mathrm{W}\right) \times\left(10^{\prime} \mathrm{H}\right)=20,000 \mathrm{cu} . \mathrm{ft}$. |
| Cylinder or Pipe | $(\pi) \times(\text { radius })^{2} \times($ Height $)$ | $(3.14) \times\left(20^{\prime}\right) \times\left(20^{\prime}\right) \times\left(50^{\prime}\right)=62,800 \mathrm{cu} . \mathrm{ft}$. |
| Sphere | $\frac{(4) \times(\pi) \times \text { radius }^{2}}{} \quad 3$ | $\frac{(4) \times(3.14) \times\left(20^{\prime}\right) \times\left(20^{\prime}\right) \times\left(20^{\prime}\right)=33,493 \mathrm{cu} . \mathrm{ft.}}{}$ |

## Chemical Dosage

Used to determine how many pounds of chemical to be fed.
Convert volume of water to Million Gallons by dividing volume of water by 1,000,000.
MG = million gallons of water
$\mathrm{mg} / \mathrm{l}=$ chemical dosage in milligrams per liter
$8.34 \mathrm{lbs} .=$ weight of 1 gallon of water
(MG) $\times(8.34) \times(\mathrm{mg} / \mathrm{l})=$ pounds of chemical at $100 \%$ pure.
If the chemical is not $100 \%$ pure, divide the pounds of chemical by the percentage (in decimal form) of the chemical.

## Solution Mixing

Used to dilute a strong solution.
$Q_{s}=$ quantity of strong solution in gallons
$\mathrm{C}_{\mathrm{s}}=$ concentration of strong solution in $\mathrm{mg} / \mathrm{l}$ or percentage (\%)
$Q_{w}^{s}=$ quantity of weak solution in gallons
$\mathrm{C}_{\mathrm{w}}=$ concentration of weak solution in $\mathrm{mg} / \mathrm{l}$ or \%
$Q_{s} C_{s}=Q_{w} C_{w}$

## Water Height/Based on Pressure

Used to calculate level of water in a well or a water tank.
PSI x $2.31=$ Feet of water
Static level = Measurement from the surface of the water level in a well when the well has been off for approximately 1 hour.

Pumping level = Measurement from the ground surface to the water level in a well when the well is on and has been pumping for approximately 1 hour.

Drawdown = The difference between the Static level and the Pumping level (static - pumping)
Well yield = The gallons per minute (GPM) that the well is producing.
Specific capacity = GPM divided by the feet of drawdown (GPM / ft. drawdown)

## Pumping Calculations

A well pumping $\mathbf{4 0 0}$ gallons per minute can pump how many gallons per day?
$(1,440 \mathrm{~min} . /$ day $) \times(400 \mathrm{gpm})=576,000$ gallons per day $(\mathrm{gpd})$
How many million gallons per day would the above well pump?
576,000 gpd
$1,000,000=0.576 \mathrm{mgd}$
How long would it take the above well to fill a 150,000 gallon water tower?
150,000 gallons
375 min .
$400 \mathrm{gpm}=375$ minutes $=60 \mathrm{~min} . / \mathrm{hr} .=6 \mathrm{hrs} .15 \mathrm{~min}$.

## Water Main Calculations

How many gallons of water will it take to fill 1,200 feet of 10 -inch water main?
Volume $=(\pi) \times(\text { radius })^{2} \times$ (Length)
Note: Diameter $=10$ inches, so the radius $=10 " / 12^{\prime \prime}$ per foot $=0.8333 \mathrm{ft}$.
$(3.14) \times(0.8333 \mathrm{ft}) \times.(0.8333 \mathrm{ft}) \times 1,.200 \mathrm{ft} .=2,616 \mathrm{cu} . \mathrm{ft}$.
2,616 cu. ft. $\times 7.48$ gals. / cu. ft. $=19,568$ gals.

How much more water can an 8 -inch water main carry compared to a 6 -inch water main?
Radius of 8 " water main $=8 " / 12 "$ per $\mathrm{ft} .=0.666 \mathrm{ft}$.
Radius of 6 " water main $=6 " / 12^{\prime \prime}$ per ft . $=0.5 \mathrm{ft}$.
1 ft . of 8 " water main can hold $(\pi) \times$ (radius) ${ }^{2} \times$ (Length)
$(3.14) \times(0.666 \mathrm{ft}) \times.(0.666 \mathrm{ft}.) \times 1 \mathrm{ft}=1.39 \mathrm{cu} . \mathrm{ft} .\left(\mathrm{ft}^{3}\right)$
$\left(1.39 \mathrm{ft}^{3}\right) \times 7.48$ gals. $/ \mathrm{ft}^{3}=10.4$ gals.
1 ft . of 6 " water main can hold ( $\pi$ ) $\times$ (radius) ${ }^{2} \times$ (Length)

$$
\begin{aligned}
& (3.14) \times(0.5 \mathrm{ft} .) \times(0.5 \mathrm{ft} .) \times 1 \mathrm{ft} .=0.785 \mathrm{cu} . \mathrm{ft} .\left(\mathrm{ft}^{3}\right) \\
& \left(0.785 \mathrm{ft}^{3}\right) \times 7.48 \text { gals. } / \mathrm{ft}^{3}=5.9 \text { gals. }
\end{aligned}
$$

The 8 " water main can hold 4.5 gals./ft. more water than the 6 " water main, or 1.76 times more water.

How much water must you flow from fire hydrants on an 8-inch water main to get the water within the pipe moving at a rate of 2 feet per second (fps)?
$2 \mathrm{fps} \times 60$ seconds/minute $=120 \mathrm{ft}$. per minute
Volume $=(\pi) \times(\text { radius })^{2} \times$ (Length)
$(3.14) \times(0.666 \mathrm{ft}) \times.(0.666 \mathrm{ft}) \times.(120 \mathrm{ft} . / \mathrm{min})=.167.1 \mathrm{ft}^{3} / \mathrm{min}$.
$\left(167.1 \mathrm{ft}^{3} / \mathrm{min}.\right) \times\left(7.48\right.$ gals. $\left./ \mathrm{ft}^{3}\right)=1,250 \mathrm{gpm}$

## Chemical Calculations

How much Hydrofluosilicic Acid (fluoride) must be fed to treat 1 million gallons and provide a $1 \mathrm{mg} / \mathrm{L}$ fluoride concentration?

The formula for hydrofluosilicic acid is $\mathrm{H}_{2} \mathrm{Si}_{6}$.
Known: The commercial acid is $23 \%$ by weight pure acid and the remainder is water.
Note: The strength of commercial acid sometimes varies. You need to verify the strength on the label or with your supplier.

First, find the percent of fluoride in the $\mathrm{H}_{2} \mathrm{Si}_{6}$, by adding the relative atomic weights of each element within the compound.

$$
\begin{aligned}
& \mathrm{H}=2 \times 1.008=2.016 \\
& \mathrm{Si}=1 \times 28.0=28.09 \\
& \mathrm{~F}=6 \times 19.00= \frac{114.00}{144.106}
\end{aligned}
$$

Therefore, $\mathrm{H}_{2} \mathrm{Si} \mathrm{F}_{6}=144.106$
To find the percentage of fluoride in the hydrofluosilicic acid $\left(\mathrm{H}_{2} \mathrm{Si}_{6}\right)$ :

$$
\frac{\text { Atomic weight of fluoride }(F)}{\text { Atomic weight of } \mathrm{H}_{2} \mathrm{Si}_{6}}=\frac{114.00}{144.106} \times 100=79.11 \%^{2}
$$

Since commercial acid is $23 \% \mathrm{H}_{2} \mathrm{Si}_{6}$, and $79.11 \%$ of this is pure fluoride, the percent of fluoride in commercial acid is:

$$
0.23 \times 0.7911 \times 100=18.20 \%
$$

Chemical formula:
Flow in Million Gallons (MG) x $8.34 \mathrm{lbs} / \mathrm{gal} . \times \mathrm{mg} / \mathrm{L}($ chemical dosage $)=$ lbs. of chemical Strength of chemical
$1 \mathrm{MG} \times 8.34 \times 1 \mathrm{mg} / \mathrm{L}=\frac{8.34 \mathrm{lbs} .}{.1820(18.20 \% \text { written as a decimal) }}=45.82 \mathrm{lbs}$ of commercial acid required

A 150,000 gallon elevated storage tank is taken out of service for inspection and interim painting. Prior to putting the tank back into service, it is to be disinfected with a $50 \mathrm{mg} / \mathrm{l}$ of chlorine solution using HTH ( $70 \%$ available chlorine). Determine how many pounds of HTH will be needed to disinfect the tank.

Volume of water (MG) x $8.34 \mathrm{lbs} . / \mathrm{gal} . \times \mathrm{mg} / \mathrm{l}($ dosage $)=$ pounds of HTH
0.70 (70\%)
$\frac{150,000}{1,000,000} \times 8.34 \times 50 \mathrm{mg} / \mathrm{l}=\frac{\# \text { of } \mathrm{HTH}}{.70}$
$0.15 \mathrm{MG} \times 8.34 \times 50=\underline{62.55}$
. 70
89.36 lbs. of HTH will be needed to disinfect the tank.

## Ion Exchange Softening Calculation

An ion exchange softening plant has three softeners which are each 6 ft . in diameter. The media is 4 ft . deep in each unit. The media is rated to remove 20 kilograins per cubic foot. How many gallons of water having $380 \mathrm{mg} / \mathrm{L}$ hardness can be treated by the units before they need to be regenerated? If the flow rate to the softeners is 450 GPM, how long can they run before regeneration is needed?

Find the bed capacity:
Bed Volume $=(3$ units $) \times(\pi) \times\left(\right.$ radius $\left.^{2}\right) \times($ depth of media)
Bed Volume $=(3) \times(3.14) \times(3 \mathrm{ft}) \times.(3 \mathrm{ft}) \times.(4 \mathrm{ft}$.
Bed Volume $=339.12$ cubic feet (round to $339 \mathrm{ft}^{3}$ )
$\left(339 \mathrm{ft}^{3}\right) \times(20,000$ grains $)=6,780,000$ grains of bed capacity eubic foot

Then, convert $380 \mathrm{mg} / \mathrm{L}$ to grains:

$$
(380 \mathrm{mg} / \mathrm{t}) \times \frac{(1 \text { grain })}{17.1 \mathrm{mg} / \mathrm{t}}=22.2 \text { grains }
$$

Find the gallons of water treated:
(1 gallon) $\times(6,780,000$ grains $)=305,405$ gallons
(22.2 grains)

Find the duration of the filter run:
$(305,405$ gallons $) \times(1$ minute $)=679$ minutes (or 11 hours and 32 minutes)
(450 gat.)

## Detention Time Calculation

Known: A detention basin is 20 ft . x 20 ft . x 16 ft . deep. If a 60 minute detention time is required, how many MGD can be treated in the basin?

```
Basin Volume \(=(20\) ft. \() \times(20 \mathrm{ft}) \times.(16 \mathrm{ft}) \times.(7.48 \mathrm{gal}\).
                                    (eubic ft.)
Basin Volume \(=47,872\) gallons
Flow Rate \(=\underline{47,872}\) gallons \(=798\) gallons per minute
    60 min .
Convert 798 gpm to MGD:
```




## Filtration Calculation

A plant has four filters that are each 12 ft . square. If the plant treated $\mathbf{1 , 6 4 0 , 0 0 0}$ gallons in 24 hours of continuous operation, calculate the average filtration rate.

Filtration Rate $=$ total gallons treated per unit of time total filter surface area

Filtration Rate $=1,640,000 \mathrm{GPD} / 1440$ minutes per day
(4) $\times(12 \mathrm{ft}) \times.(12 \mathrm{ft}$.

Filtration Rate $=$ 1138.8 GPM (round to 1139) 576 sq. ft.

Filtration Rate $=1.98$ GPM/sq. ft.

## Water/Wastewater Operations



Baxter \& Woodman provides a full range of services to meet your daily and long-term operational needs, complemented by a staff that provides customized Municipal Engineering Services. Licensed and certified operators are available to assist with your water and wasterwater operations needs.

## Wastewater

Operational assistance
Startup
Troubleshooting
O\&M manual preparation
Lab assistance
DMR reports
NPDES permit applications
Land application permits
Plant sampling programs
Maintenance programs
Operator training
Odor control issues
Water
Operational assistance
Startup
Troubleshooting
O\&M Manual preparation
Permit applications
Water modeling
Lab assistance
Consumer Confidence Reports
Sampling programs
Maintenance programs
Operator training
Unidirectional flushing
Cross connection programs

Licenses/Certifications
USEPA
Pretreatment Training Industrial User Classification \& Permitting

OSHA
Authorized Trainer

## Miscellaneous <br> Construction services support <br> Water/Sewer rate studies <br> Value engineering <br> Regulatory issues resolution <br> SCADA systems <br> Fiscal reports <br> Engineering design <br> GIS tracking system <br> Grant and loan funding <br> SPCC plans <br> Safety compliance program <br> Safety training programs <br> Safety audits

## Pretreatment

Develop pretreatment ordinances
Develop sampling programs
Develop technically-based Local Limits
Enforcement response plans
Permitting for SIU's

Qualified staff is available to meet with you on site. Call 815-459-1260 for additional information or to schedule an appointment.

wwww.baxterwoodman.com


Baxter \& Woodman, Inc. is an employee-owned engineering consulting firm which provides planning, design, construction and technology services for water, wastewater, stormwater and transportation facilities for municipalities, counties and state agencies throughout the Midwest.

Founded in 1946, Baxter \& Woodman is one of the largest regionally focused engineering firms in the Midwest. Clients are served from nine regional offices. Baxter \& Woodman's staff of 200 engineers, surveyors, technicians and support personnel has completed projects for more than 500 municipalities and county governments.

## Water Wastewater Transportation GIS Stormwater Construction Municipal Services

## Office Network

| Crystal Lake | Chicago |
| :---: | :---: |
| 8678 Ridgefield Rd. | 39 S. LaSalle St. |
| Crystal Lake, IL 60012 | Suite 816 |
| 815.459 .1260 | Chicago, IL 60603 |
| Burlington | 312.578 .0050 |
| 256 S. Pine St. | DeKalb |
| Burlington, WI 53105 | 1788 Sycamore Rd. |
| 262.763 .7834 | DeKalb, IL 60115 |
| Grayslake | 815.787 .3111 |
| 31 S. Seymour Ave. | Itasca |
| Grayslake, IL 60030 | 300 Park Blvd. |
| 847.223.5088 | Suite 355 |
| Madison | Itasca, IL 60143 |
| 5100 Eastpark Blvd. | 630.773 .1870 |
| Suite 200 | Mokena |
| Madison, WI 53718 | 8840 W. 192 nd St. |
| 608.241 .5481 | Mokena, IL 60448 |
| Plainfield | 708.478 .2090 |
| 24402 S. Lockport St. |  |
| Suite 227 |  |
| Plainfield, IL 60544 |  |
| 815.609.7425 |  |

www.baxterwoodman.com
info@baxterwoodman.com

