

1.0 Purpose and Scope

The purpose of this calculation is to calculate the capacity and head of Plant water system pumps

2.0 Design Input

2.1 Plant water - Consumption Details

Capacity of each Overhead Tank one located at the roof of GIS Building & another at the roof of Control and Relay Building $= 2.5 \text{ m}^3/\text{hr}$

Total Plant water consumption is	$= 2 \times 2.5$
-	$=5.0 \text{ m}^{3}/\text{hr}$

3.0 Methodology and Acceptance Criteria

The Plant water pump capacity is selected based upon the Plant water requirements and head is selected based upon the head loss through the system.

4.0 Calculations

4.1 **Pump capacity calculation**

From Clause 2.1 above, Total Plant water consumption is	$= 2 \times 2.5$
-	$=5.0 \text{ m}^{3}/\text{hr}$

Hence, capacity of pump selected $= 5.0 \text{ m}^3/\text{hr}$ No. of Pumps = 2 (1W + 1S)

4.2 Pump head calculation

4.2.1 **Pump suction line**

Flow rate,	Q	$= 5 \text{ m}^3/\text{hr}$
Pipe I.D,	D	= 0.053 m
Velocity,	V	= <u>4 x Q</u> m/sec Where,
		$\Pi D^2 x 3600 Q is flow rate in m3/hrD is pipe I.D in meters$

$$= \frac{4 \text{ x 5}}{\Pi \text{ x } 0.053^2 \text{ x 3600}} \text{ m/ sec}$$

= 0.63 m/sec

i. Frictional Head Loss in Pipe

H_L(s) =
$$6.815 \text{ x} \left(\frac{\text{V}}{\text{C}}\right)^{1.852} \text{ x} - \frac{1}{\text{D}^{-1.167}}$$

Where,

V is velocity in m/sec D is pipe I.D in meters C is co-efficient of friction = 120

H_L(s) = $6.815 \text{ x} \left(\frac{0.63}{120} \right)^{1.852} \text{ x} \frac{1}{0.053^{-1.167}}$

= 0.013 mwc/m length of pipe

For a pipe length of 5 meters $H_{L(s)} = 0.06$ mwc

ii. Head Loss due to Fittings

$$H_{L (f)} = \underbrace{\frac{KV^2}{2g}}_{\begin{subarray}{c} Where, \\ H_{L (f)} \mbox{ is frictional head loss} \\ \mbox{ in pipe in mwc / metre} \\ V \mbox{ is velocity in m/sec.} \\ g \mbox{ is Acc. due to gravity = } 9.81 \mbox{m/sec}^2 \\ K \mbox{ is resistance coefficient} \end{subarray}$$

Fittings

Total				K	= 3.152
Entry	-	1	No.	Κ	= 0.5
Strainer	-	1	No.	K	= 2.5
Gate Valve	-	1	No.	Κ	= 0.152

H_{L(f)} =
$$\frac{KV^2}{2g}$$

= $\frac{3.152 \times (0.63)^2}{2 \times 9.81}$

 $H_{L(f)} = 0.064 \text{ mwc}$

= 0.06 + 0.064 = 0.124 mwc

4.2.2 Head loss in discharge pipeline for DN 50

SCHOLENBERG Global Vniûrsatatis

Flow rate,
$$Q = 5 \text{ m}^3/\text{hr}$$

Pipe I.D, $D = 0.053 \text{ m}$
Velocity, $V = \frac{4 \text{ x } Q}{\Pi D^2 \text{ x } 3600} \text{ m/sec Where,}$
 $Q \text{ is flow rate in m}^3/\text{hr}$
 $D \text{ is pipe I.D in meters}$
 $= \frac{4 \text{ x } 5}{\Pi \text{ x } 0.053^2 \text{ x } 3600} \text{ m/sec}$

= 0.63 m/sec

=

i. Frictional Head Loss in Pipe

 $H_{L\left(p\right) }$

$$6.815 \text{ x} \left(\frac{\text{V}}{\text{C}}\right)^{1.852} \text{ x} \quad \frac{1}{\text{D}^{-1.167}}$$

Where,

V is velocity in m/sec D is pipe I.D in meters C is co-efficient of friction = 120

H_{L (p)} =
$$6.815 \text{ x} \left(\frac{0.63}{120} \right)^{1.852} \text{ x} \frac{1}{0.053^{-1.167}}$$

= 0.013 mwc/m length of pipe

For a pipe length of 135 meters $H_{L(p)} = 1.755$ mwc

ii. Head Loss due to Fittings

$$H_{L (f)} = \frac{KV^2}{2g}$$
Where ,

$$H_{L (f)} \text{ is frictional head loss}$$
in pipe in mwc / metre
V is velocity in m/sec.
g is Acc. due to gravity = 9.81m/sec²
K is resistance coefficient

Fittings

Gate Valve - 1 No.
$$K = 0.152$$

)	=	$\frac{KV^2}{2g}$					
	Total					K	= 9.112
	Tees		-	2	Nos.	K	= 0.76
	Check Valve	e	-	1	No.	K	= 2.5
	Elbows		-	10	Nos.	Κ	= 5.7

$$= \frac{9.112 \text{ x} (0.63)^2}{2 \text{ x} 9.81}$$

 $H_{L(f)} = 0.184 \text{ mwc}$

H_{L(f)}

		_	1.939 mwc
		=	1.755 + 0.184
iii.	Total Pressure Drop	=	$\left(H_{L(P)}+H_{L(f)}\right)$

Pump discharge head = Pump suction head + Pump suction pipe losses + Discharge pipe

losses +Static Head + Residual pressure

$$= 4 + 0.116 + 1.939 + 10 + 5$$
$$= 21.055 \text{ m}$$

Consider 10% margin on friction loss

Head selected = 25 MWC

5.0 Results

• Quantity	= 2 (1 W+1 S) for Ittin Sub-Station
	= 2 (1 W + 1 S) for Al-Qarm Sub-Station
• Capacity of each Pump	$= 5.0 \text{ m}^3/\text{hr}$
• Selected Head	= 25 MWC