1.0 Purpose and Scope

The purpose of this calculation is to calculate the capacity and head of Plant water system pumps

2.0 Design Input

2.1 Plant water - Consumption Details

Capacity of each Overhead Tank one located at the roof of GIS Building \& another at the roof of Control and Relay Building

$$
=2.5 \mathrm{~m}^{3} / \mathrm{hr}
$$

Total Plant water consumption is

$$
\begin{aligned}
& =2 \times 2.5 \\
& =5.0 \mathrm{~m}^{3} / \mathrm{hr}
\end{aligned}
$$

3.0 Methodology and Acceptance Criteria

The Plant water pump capacity is selected based upon the Plant water requirements and head is selected based upon the head loss through the system.

4.0 Calculations

4.1 Pump capacity calculation

$$
\text { From Clause } 2.1 \text { above, Total Plant water consumption is } \quad \begin{array}{ll}
& =2 \times 2.5 \\
& =5.0 \mathrm{~m}^{3} / \mathrm{hr}
\end{array}
$$

Hence, capacity of pump selected $=5.0 \mathrm{~m}^{3} / \mathrm{hr}$
No. of Pumps $=2(1 W+1 S)$

4.2 Pump head calculation

4.2.1 Pump suction line

Flow rate, $\quad \mathrm{Q}=5 \mathrm{~m}^{3} / \mathrm{hr}$
Pipe I.D, $\quad D \quad=0.053 \mathrm{~m}$
Velocity, $\quad \mathrm{V}=\frac{4 \times \mathrm{Q}}{\Pi \mathrm{D}^{2} \times 3600} \begin{aligned} & \mathrm{m} / \mathrm{sec} \text { Where, } \\ & \begin{array}{l}\text { Q is flow rate in } \mathrm{m}^{3 / h r} \\ \text { D is pipe I.D in meters }\end{array}\end{aligned}$

$$
\begin{aligned}
& =\frac{4 \times 5}{\Pi \times 0.053^{2} \times 3600} \mathrm{~m} / \mathrm{sec} \\
& =0.63 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

i. Frictional Head Loss in Pipe

$\mathrm{H}_{\mathrm{L}(\mathrm{s})} \quad=\quad 6.815 \times\left(\frac{\mathrm{V}}{\mathrm{C}}\right)^{1.852} \times \frac{1}{\mathrm{D}^{1.167}}$
Where,
V is velocity in $\mathrm{m} / \mathrm{sec}$
D is pipe I.D in meters
C is co-efficient of friction $=120$
$\mathrm{H}_{\mathrm{L}}(\mathrm{s})$
$=6.815 \times\left(\frac{0.63}{120}\right)^{1.852} \times \frac{1}{0.053 \quad 1.167}$
$=\quad 0.013 \mathrm{mwc} / \mathrm{m}$ length of pipe

For a pipe length of 5 meters $\mathrm{H}_{\mathrm{L}(\mathrm{s})}=0.06 \mathrm{mwc}$

ii. Head Loss due to Fittings

$H_{L(f)}=\frac{K V^{2}}{2 g}$

Where,
$H_{L(f)}$ is frictional head loss
in pipe in mwc / metre
V is velocity in $\mathrm{m} / \mathrm{sec}$.
g is Acc. due to gravity $=9.81 \mathrm{~m} / \mathrm{sec}^{2}$
K is resistance coefficient

Fittings

$$
\begin{array}{llllll}
\text { Gate Valve } & - & 1 & \text { No. } & \mathrm{K} & =0.152 \\
\text { Strainer } & - & 1 & \text { No. } & \mathrm{K} & =2.5 \\
\text { Entry } & - & 1 & \text { No. } & \mathrm{K} & =0.5 \\
\text { Total } & & & & \text { K } & =\mathbf{3 . 1 5 2} \\
& \\
& =\frac{K^{2}}{2 \mathrm{~g}} \\
& =\frac{3.152 \times(0.63)^{2}}{2 \times 9.81} \\
\mathrm{H}_{\mathrm{L}(\mathrm{f})} & & & & & \\
& =0.064 \mathrm{mwc}
\end{array}
$$

$$
\text { iii. Total Pressure Drop } \quad \begin{aligned}
& =\left(H_{L(S)}+H_{L(f)}\right) \\
& =0.06+0.064 \\
& =0.124 \mathrm{mwc}
\end{aligned}
$$

4.2.2 Head loss in discharge pipeline for DN 50

Flow rate, $\quad \mathrm{Q}=5 \mathrm{~m}^{3} / \mathrm{hr}$
Pipe I.D, $D=0.053 \mathrm{~m}$
Velocity, $\quad V=4 \times \mathrm{Q} \quad \mathrm{m} / \mathrm{sec}$ Where,

$$
\begin{array}{ll}
\Pi D^{2} \times 3600 & Q \text { is flow rate in } \mathrm{m}^{3} \mathrm{hr} \\
& \mathrm{D} \text { is pipe I.D in meters }
\end{array}
$$

$$
=\frac{4 \times 5}{\Pi \times 0.053^{2} \times 3600} \mathrm{~m} / \mathrm{sec}
$$

$$
=0.63 \mathrm{~m} / \mathrm{sec}
$$

i. Frictional Head Loss in Pipe

$\mathrm{H}_{\mathrm{L}}(\mathrm{p})$

$$
\begin{aligned}
=6.815 \times\left(\frac{\mathrm{V}}{\mathrm{C}}\right)^{1.852} \times \quad & \frac{1}{\mathrm{D}^{1.167}} \\
& \text { Where, } \\
& \quad \mathrm{V} \text { is velocity in } \mathrm{m} / \mathrm{sec} \\
& \text { D is pipe I.D in meters } \\
& \mathrm{C} \text { is co-efficient of friction }=120
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{H}_{\mathrm{L}(\mathrm{p})} & =6.815 \times\left(\frac{0.63}{120}\right)^{1.852} \times \frac{1}{0.053{ }^{1.167}} \\
& =0.013 \mathrm{mwc} / \mathrm{m} \text { length of pipe }
\end{aligned}
$$

For a pipe length of 135 meters $H_{L(p)}=1.755 \mathrm{mwc}$

ii. Head Loss due to Fittings

Fittings
Gate Valve $\quad-\quad 1 \quad$ No. $\mathrm{K} \quad=0.152$
Elbows - 10 Nos. K $=5.7$
Check Valve $\quad-\quad 1 \quad$ No. K $\quad=2.5$
Tees - 2 Nos. $K=0.76$

Total
$\mathrm{K}=9.112$
$\mathrm{H}_{\mathrm{L}(\mathrm{f})}=\frac{K V^{2}}{2 \mathrm{~g}}$

$$
=\frac{9.112 \times(0.63)^{2}}{2 \times 9.81}
$$

$\mathrm{H}_{\mathrm{L}(\mathrm{f})} \quad=\quad 0.184 \mathrm{mwc}$
iii. Total Pressure Drop $\quad=\quad\left(H_{L(P)}+H_{L(f)}\right)$
$=\quad 1.755+0.184$
$=\quad 1.939 \mathrm{mwc}$

Pump discharge head $=$ Pump suction head + Pump suction pipe losses + Discharge pipe

$$
\begin{aligned}
& \text { losses }+ \text { Static Head }+ \text { Residual pressure } \\
= & 4+0.116+1.939+10+5 \\
= & 21.055 \mathrm{~m}
\end{aligned}
$$

Consider 10\% margin on friction loss
Head selected $=\mathbf{2 5}$ MWC

5.0 Results

- Quantity
$=2(1 \mathrm{~W}+1 \mathrm{~S})$ for Ittin Sub-Station
$=2(1 \mathrm{~W}+1 \mathrm{~S})$ for Al-Qarm Sub-Station
- Capacity of each Pump $=5.0 \mathrm{~m}^{3} / \mathrm{hr}$
- Selected Head $=25$ MWC

