

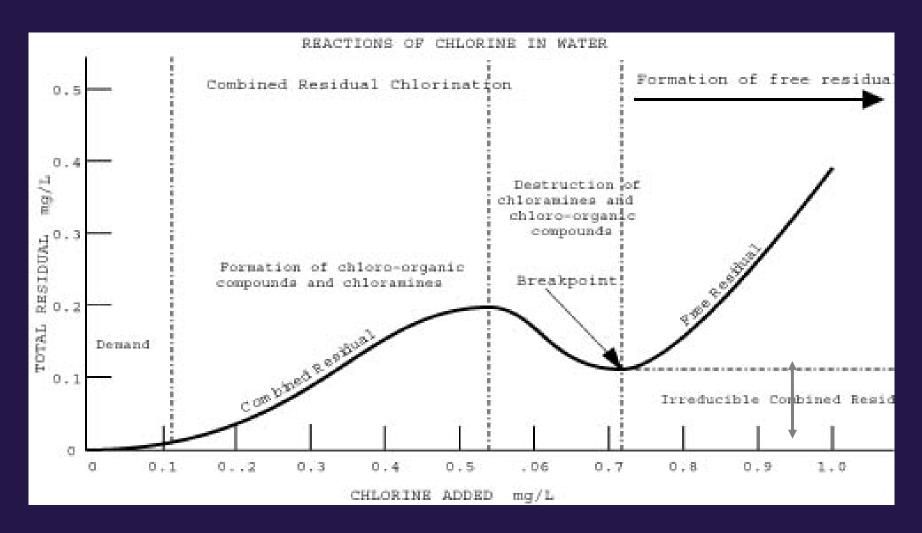

#### Chlorine Demand

The consumption of the chlorine used for disinfection

```
What is used
What is added
                             What remains
 Dosage - Demand = Residual
                Organics
              Microorganisms
            Ammonia-Nitrogen
                 Nitrate
                  Iron
                  Silt
```



#### Chlorine Residuals


- Free chlorine residual
  - Uncombined chlorine in the form of hypochlorous acid (HOCl) or hypochlorite ion (OCl)
- Combined chlorine residual
  - Chlorine that is combined with ammonia-nitrogen to form chloramines: NH<sub>2</sub>Cl, NHCl<sub>2</sub>, NCl<sub>3</sub>
- Total chlorine residual
  - Free residual + Combined residual = Total residual

#### Chlorination

- Breakpoint chlorination
  - Addition of enough chlorine to destroy majority of nitrogen compounds
  - Irreducible combined residual
- Total chlorine residual
  - Free + combined residual
- Effectiveness
  - Lower pH, higher temperature
  - Free > combined residual
  - Combined lasts longer
  - Combined forms fewer TTHMs



## The Breakpoint Curve





# Concentration—Time (CT) Calculations



#### Table of Log Removal

| Log                                                                                         | initial   | %                | amount     | %             |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|-----------|------------------|------------|---------------|--|--|--|--|--|--|--|
| <u>Cycle</u>                                                                                | amount, % | <u>removal</u>   | removed, % | remaining     |  |  |  |  |  |  |  |
| 1                                                                                           | 100       | 90               | 90         | 10            |  |  |  |  |  |  |  |
| 2                                                                                           | 10        | 90               | 9          | 1             |  |  |  |  |  |  |  |
| 3                                                                                           | 1         | 90               | 0.9        | 0.1           |  |  |  |  |  |  |  |
| 4                                                                                           | 0.1       | 90               | 0.09       | 0.01          |  |  |  |  |  |  |  |
|                                                                                             |           |                  |            |               |  |  |  |  |  |  |  |
|                                                                                             |           | Total Removed, % | 99.99      | 4-Log Removal |  |  |  |  |  |  |  |
|                                                                                             |           |                  |            |               |  |  |  |  |  |  |  |
|                                                                                             |           |                  |            |               |  |  |  |  |  |  |  |
| For any number of log cycles, % removal = 100 (1 - 1/10 <sup><log removal=""></log></sup> ) |           |                  |            |               |  |  |  |  |  |  |  |

For example, for 0.5-log removal, % removal =  $100 (1 - 1/10^{<0.5>}) = 100 (1 - 1/3.16) = 100 (1 - 0.316) = 100 (0.684) = 68.4%$ 

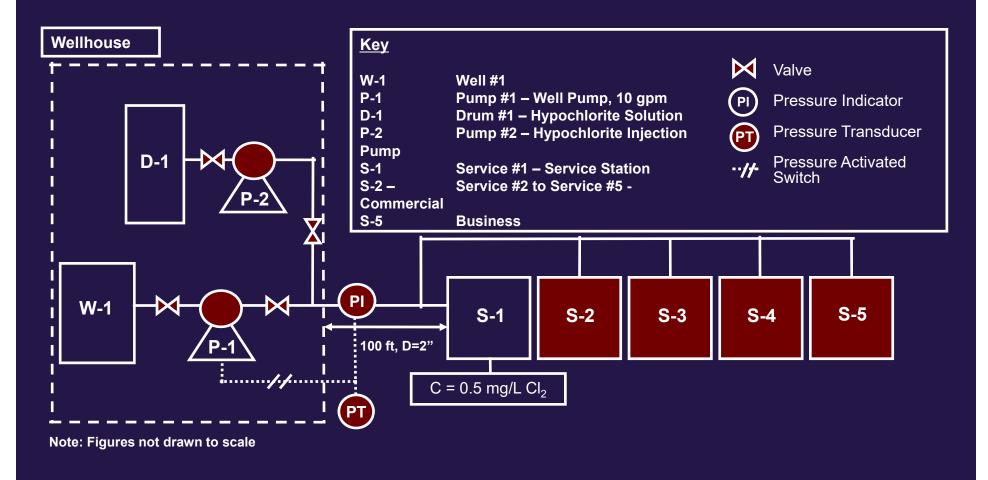


## Understanding CT

$$CT [(mg-min)/L] = C \times T$$

- C = Concentration of disinfectant residual (mg/L)
  - Must be measured before or at first customer
  - For systems using chlorine, can be measured with portable kit or continuous monitor using an EPAapproved method
- T = contact time (minutes) between point of application of disinfectant and point where disinfectant residual is measured
  - Based on system components

#### Calculating CT, GWR Example


- You will need to know:
  - C (mg/L or ppm), the measured disinfectant residual at or before the first customer
  - Length (ft) of each pipe between point where disinfectant is applied and where it is measured
  - Diameter (ft) of each pipe between point where disinfectant is applied and where it is measured
  - Volume of water (gallons) of any storage tank used to provide disinfectant contact time and baffling factor for the tank
  - Maximum daily flow (gpm) of system, measured with flow meter, maximum capacity of pump, or another state-approved method

#### Example: Redwood Road Water System

- Well pump has manufacturer's rating of 5 gpm.
- Water is injected with liquid sodium hypochlorite in wellhouse.
- 100 ft of 2-inch-diameter pipe between wellhouse and first service connection.
- Free chlorine residual at first service connection is 0.5 mg/L as Cl<sub>2</sub>.

#### How much CT does the system have?

#### Schematic: Redwood Road Water System





## CT Calculation, GWR Example

- Basic Formulas:
  - Calculating pipe cross-sectional area =  $(\pi \div 4) \times (\text{diameter}^2)$
  - Calculating pipe volume = pipe length x cross-sectional area
  - Calculating disinfectant contact time = pipe volume ÷ flow
  - Calculating CT = disinfectant residual x contact time

#### CT Calculation, GWR Example

- Calculating CT using actual conditions:
  - Pipe cross-sectional area =  $(\pi \div 4) \times (\text{diameter}^2) = (3.14 \div 4) \times (\text{diameter}^2) = 0.785 \times (2/12 \text{ ft})^2 = 0.022 \text{ ft}^2$
  - Pipe volume = pipe length x pipe cross-sectional area =  $100 \text{ ft x } (0.022 \text{ ft}^2) = 2.2 \text{ ft}^3 = 2.2 \text{ ft}^3 \text{ x } 7.48 \text{ gallons/ft}^3$  = 16.4 gallons
  - Contact time = Volume in pipe ÷ flow =16.4 gallons ÷ 5 gpm = 3.3 minutes
  - $-CT = 0.5 \text{ mg/L} \times 3.3 \text{ minutes} = 1.7 \text{ mg-min/L}$

Compare with CT required by GWR to achieve 4-log inactivation of viruses.

## CT Table (from GWR)

CT Values for Inactivation of Viruses by Free Chlorine, pH 6.0-9.0

| °C                    | 1    | 2    | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
|-----------------------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Inactivation<br>(log) |      |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 2                     | 5.8  | 5.3  | 4.9 | 4.4 | 4.0 | 3.8 | 3.6 | 3.4 | 3.2 | 3.0 | 2.8 | 2.6 | 2.4 | 2.2 | 2.0 | 1.8 | 1.6 | 1.4 | 1.2 | 1.0 |
| 3                     | 8.7  | 8.0  | 7.3 | 6.7 | 6.0 | 5.6 | 5.2 | 4.8 | 4.4 | 4.0 | 3.8 | 3.6 | 3.4 | 3.2 | 3.0 | 2.8 | 2.6 | 2.4 | 2.2 | 2.0 |
| 4                     | 11.6 | 10.7 | 9.8 | 8.9 | 8.0 | 7.6 | 7.2 | 6.8 | 6.4 | 6.0 | 5.6 | 5.2 | 4.8 | 4.4 | 4.0 | 3.8 | 3.6 | 3.4 | 3.2 | 3.0 |

CT values provided in the tables are modified by linear interpolation between 5°C increments.

Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources

www.epa.gov/safewater/mdbp/guidsws.pdf

#### Considerations for Calculating CT for SWT

- Chlorine effectiveness, extrapolate or worstcase (EPA tables)
  - pH, temperature
- Detention time (DT)
  - Plug flow vs. CSTR
  - CSTR
    - Theoretical DT
    - Actual DT
      - Baffling factor (WaDoH handout)

#### **Detention Time**

- Theoretical detention time (TDT) = volume ÷ flow
  - Basin, pipe, process volume
  - Peak instantaneous flow
  - Amount of time water is in basin assuming perfect plug flow and no short-circuiting

## Detention Time (cont.)

- Actual detention time can be less than theoretical due to short-circuiting
  - Baffling factor (BF)
    - 0.1 = no baffling; agitated basin, high velocities
    - 0.3 = poor; single or multiple inlets, outlets
    - 0.5 = average; baffled inlet, outlet, some intra-basin
    - 0.7 = superior; perforated inlet, perf/serp intra-basin, outlet weir or perforated launders
    - 1.0 = perfect plug flow; very high L:W, perforated inlet, outlet and intra-basin
  - ADT = TDT x BF, which is also disinfectant contact time



## CT Worksheet

| Unit          | Volume                  | Theoretical          | Baffle   | Actual               | CT,               | Total | Log     |  |  |  |
|---------------|-------------------------|----------------------|----------|----------------------|-------------------|-------|---------|--|--|--|
| Process       | gal                     | T <sub>D</sub> , min | Factor   | T <sub>D</sub> , min | mg*min/L          | CT    | Removal |  |  |  |
| transmission  | 45,000                  |                      | 1        |                      |                   |       |         |  |  |  |
| rapid mix     | 50                      |                      | 0.1      |                      |                   |       |         |  |  |  |
| flocculation  | 15,000                  |                      | 0.1      |                      |                   |       |         |  |  |  |
| sedimentation | 60,000                  |                      | 0.3      |                      |                   |       |         |  |  |  |
| filtration    | 10,000                  |                      | 0.5      |                      |                   |       |         |  |  |  |
| clearwell     | 80,000                  |                      | 0.6      |                      |                   |       |         |  |  |  |
| Q = 1,000 gpm | $Cl_2 = 2 \text{ mg/L}$ | Temp = 6°C           | pH = 6.1 |                      | Total Log-Removal |       |         |  |  |  |

#### **Calculations and Discussion**

Calculate CT for each unit process and for total system.

Determine CT required for 1-log removal of Giardia lamblia at the given conditions.

Determine total log removal for the entire treatment system.

What options are available to obtain required CT if clearwell can not provide CT?

variables: flow, chlorine residual, baffle factor, injection point



## Calculating Inactivation

- Need log inactivation for Giardia per regulations
- Need log inactivation for viruses if using different primary disinfectant
  - O<sub>3</sub>, chloramines, chlorine dioxide
  - Not as effective for inactivating viruses as it is for inactivating Giardia

## Calculating Inactivation (cont.)

- Compare calculated CT to required CT from tables
  - Separate CT tables for different disinfectants due to varying effectiveness
  - Separate CT tables for Giardia and viruses
  - CT required for desired log inactivation based on residual and pH (for chlorine), temperature

## Log Reduction

- Refers to logarithmic theory
- Relates to the percentage of microorganisms
   physically removed or inactivated by a given process
- Rule of "9s": the log number coincides with the number of 9s in the percent reduction
  - 1-log reduction = 90% removed or inactivated
  - 2-log reduction = 99% removed or inactivated
  - 3-log reduction = 99.9% removed or inactivated
  - Round up to next highest integer for 0.5-logs
    - $3.5 \log \rightarrow 4 \log = 99.99\%$

## Log Reduction (cont.)

- Regulations allow credit for some physical processes
  - Total log reduction = physical log removal + log removal from disinfection

## Determining Required CT

- Calculate CT based on system operating parameters and configuration
- Use CT tables to determine required CT
  - Find appropriate table for disinfectant used
  - Find appropriate table for target microorganism
  - For chlorine
    - Find appropriate portion of table based on worst-case (lowest measured) temperature
    - Find appropriate column based on worst-case (highest measured) pH
    - Find appropriate row based on worst-case (lowest measured) residual
    - Identify CT required from row/column convergence



#### **Determining Actual Log Inactivation**

- Actual log inactivation is based on ratio of calculated CT to required CT from table
- Depends on whether system is required to achieve
   3-log Giardia or 4-log virus inactivation
  - Actual *Giardia* log inactivation =  $3 \times (CT_{calc}/CT_{reqd})$ 
    - Regulations require 3-log removal or inactivation for Giardia
  - Actual virus log inactivation =  $4 \times (CT_{calc}/CT_{regd})$ 
    - Regulations require 4-log removal or inactivation for viruses
  - Can modify either equation for multiple disinfection segments within treatment process

www.epa.gov/safewater/mdbp/pdf/ profile/lt1profiling.pdf







Daniel B. Stephens & Associates, Inc.