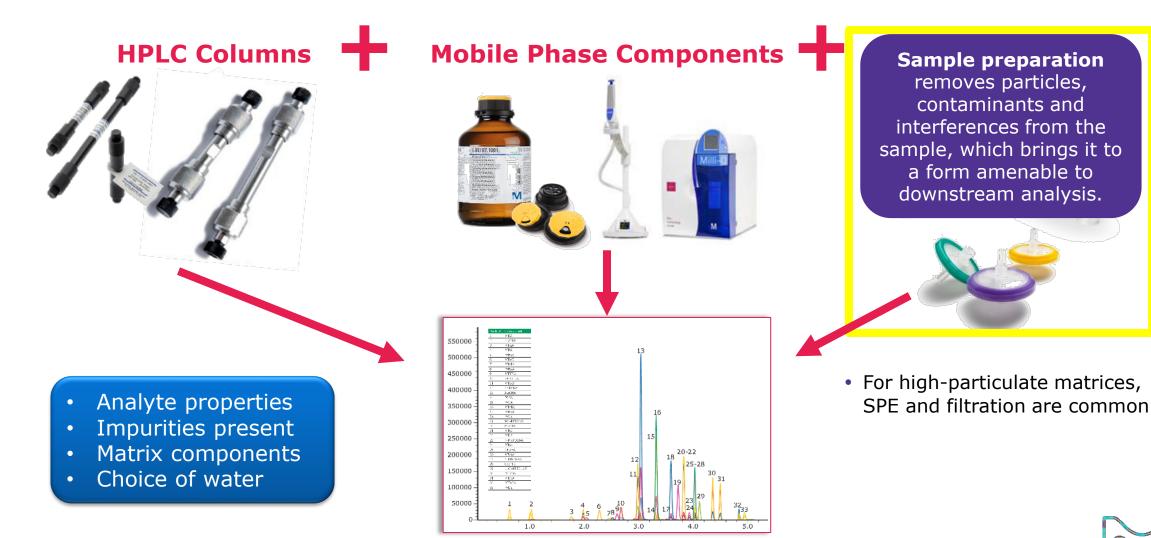
Successful Starts in LC-MS/MS Critical considerations when choosing a syringe filter for HPLC, UHPLC, and LC-MS/MS analysis

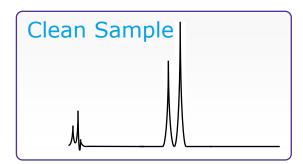
Lindsay D. Lozeau, Ph.D.

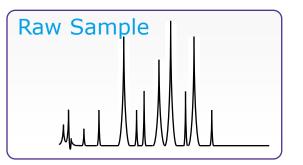

Research Scientist, Analytical Sciences MilliporeSigma Burlington, MA USA

> Merck KGaA Darmstadt, Germany

MilliporeSigma is the U.S. and Canada Life Science business of Merck KGaA, Darmstadt, Germany.

LC-MS/MS Analytical Methods Three Components for Success

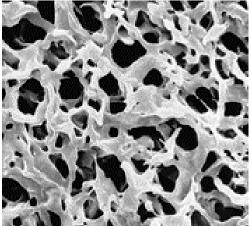


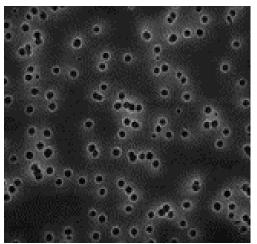


Why Sample Preparation Importance of sample preparation

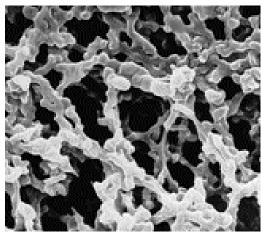
Without sample preparation, instrument performance and data quality will not be optimal:

- Undissolved particles in a sample / mobile phase clog and reduce the life of the chromatography column.
- Sample matrix containing lots of impurities makes chromatograms challenging to interpret.
- Particles held up on the column can clog the column and/or leach contaminants into the eluent (and affect current and subsequent samples), thereby increasing background noise.

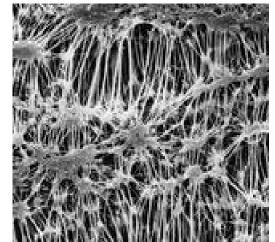



Sample matrix impurities
Undissolved particles
Particle leaching

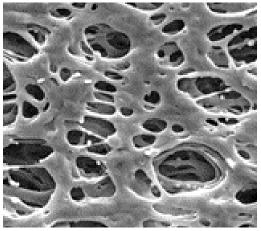
Which Membrane, and Why? Membrane Morphology & Applications

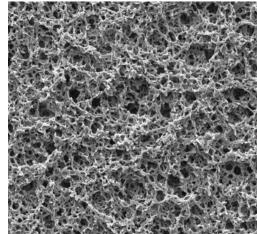


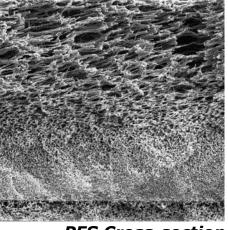
Polyvinylidine Fluoride (**PVDF**): Low binding and fast flow for protein sample prep

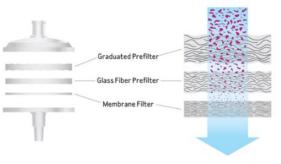


Polycarbonate (PC): preferred for microscopy and cell-based applications


5


Mixed Cellulose Esters (MCE): Biologically inert, versatile, smooth and uniform


Polytetrafluoroethylene (**PTFE**): Low extractables and high chemical compatibility


PolyethersulfonePl(PES): Quick flow and high capacity,
asymmetric for high-particulate water samples

Nylon: *Broad compatibility and commonly used for HPLC*

PES Cross-section

Nylon with a Glass Fiber Prefilter (HPF): One-step cleanup of large and small particulates without clogging

Which Membrane, and Why? Chemical Compatibility, Extractables and Retention

	Housing	<u>j Type</u>	<u>Membrane Type</u>								
	HDPE	PP	Nylon	PES	GFF	PTFE*					
AA	E	ND	Ρ	E	Е	E					
ACN	E	E	E	G	Е	E					
МеОН	E	E	G	G	Е	E					
EtOH	E	E	E	E	Е	Е					
3M NaOH	E	E	Ρ	Ρ	ND	E					
NH ₄ OH	E	E	Р	Ρ	Е	Е					
Na_2CO_3 Solution	G	E	Ρ	Ρ	ND	E					
1N HCI	E	E	G	E	Е	E					
Brine	E	E	E	E	ND	E					
SDS	G	G	G	G	ND	E					

E Excellent

G

Good

Poor

Ρ

Abbreviations: HDPE = high-density polyethylene; PP = polypropylene; PES = polyethersulfone; GFF = glass fiber filter; MCE = mixed cellulose ester; AA = acetic acid; ACN = acetonitrile; MeOH = methanol; EtOH = ethanol; SDS = sodium dodecyl sulfate; ND=not determined/testing recommended

*PTFE/PVDF not recommended for PFAS testing applications

Pore size is important to consider in consider with respect to your column. For U/HPLC columns with $<3\mu$ m packing, use a 0.2 μ m, for sizes above this, a 0.45 μ m is sufficient.

Retention doesn't always depend on pore size, but also membrane manufacturing method, symmetry and chemical structure, and even lot-by-lot

	0.2/0.22µm Syringe Filters	0.45µm Syringe Filters				
Material	% Retention of 0.24µm PS Beads	% Retention of 0.5µm PS Beads				
Nylon	100.0 ± 0.1	100.0 ± 0.05				
Nylon-HPF	54.2±27.3	a				
PES	69.4±28.1	99.5±0.79				
PTFE (Vendor 1)	49.8±31.8	99.98 ± 0.10				
PP (Vendor 1)	25.3±0.9	100.0 ± 0.06				
RC (Vendor 2)	15.8 ± 2.2	48.16±4.27				

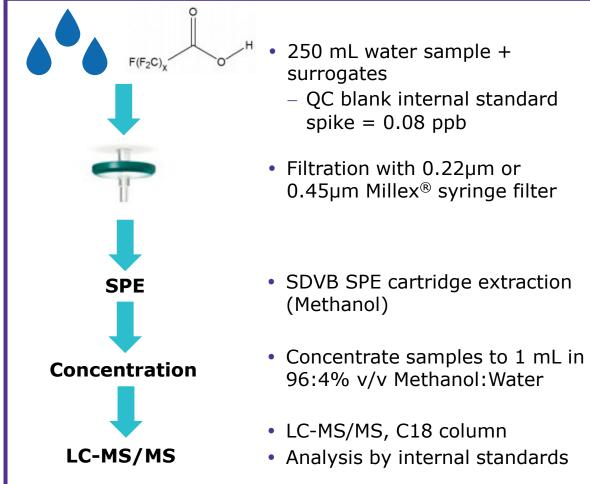
^aPore size not available.

Case study: PFAS analysis

Analytical Methods for PFAS Developed at a Rapid Pace **Regulatory Landscape**

Method(s)	Update/ Revision	Matrix/Matrices	Sample Prep	Analytical Method
EPA 537.1	Jun. 2020	Drinking water	SPE	LC-MS/MS
EPA 533	Dec. 2019	Drinking water	SPE	LC-MS/MS
SW-846 Method 8327*	Jul. 2021	Non-potable groundwater, surface water, wastewater	SPE, filtration	LC-MS/MS
ASTM D7968-17a	Sep. 2017	Environmental solids	Solvent extraction, filtration	LC-MS/MS
ASTM D7979-19	Sep. 2021	Water matrix (no drinking water)	Solvent extraction, filtration	LC-MS/MS
ISO 21675	Oct. 2019	Drinking, natural and wastewater	SPE, filtration as needed	LC-MS/MS
FDA C-010.02	Dec. 2021	Foods	QuEChERS, SPE, filtration	LC-MS/MS
OTM-45	Jan. 2021	Air Emissions (stationary sources)	Sampling train: filtration , impingers	LC-MS/MS
EPA Draft 1633	Feb. 2022	Aqueous, soil, biosolids, sediment, tissue	SPE, filtration	LC-MS/MS
EPA Draft 1621*	Apr. 2022	Aqueous matrices	TSS, GAC column cleanup	CIC

- Almost exclusively LC-MS/MS based methods
- SPE & filtration are common sample preparation
- Increased focus on high-particulate matrices
- Additional watchouts for PFAS sample preparation


*screening method only

Abbreviations: SPE = solid phase extraction; TSS = total suspended solids determination; GAC = granular activated carbon; CIC = combustion ion chromatography Selected methods; does not include all drinking water and international methods

Do Nylon or PES Syringe Filters Contaminate Samples with PFAS? **Experimental**

Overview of Modified EPA 537.1

LC-MS/MS Conditions

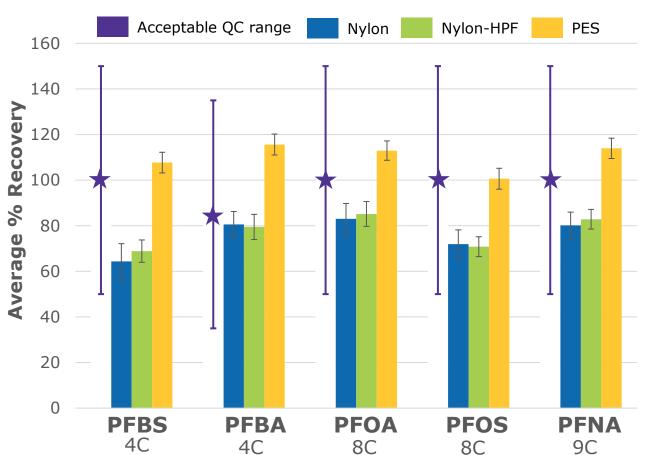
Column:	C18, 100 x 2.1mm ID, 2.7 μ m superficially porous particles								
Mobile phase:	 [A] DI Water, 0.1% (v/v) acetic acid; [B] Methanol (MeOH), 0.1% (v/v) acetic acid 								
Gradient:	Time (min)	A %	В %	Flow (mL/min)					
	0-0.0	65%	35%	0.4					
	0-7.0	0%	100%	0.4					
	7.0-10.0	0%	100%	0.7					
	10.0-11.0	0%	100%	0.7					
	11.0-15.0	65%	35%	0.4					
Flow rate:	See gradient table								
Detection:	MS/MS, ESI(-), details of MS/MS conditions can be requested from the author								
Column temp:	50.0 °C								
Injection volume:	3-5 µL autosampler injection								
Sample :	SPE eluate concentrated to 1 mL methanol: water, 96:4% (v/v)								

Data collected in collaboration with:

Results	Category	Compound	Abbre- viation	RL (ppb)	MDL (ppb)	SLGP033 0.2µm PES			SLHP033 0.45μm PES		SLGN033 0.2µm Nylon			SLGNM25 0.2µm Nylon-HPF				
Results						Lot1	<u>Lot</u>	<u>:2 L</u>	<u>ot3</u>	<u>Lot1</u>	Lot2	Lot3	Lot1	Lot2	Lot3	<u>Lot1</u>	Lot	2
		Perfluorobutanoic acid	PFBA	0.0040	0.0020													
		Perfluoropentanoic acid	PFPeA	0.0020	0.0010													
	[1]	Perfluorohexanoic acid	PFHxA	0.0020	0.0010													
		Perfluoroheptanoic acid	PFHpA	0.0020	0.0010													
		Perfluorooctanoic acid	PFOA	0.0020	0.0010					ltrate			ND – Not detected in filtrate					
	Perfluoroalkylcarboxylic acids	Perfluorononanoic acid	PFNA	0.0020	0.0010	ND -		cted i	in filt									
	acius	Perfluorodecanoic acid	PFDA	0.0020	0.0010	10000	Not detected in filtrate											
		Perfluoroundecanoic acid	PFUnDA	0.0020	0.0010													
		Perfluorododecanoic acid	PFDoDA	0.0020	0.0010													
		Perfluorotridecanoic acid	PFTrDA	0.0020	0.0010													
		Perfluorotetradecanoic acid	PFTeDA	0.0020	0.0010													
		Perfluorobutanesulfonic acid	PFBS	0.0020	0.0010													
		Perfluoropentanesulfonic acid	PFPeS	0.0020	0.0010													
		Perfluorohexanesulfonic acid	PFHxS	0.0020	0.0010													
	[2]	Perfluoroheptanesulfonic acid	PFHpS	0.0020	0.0010													
	Perfluoroalkylsulfonic acids, Perfluorooctane	Perfluorooctanesulfonic acid	PFOS	0.0020	0.0010	ND -	-						ND –					
	sulfonamides, and Perfluoroctanesulfon- amidoacetic acids	Perfluorononanesulfonic acid	PFNS	0.0020	0.0010	Not o	dete	cted	in filt	iltrate			Not detected in filtrate					
		Perfluorodecanesulfonic acid	PFDS	0.0020	0.0010													
		PFOSA	PFOSA	0.0040	0.0020													
		N-MeFOSAA	MeFOSAA	0.0040	0.0020													
		N-EtFOSAA	EtFOSAA	0.0040	0.0020													
		4:2 Fluorotelomer sulfonate	8:2 FTS	0.0080	0.0020													
		6:2 Fluorotelomer sulfonate	6:2 FTS	0.0080	0.0020													
	[3] Fluorotelomer sulfonates and Next Generation	8:2 Fluorotelomer sulfonate	8:2 FTS	0.0080	0.0020	ND -							ND -					
		HFPO-DA	GenX	0.0040	0.0020			cted i	ted in filtrate						ed in fil	trate		
	PFAS Analytes	ADONA	ADONA	0.0080	0.0020					litiate								
		9C1-PF3ONS (F-53B Major)		0.0080	0.0020													
10		11C1-PF3OUdS (F-53B Minor)		0.0080	0.0020													

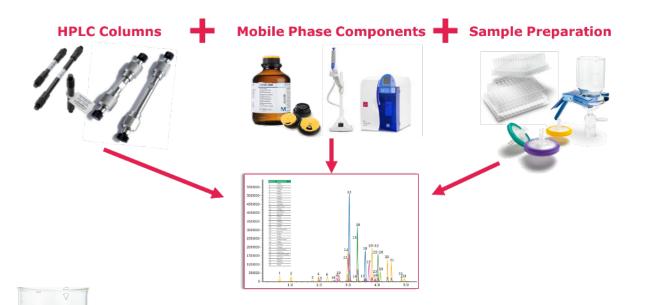
Highlighted teal indicates requirement of EPA 537.1

PFAS Analysis The Known Challenges


Known Challenges

- Contamination
- Volatility
- Longer chain compounds
- Recovery and absorption
- Consumable vs. process

Solutions


- Know your membrane & vendor
- For nylon, a simple wash can reduce absorption from detectable to undetectable levels [1,2]
- Choose the proper membrane for targeted compounds

Average Recovery of C13 Labeled Standards

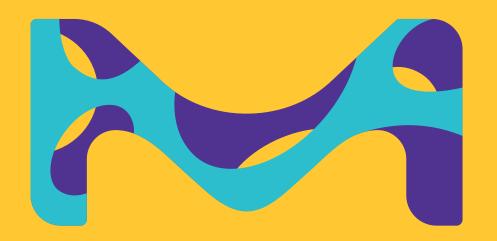
Successful Starts in LC-MS/MS Summary

- Sample preparation is one of the critical components of successful LC-MS/MS analysis
- With higher particulate matrices, sample preparation needs increase (ex., filtration, SPE)
- Choosing the right filter for sample preparation depends on many properties:
 - Material, chemical compatibility, pore size & retention, prefiltration, sample volume
- For PFAS analysis specifically, always consider the known challenges when choosing a consumable for sample preparation:
 - Risk of contamination
 - Risk of analyte loss

We tested PES ($0.2\mu m$ and $0.45\mu m$), Nylon ($0.2\mu m$) and Nylon with a glass fiber prefilter ($0.2\mu m$) for PFAS extractables using a modified EPA 537.1 LC-MS/MS method

None of the filters demonstrated PFAS extractables, and are thus appropriate for prepping high particulate samples for PFAS analysis

Acknowledgements


- Amy Laws
- Maricar Dube
- Vivek Joshi
- Ivona Strug
- Taylor Reynolds
- Edson Cordeiro
- Lucas Vinciguerra

PREPARED FOR PFAS TESTING

- <u>https://sigmaaldrich.com/pfas-testing</u>
- http://sigmaaldrich.com/pfassamplefiltration

Lindsay D. Lozeau

Phone: + 1-978-715-8201 Email: <u>lindsay.lozeau@milliporesigma.com</u>

