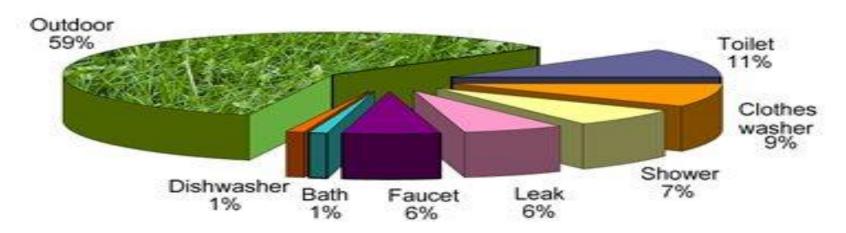


DECENTRALIZED WASTE WATER TREATMENT

Gevod V.S.
Ukraine State Chemical Technology University
Dnepro
Pr.Gagarina,8
aquilegya@ua.fm

WE SHALL CONSIDER NEXT QUESTIONS

- What requirements should to satisfy of good local sewage system?
- •What processes occurs at treatment of sewage water inside of local sewer?
- The role of microorganisms at sewage water purification.
- Drain systems, the processes inside of their and some important notes.
- How does long the septic system can run?
- Requirements for its proper operation.
- Source separation systems.
- Membrane bioreactors.
- Small waste water treatment plants.
- Wetlands.



DECENTRALIZED WASTEWATER TREATMENT

We all prefer to live with a certain of comfort, despite the place of residence, whether it is a cottage, apartment or country house. We consume a certain quantities of fresh water for different purposes and we produce about the same amount of domestic wastewater.

Residential Average Water Use

Source: American Water Works Association Research Foundation, End Uses of Water

MUNICIPAL SEWAGE SYSTEMS

Within the territory of cities all amenities are usually provided by the centralized systems of water supply and sewerage.

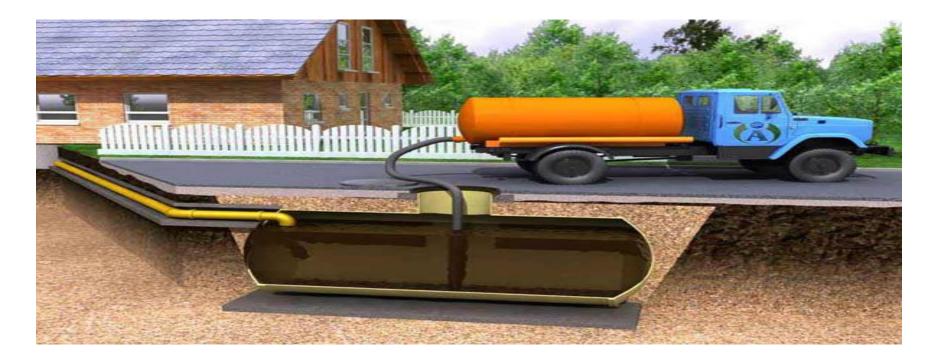
http://santehexp.ru/wp-content/uploads/2014/04/image001.jpg

http://tekil.ru/wp-content/uploads/2011/09/kanal_014.jpg

WHERE IS NO CENTRAL SEWAGE SYSTEM THE PROBLEM OF HOUSEHOLD EFFLUENTS IS RESOLVED IN A SPECIAL WAY.

In this case homeowner is required the local sewage. For safe disposal of the sewage water which is generated in the house, it is necessary the adequate treatment of this water.

WHAT CONDITIONS SHOULD TO SATISFY OF GOOD LOCAL SEWAGE SYSTEM?


- 1. Local sewage should not pollute the drinking water sources, either surface or ground water, or water bodies that are used for bathing or recreational purposes.
- 2. The untreated sewage water should not be exposed so as to have access to human beings or animals.
- 3. Local sewage should not to give unpleasant smell, and should not become a place for breeding flies.
- 4. Local sewage should not cause harm to public health and adversely affect the receiving environment.

THE SIMPLEST KIND OF LOCAL SEWER IS CREATED USE OF A CESSPOOL.

The maintenance of cesspools is reduced to regular pumping of accumulated effluents by means of special sanitary cars and of delivering these effluents onto sewage treatment plants.

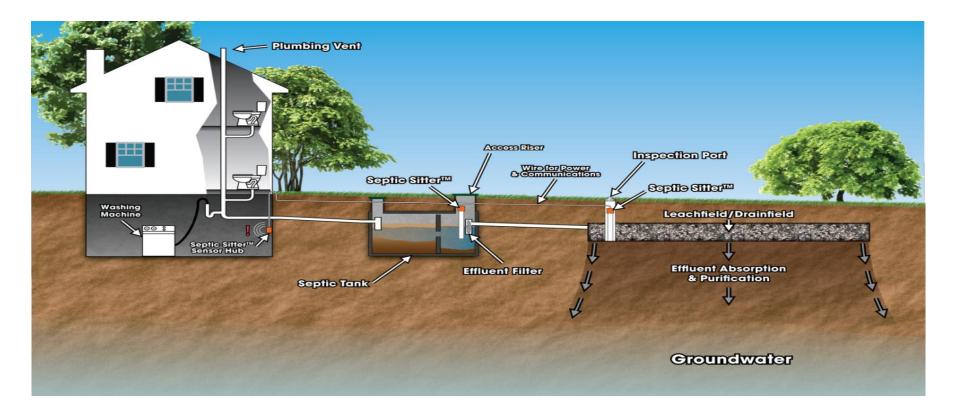
BUT THE USE OF CESSPOOLS IS LEGAL ONLY WHERE THE QUANTITY OF EFFLUENTS FOR ONE DAY DISCHARGE NOT EXCEED ONE CUBIC METER.

So either anyone will use a cesspool and live in uncomfortable conditions, or anyone will enjoy all the amenities of modern appliances, when there are local waste water treatment facilities.

http://design-ideas.dressesdesignsdecors.com/design-ideas/bathroom/bathroomrenovationsjohannesburg2.jpg

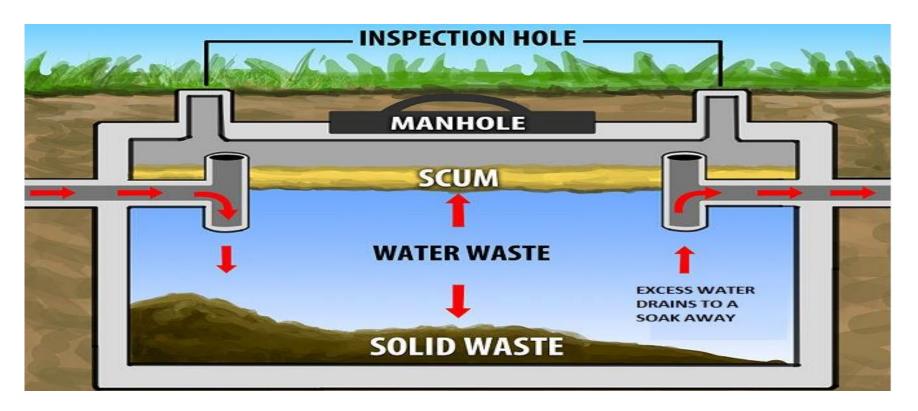
WHAT COMPOSITION OF HOUSEHOLD EFFLUENTS IS? WHAT KIND OF EQUIPMENT FOR LOCAL SEWAGE IS REQUIRED? HOW DOES THIS EQUIPMENT WORKS?

Table Average composition of domestic sewage


Parameter	Concentration (mg/l)	Parameter	Concentration (mg/l)				
Carbohydrates	95	Magnesium	15				
Fats	100	Zinc	0.2				
Proteins	115	Manganese	0.15				
Detergents	43	Copper	0.15				
Phosphorus	10	Lead	0.1				
Sulphur	46	Nickel	0.04				
Chloride	50	Chromium	0.03				
Boron	2	Tin	0.015				
Sodium	80	Silver	0.01				
Potassium	19	Cadmiun	<1				
Calcium	70	Mercury	<0.1				

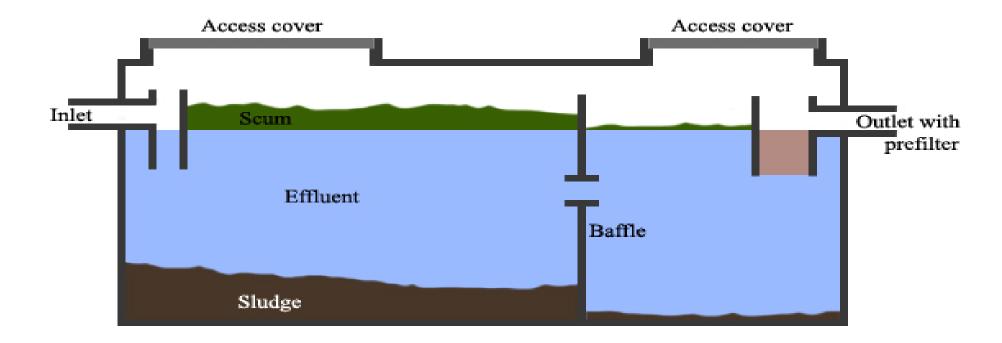
THE DESIGN OF LOCAL SEWAGE

Local sewage consist of plumbing devices in the house, of sewer pipes, of septic tank and drainage network for discharging of treated wastewater into the ground.



THE MAIN PART OF LOCAL SEWAGE IS A SEPTIC TANK.

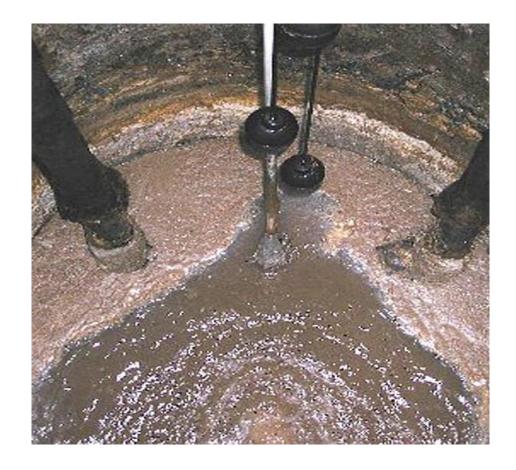
Here bacteria are starts to decompose human waste products into environmentally acceptable substances.



TYPICALLY THE SEPTIC TANK CONSIST OF TWO UNITS.

The first unit is a settling compartment.

Inside of it the sewage water is accumulated and undergoes of initial segregation.



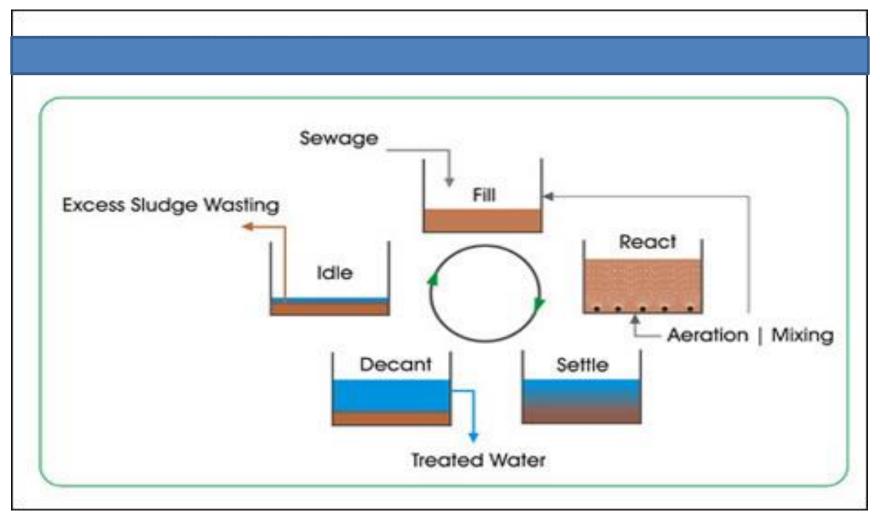
THE PROCESSES INSIDE OF SETTLING COMPARTMENT

- Inside the settling compartment the heavy impurities settle the bottom, forming a sludge and light impurities float to the surface of water, forming a scum. The scum is seen on the photo at right.
- In such a way, the bulk of water becomes freed from impurities which have a specific density difference from the specific density of water.

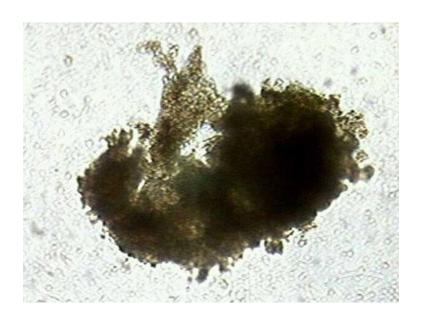
http://septick.ru/articles/images/max/zailivanie-septika.jpg

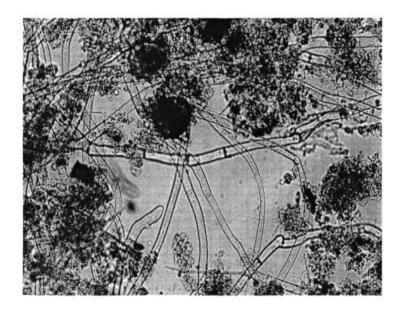
THE PROCESSES INSIDE OF SECOND COMPARTMENT

In this compartment the wastewater treatment is continuing under action of heterotrophic bacteria.


- The sludge, generated inside of second compartment as result of bacteria action is gradually deposited on the bottom and as result the waste water becomes cleaner and cleaner.
- After a stay in the second compartment of certain time the waste water becomes so pure that it can be pumped into the drainage pit, trench, etc.

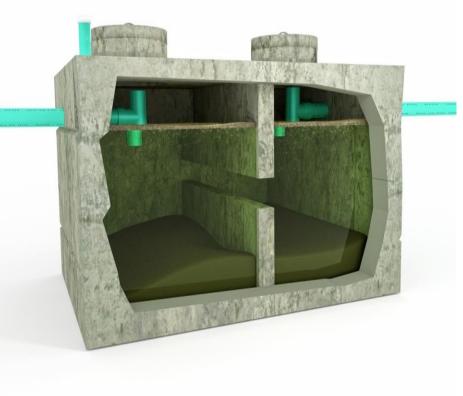
LAYOUT OF PROCESSES INSIDE OF SEPTIC TANK



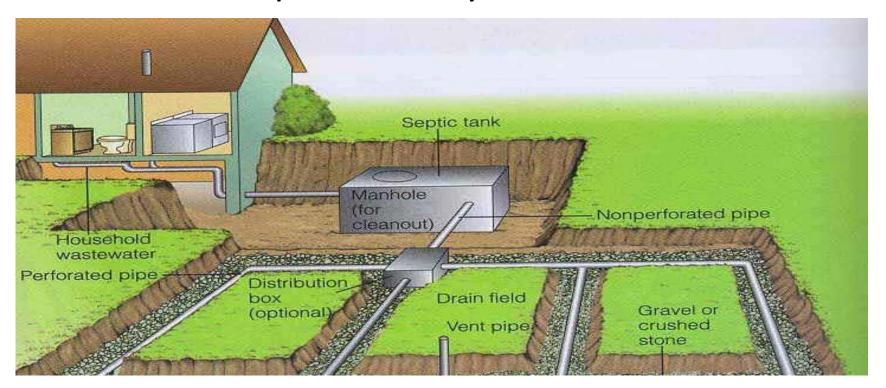


THE MECHANISMS OF MICROBIOLOGICAL TREATMENT.

The microorganisms of active sludge when contacting with organic substances of sewage water are consume some part of these substances, releasing into water carbon dioxide, nitrate ions, sulfide ions etc. Other part of organic matter is transformed into the biomass of bacterium cells forming additional sludge.


http://www.biogest.com/wp-content/uploads/sludge-floc/before-disintegration.jpg

DESIGN OF SEPTIC TANKS MADE OF PLASTIC AND CONCRETE



DISCHARGING OF TREATED EFFLUENT INTO THE SOIL

From septic tank the end products of digestion sewage water are discharged into the drainage field that uses microorganisms to final destruction these products naturally in the soil.

TECHNICAL DETAILS

Discharging occurs through the perforated pipes of appropriate diameter disposed on the washed gravel. The gravel bed perform the function of initial filtration layer of septic field.

http://fundamentdomov.ru/wp-content/uploads/2016/02/4-25.png

ESSEMBLING OF DRANAGE SYSTEM

This is the picture of drain field made of perforated pipes on the gravel bed.

CONSTRUCTION OF DISTRIBUTION BOX

From the septic tank to the laterals of drain field the treated effluent is directed through a distribution box

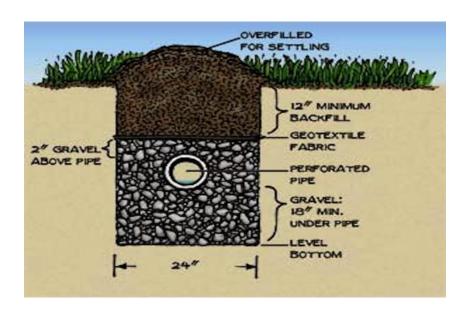
DISPOSITION OF SEPTIC

When creating of local sewage system the septic is displaced at certain distance from the house. Minimal distance is about 2-3 meters.

 In the case of small volumes of sewage water discharge one can use the septic unit in conjunction with the drain well.

USING OF DRAIN WELL IS JUSTIFIED ONLY AT HIGH WATER ABSORPTION CAPACITIES OF SOILS.

In other cases it is required to use more complicated drainage systems containing many drainage pipes or special drainage units like shown here.



DESIGN OF DRAINAGE TRENCHES AND OF INSPECTION NODES

Above the soil filter is top soil in which grass is planted. The drain field is normally 0,3-0,6 meter below the surface.

http://landscapedesign.ru/wp-content/uploads/2014/02/razrez-drenazh.jpg

http://krasnodarskiy.xyz/wp-content/uploads/st-d100z-1.jpg

DAMAGE IN THE SEPTIC

If the effluent cannot soak into the soil surrounding the drain field, sewage may back up, overflow into the house or puddle on the surface of the ground.

http://www.davidzuidema.com/images/Homeimage.jpg

http://www.cpssepticandsewer.com/images/stories/failedleachline.jpg

POSSIBLE CAUSES OF PROBLEMS WITH A SEPTIC SYSTEM.

- 1. Faulty design of the septic system.
- 2. The drain field system placed in unsuitable soil.
- 3. The septic system is too small for the house it serves.
- 4. The septic system is improperly constructed.
- 5. High water table.
- 6. Physical damage.

DAMAGE IN THE UNITS OF SEPTIC SYSTEM

http://www.classicdrainage.com/assets/ Clogged_pipe.jpg

http://cdn.balkanplumbing.com/wp-content/uploads/Tree-Roots-Inside-Sewer-Pipe.jpg

HOW LONG SHOULD A SEPTIC SYSTEM LAST?

How big should a septic tank be for a proper operation of local sewage system?

# Bedrooms	Home Square Footage, M ²	Tank Capacity, M ³
1 or 2	Less than 150	3,3
3	Less than 150	4,5
4	Less than 350	5,6
5	Less than 450	5,6
6	Less than 550	5,9

HOW BIG SHOULD A DRAIN FIELDS BE FOR A PROPER OPERATION OF LOCAL SEWAGE SYSTEM?

- Determining the required size of a drain field is more complicated.
- The first thing to consider is the nature of the soil in which the drain fields is to be constructed.
- Because water has to be absorbed in the soil, one must to know how fast it can be absorbed.
- This is called the percolation rate and is expressed as the time it takes for water in a test hole to decrease in level by one centimeter (minutes/cm).

CHOOSING OF DRAIN FIELD SIZE DEPENDING OF PERCOLATION RATE

Required Septic Absorption Trench Length in Feet versus

Soil Percolation Rate & Wastewater Flow Rate

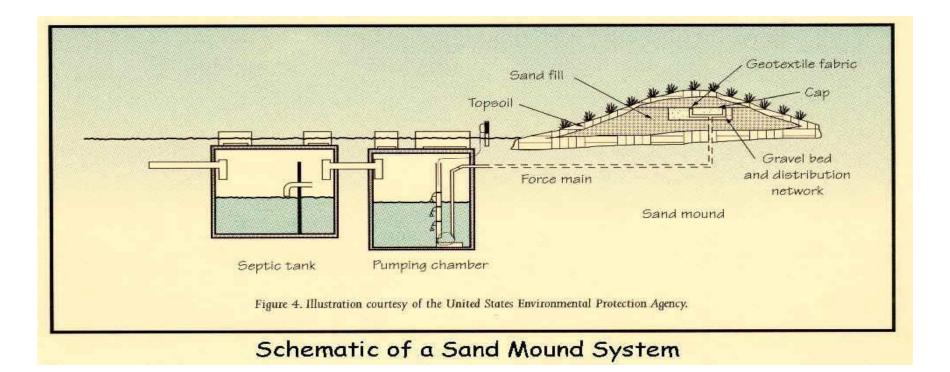
2 Bedrooms 3			3 Bdrms	3 Bdrms 4 Bdrms			5 Bdrms			6 Bdrms					
Soil Percola tion Rate in					Septic	Wastewat	er Effluen	t Input Fic	ow Rate (G	allons pe	r Day)[1]				
Minute: / Inch	^S 220 gpd	260 gpd	300 gpd	330 gpd	390 gpd	450 gpd	440 gpd	520 gpd	600 gpd	550 gpd	650 gpd	750 gpd	660 gpd	780 gpd	900 gpd
1 - 5 6 - 7	92 110	108 130	125 150	138 165	162 195	187 225	184 220	216 260	250 300	230 275	270 325	312 375	275 330	325 390	374 450
8 - 10	123	145	167	184	217	250	245	290	333	306	360	417	367	433	500
11 - 15	138	162	188	207	244	281	275	325	375	344	406	469	413	488	563
16 - 20	158	186	214	236	279	321	315	372	429	393	464	536	472	557	643
21 - 30	184	217	250	275	325	375	367	433	500	459	542	625	550	650	750
31 - 45	220	260	300	330	390	450	440	520	600	550	650	750	660	780	900
46 - 60	245	290	333	333	433	500	489	578	667	612	722	833	734	867	1000[2]

trench length is 500 feet or more in length.

http://sindicato-uno.cl/m_carrasco/wp-images/smilies/leaching-field-size-i7.jpg

Dosing system or alternative design is required if the total drainfield (soakbed / leachfield)

Dosing not required

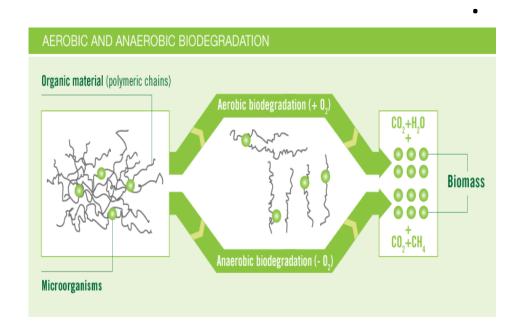

(but recommended)

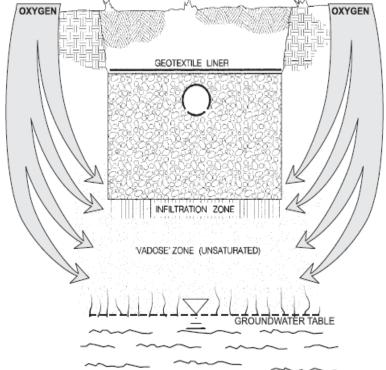
THE MOUND SYSTEM

If ground water or percolation rate are unsuitable, it may be possible to install a "mound" system. In a mound system, a suitable soil is placed above the unsuitable soil. A conventional system is then installed in the mound.

http://www.realtyresourceguide.com/septics/sandmound_copy.jpg

A MOUND LEACH FIELD IN A LOCAL SEWAGE SYSTEM

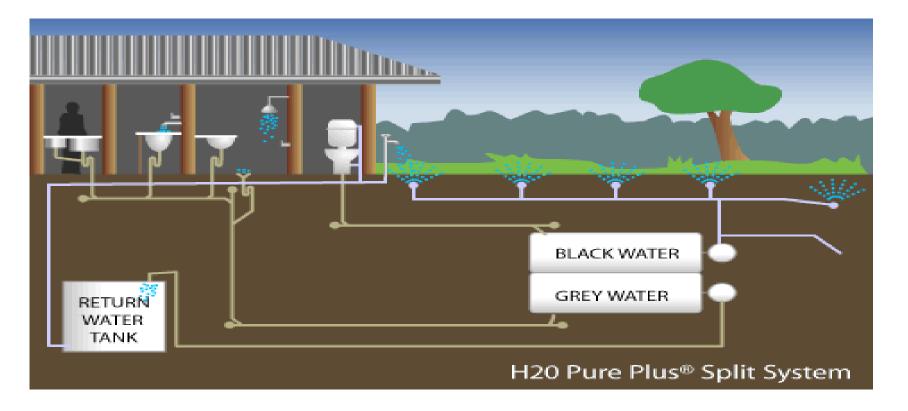




AEROBIC AND ANAEROBIC BIODEGRADETION

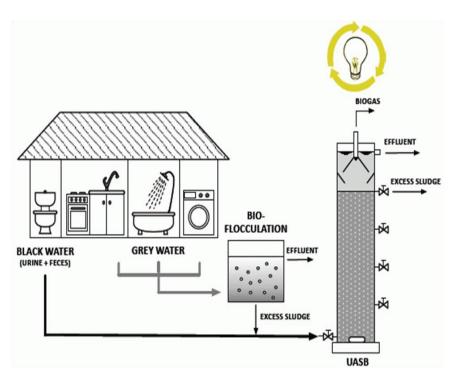
At present time the popular becomes the hybrid system that uses a combination of anaerobic and aerobic sections.

Source: Ayres Associates, 2000


http://www.apinatbio.com/eng/immagini/big/chart_01.gif

SOURCE SEPARATION SYSTEMS

This systems offers the possibility of recover nutrients, reducing release of micro pollutants to the environment, and increase degree of the water recycling.



SOURSE SEPARATION IS DRIVING INNOVATION IN DECENTRALIZED WASTEWATER TREATMENT

Novel approach allow also to reduce the discharge of water into soil and get an additional energy source as shown in picture below.

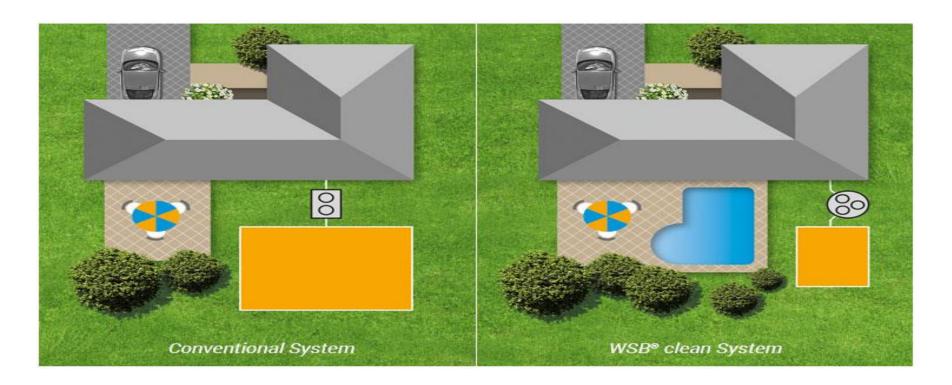
http://i.ytimg.com/vi/Y7SuiMDymBA/mqdefault.jpg

BENEFITS OF SOURCE SEPARATION

Gray water is the largest contributor to total volume of sewage water in the household.

At the same time gray water is the least contaminated

In the absence of kitchen wastewater, gray water is low in organic content.


Novel approach allow one to reduce the discharge of water into soil and get an additional energy source

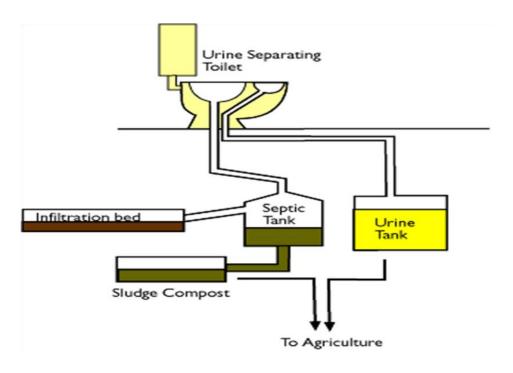
ADDITIONAL PROFIT

The useful free area around the house is extended due to reducing of required area for the drain field.

INSTRUMENTATION

Purification of grey water up to required quality can be attained by different devises

http://www.avloppscenter.se/shop/11994/art94/ h6182/15086182-origpic-173141.jpg http://www.omegagroup.gr/omega/portals/0/Images
/Επεξεργασια νερου/Multimedia-filter.png



NEXT BREAKTHROUGH

It is the use of range of toilets with very low dilution

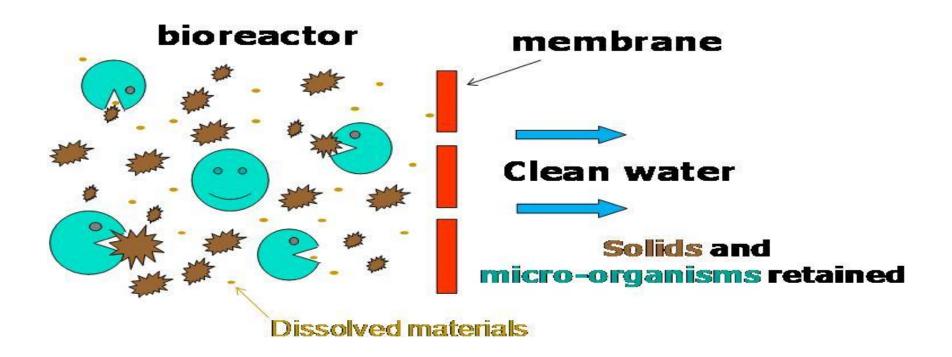
https://grist.files.wordpress.com/ 2010/03/toilet 463.jpg

http://www.fujitaresearch.com/reports/ _img/023-WW-Tileot.gif

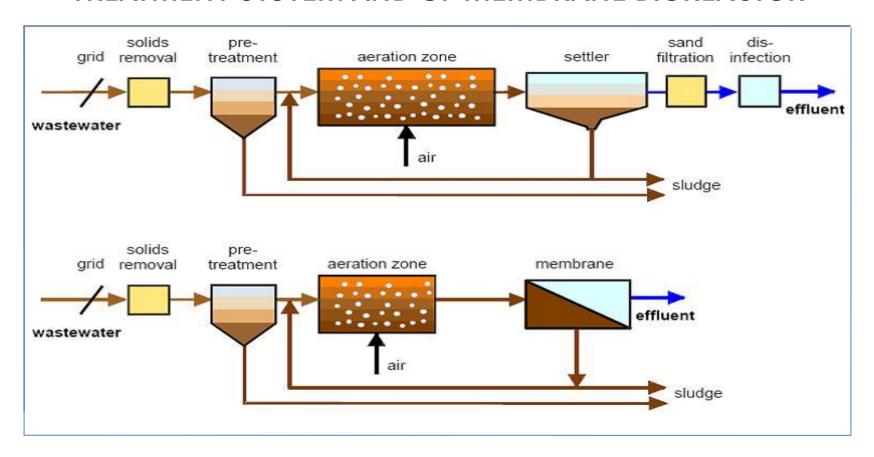
The toilets of low dilution was approbated in several projects where was shown how from the human rests to get addition sources of energy and fertilizes.

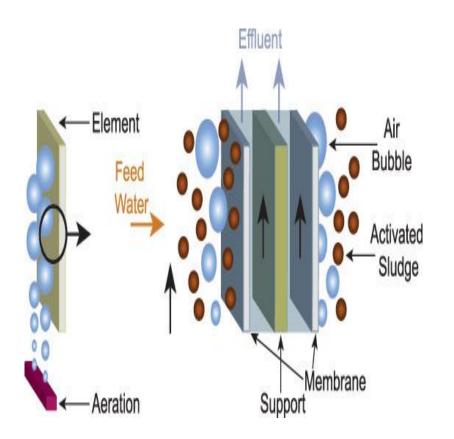
http://nursingcrib.com/wp-content/uploads/urine.jpg

Processed feces


http://www.myessentia.com/blog/wp-content/uploads/2010/05/biosolids.jpg

MEMBRANE BIOREACTORS


Last innovation within the range of decentralized systems for wastewater treatment include the using of membrane bioreactors.


THE BASIC DIFFERENCE BETWEEN ORDINARY WASTE WATER TREATMENT SYSTEM AND OF MEMBRANE BIOREACTOR

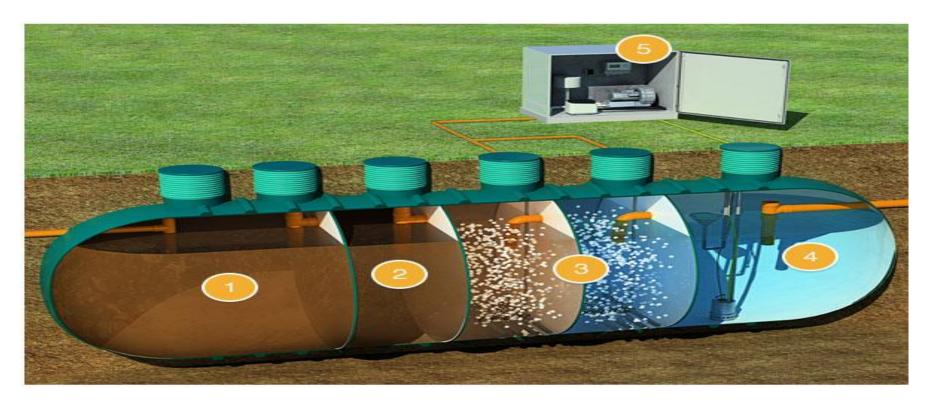
SCHEMATIC OF ELEMENTARY UNIT OF MBR AND THE PICTURE OF MBR MODULE

http://sc02.alicdn.com/kf/HTB1qTO6HFXXXXc5XVXXq6xXFXXX5 /MBR-Plant-Membrane-Bioreactor-Membrane-Bio-reactor.jpg

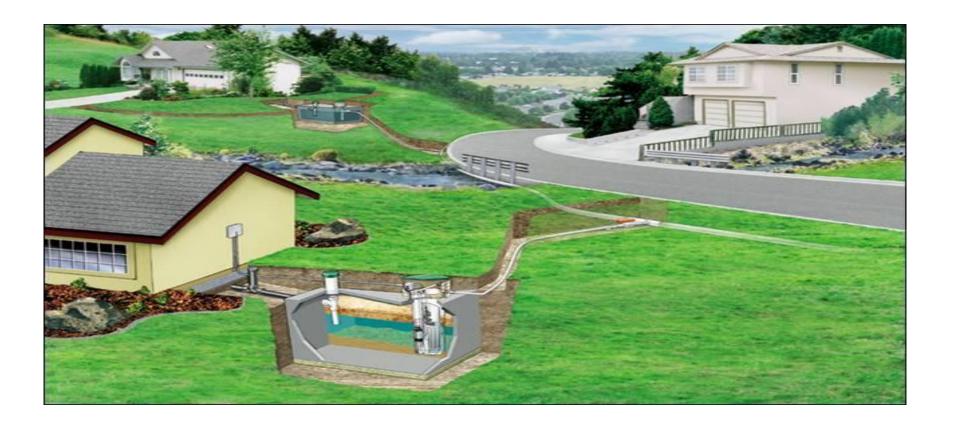
SMALL WASTE WATER TREATMENT PLANTS

Septic tanks, biological reactors, membrane bioreactors, soil-box planters, natural and artificial soil filters, as well as multimedia filters and other functional devices being connected in a certain sequence forms a small waste water treatment plants

This is example of WWTP designed of septic tank and membrane bioreactor


http://www.delphin ws.de/uploads/pics/Kleinklaeranlage_DELPHIN_classic_p lus S M Schnitt 03.png

THIS IS THE SMALL WWTP CONSISTING OF:

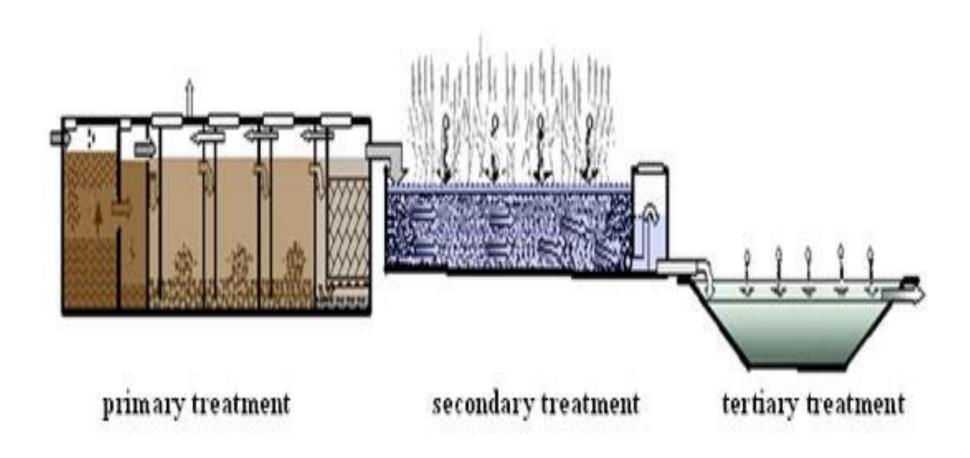

sludge storage unit (1), pre-treatment unit (2), biological compartments (3), final clarification unit (4) and control system (5).

SMALL WASTEWATER TREATMENT PLANTS CAN SERVE FEW HOUSES WITHIN THE COMMUNITY AREA.

DISPOSAL OF LARGE QUANTITIES OF TREATED WATER INTO GROUND OCCURS THROUGH A LARGE DRAINAGE SYSTEM

WETLANDS ARE USED ALSO

Wetlands is a permanently waterlogged areas populated by hydrophytic plants such as reeds, comprise a variety of sub-surface micro-habitats of differing oxygenation and red-ox potential.



http://blumbergengineers.com/uploads/images/middle_constructed_wetlands.JPG

SCHEMA OF ADVANCED SMALL WASTE WATER TREATMENT PLANT

