Design Procedures for RO & MBR: WASDA as Decision Support System

Prof. Ir. Dr. ZAINI UJANG

Ph.D., P.Eng. (M), C.Eng.(UK), C.Sci. (UK), C.W.E.M. (UK), MIEM, DNS, PPT

Institute of Environmental & Water Resource Management (IPASA) UNIVERSITI TEKNOLOGI MALAYSIA

Email: zaini@utm.my Homepage: http://web.utm.my/ipasa

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Presentation Menu

- Decision Support System?
- DSS Objectives
- WASDA & MBR in brief
- Procedures
- Results
- GROUP ASSIGNMENT

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

RO & MBR Design by Zaini Ujang

Decision Support System

- Interactive computer-based tools used by <u>decision makers</u> since 1960s to help answer questions, solve problems and support or refute conclusions
- <u>Concepts</u>: Spreadsheets, databases, networks, hypermedia, expert systems, visual programming, intelligent agents, neural networks, etc.
- Potential to improve decision quality, competitive edge, time-saving and productivity when users have both sufficient technical knowledge of the system and enough experience of the job.
- Widely used for the solution of various engineering and management problems

Learning outcomes and objectives

- WASDA as a decision support system for designing membrane processes
- Practice designing Reverse Osmosis (RO) and Membrane Bioreactor (MBR) systems.
- To perform tasks as consultants, design engineers and policy makers in relation to membrane processes

WASDA in brief

- <u>Was</u>tewater Treatment Plant <u>Design</u> <u>A</u>dvisor.
- DSS was developed by IPASA-UTM, esp. for wastewater treatment plant design and decision making
- Contains 2 main parts:

(a) Knowledge / information base

(b) Design calculation spreadsheet

- Provides conceptual & process design recommendations for conventional wastewater, primary, secondary & advanced treatments – proposed by best practical manuals / public authorities (sewerage services / environmental control).
- Mainly focused on municipal and industrial applications to produce conceptual and process design for primary, secondary and advanced treatments.

WASDA development process

IWA Conference, Workshop on 6th Membrane Technology = 14-15 May 2007 = KLCC

Institute of Environmental & Water Resource Management (IPASA)

IWA Conference, Workshop on 6th Membrane Technology = 14-15 May 2007 = KLCC

8

Institute of Environmental & Water Resource Management (IPASA)

Design Procedures

Calculation Screen for RO Module: Ions & Salt Removal

Contaminant Sodium Chloride	No. of lons	2 Molecular Weight 58.45 a/amol
Food Flow	15 gol/min	Feed Concentration 800 mg/l
Temperature	25 ° _C	Coefficient of 1.9 x10 ⁻⁶ gmol /cm ² .s.a
Membrane Area for Each	250 ft ²	Operating Pressure 300 psi
Rejection of Contaminants	99 %	Recovery Rate Required 80 %
Stage 1 Osmotic Pressure	9 psi	Water Flux 37.62 x10 ⁻⁶ gmol /cm ² .s
Membrane Area Required	1506.01 ft ²	Membrane Elements 6 Required
Stage 2		
Osmotic Pressure	18 _{psi}	Water Flux 36.46 x10 ⁻⁶ gmol /cm ² .s
Membrane Area Required	753.01 ft ²	Membrane Elements 3 Required
Permeate (Product)		
Permeate Flow	12 gal/min	Permeate Concentration 10.94 mg/L
Lesign Flo	w Conversion Ur	nit <u>C</u> alculate <u>R</u> eset <u>\$ O</u> perating Cost

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

RO & MBR Design by Zaini Ujang

Design Procedures

Cost Estimation Screen for RO Module: Ions & Salt Removal

Plant Capacity 2	1600 gal/day	Operating Pres	sure 300	psi R	ecovery Rate	80 %
Efficiency of Pump	80 % I	Recovery of Feed	Pump by Energy	Recovery	Equipment 🗌	15 %
Membrane Replacemen	t RM/ft ² Memt	brane Production	Rate 74.08 gal ,	/ft ² .day M	embrane Life	3 _{year}
Labour Labour Cost per Hour Workers per Shift	6 RM/hr 2 number/s	Hours per Shift shift	8 hr/shift	Shifts Labour ov	per Day 2 verhead 15	number/da %
Spare Parts Cost for Spare Parts	1 RM / 100	00 gal				
Pretreatment and Postt	reatment 1 RM/1000)gal Co	st for Filters	1 RM/	1000 gal	
Other Other	1 RM/1000) gal				
OUTPUT Operating Costs	20.19 RM / 1	1000 gal				
			Calculate Re	eset	Results Summa	rv EX

UNIVERSITI TEKNOLOGI MALAYSIA

Institute of Environmental & Water Resource Management (IPASA)

Result Summary Screen for RO Module: Ions & Salt Removal

Results Summary					
Project Name	Skudai	1 plant			
Person in charge	Ahmad				
Contaminant Removed	Sodium	n Chloride			
Plant Capacity		21600	gal/day	Feed Concentration	800 mg/L
Temperature		25	°C	Operating Pressure	300 _{psi}
Rejection of Contaminants	;	99	%	Recovery Rate	80 %
Membrane Area for Each E	Element	250	ft ²	Stage of Processes	2
Total Osmotic Pressure		27	psi	Total Water Flux	74.08 gal/ft ² .d
Membrane Elements Requ	ired	9			
Permeate Flow		17280	gal/day	Permeate Concentration	10.94 mg/L
Operating Costs		20.19	RM/1000 gal		
					EXI

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

RO & MBR Design by Zaini Ujang

Other info In WASDA

Information Screen for RO module

Term Membrane Operations					
The term membrane operation is recommended rather than the term membrane process. In general, a process is supposed to consist of two or more operations. A membrane operation can be defined as an operation where a feed stream is divided					
Type of Membrane Operations					
A general classification of membrane operation can be obtained by considering the following parameters: 1. Driving force					
Pressure-Driven Membrane Operations					
These are membrane operations in which the driving force is a pressure difference across the membranes. 1. Reverse Osmosis (RO). Reverse osmosis is a pressure-driven membrane					
Table: Comparison Between 4 Pressure-Driven Membrane Operations					
Permeation Operations					
These are membrane operations where the driving force is activity mixtures. When applied to solutions, it is the solvent which is transferred through the membrane. 1. Gas Permeation (GP)					
Dialysis Operations	Dialysis Operations				
These are membrane operations applied to solutions in which it is the solute which is transferred through the membrane. The driving forces is an activity or an electrica					

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Input Screen for MBR module – Part 1

Design of Membrane I	Bioreactor - Indust	rial Wastewater Treatme	nt (Part 1)		
File Run Tools					
INPUT (a)					
Average Flow	20 ▼ m ³ /d	Daily Maximum Flow	48 v m ³ /	Effective membrane area	0.8 v m ² /pc
-Design Parameter	, ,	bully maximum row)	Working factor of suction pump	0.9 -
Influent BOD	2600 v mg/l	Effluent BOD	10 • mg	Type of membrane unit	ES 125 -
TSS	1500 v mg/l	TSS	50 v mg	A Required number of cartridge	125 vieces
T- N	300 v mg/l	T- N	10 v mg	¹ MISS in agration tank	10000 v ma/l
T- P	200 v mg/l	T- P	10 v mg	A BOD volume leading	2 v lum-3 -1
Oil & Grease	600 🔽 mg/l	Oil & Grease	10 🔽 mg		
				Ratio between oxygen utilization & BOD removal	0.5
Return Sludge Ratio	3 🔽	Theoretical T-N removal	90 🔽 %	Endogenous respiration rate	0.07
Critical flux	0.4 🔽 m/d	Average Design Flux	0.2 T m/d	Ratio of MLVSS to MLSS	0.75 💌
Oxygen Absorption E	fficiency				
Aeration Tank				<u>Membrane Tank</u>	
Water Depth			2.65 💌 m	Water Depth	2.65 v m
% absorption for wa	ater in zero DO		15 🔽 %	% absorption for water in zero DO	4.5 💌 %
Ratio between % al	osorption for sludg	e & water	0.75 💌	Ratio between % absorption for sludge & water	0.63 💌
				Click to see next data	Save Next

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Input Screen for MBR module – Part 2

INPUT (b)					
-For scouring membra	ane surface			Pipe Size	
Air flowrate/cartridge	e 10 🔽 I/min.p	c O ₂ conc. of air (20 ^c	°C) 0.2683 🔽 kg/m ³	Pipe to Membrane Tank	50 -
-Air diffuser for aerati	on tank (nitrificatio	n)		Pipe to Aeration Tank	40 💌
Specific air flowrate	5 ▼ m ³ /h	Effective length of diffuser	0.5 v m/pc	Pipe to Balancing Tank	40 -
Tank Dimension				Permeate Pump	
Aeration Tank				Size of discharge pipe	25 💌
Number of tank	1 _	Length	4.00 m		
Width	1.80 💌 m	Height	2.65 🔽 m	Size of suction pipe	50 🔻
Membrane Tank					
Number of tank	1 _	Length	2.8 m		
Width	1.20 <mark>▼</mark> m	Height	2.65 <u>–</u> m		
Balancing Tank			E 00 -	I Click to s	see next data
Number of tank		Length	5.00 • m		
Width	4.00 <u> </u>	Height	2.50 m		Save Previous
	Influent ————————————————————————————————————	Balancing Tank	Aeration Tank	Final effluent Membrane Tank Membrane Unit	

UNIVERSITI TEKNOLOGI MALAYSIA

Institute of Environmental & Water Resource Management (IPASA)

RO & MBR Design by Zaini Ujang

Output Screen – for MBR module – Part 1

% BOD removed 99.	6 %	% T-P removed	95	%	Design MLSS in Membrane Tank	13333
% TSS removed 96. % T-N removed 96.	7 % 7 %	% Oil & Grease remov	ed 98.3	%	Design BOD-SS Loading or F/M ratio	0.2 d
Pollutant Loading					Oxygen Requirement for Respiration and Nitrificati	on
BOD 52 ka/d	SS 30	ka/d T N	6	ka/d	Quantity of BOD removed	52
bob j kg/d	55	Ng/u 1-N	1	Nyru	Oxygen used to provide energy for growth	26
			1		Oxygen used for endogenous respiration	19.6
Membrane	piece	s Calculated Number of Unit	ļ	unit	Oxygen total	45.6
Oxygen Transfer Rate DesignTank Volume Aeration Tank	17.1	³ Design volume	13.69	kg/d	 ─ Air diffuser for nitrification tank Oxygen transfer rate Required number of air diffuser Required air flowrate 	1.81 > 18 > 0.75
HRT	22.9 h	Design volume	1			
- Membrane Tank Design volume	8.9 m	³ HRT	10.68	h		
Balancing Tank Design volume	⁵⁰ m	³ HRT	60	h	Click to see next data FII Calculate Sav	e Previous

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Output Screen for MBR module – Part 2

Air Flow Rate for Mixing of Balancing Tank	⁵ m ³ /h ³² m ³ /min	Capacity of Equipments Wastewater 0.056 m ³ /min Permeate pump 0.015 Feed Pump 1.25 m ³ /min Aeration Blower 1.37 Blower 1.25 m ³ /min Aeration Blower 1.37	m ³ /min m ³ /min
Pipe Size Membrane Tank Velocity of an air feed pipe to the membrane tank Air flowrate	10.6 m/s 1.25 m ³ /h	Permeate pump 0.5 Velocity in discharge pipe 0.015	m/s m ³ /min
Balancing Tank Velocity of an air feed pipe to the balancing tank Air flowrate Aeration Tank	8.2 m/s 0.62 m ³ /h	Velocity in permeate suction pipe 0.1 Flowrate in permeate suction pipe 0.015	m/s m ³ /min
Velocity of an air feed pipe to the aeration tank Air flowrate	9.9 m/s 0.75 m ³ /h	Click to see next data	nt Previo
Influent Qave = 20 m ³ /d Balancing V = 50	Tank m ³	Final effluent Aeration Tank $V = 19.08 \text{ m}^3$ $V = 8.9 \text{ m}^3$ Membrane Unit	

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Validation of Output: What-If Analysis

🔜 RO Unit Design Calculation - Ions & Salt 📉 🔀	
Contaminant Sodium Chloride No. of Ions 2 Molecular Weight 58.45 g/gmol	
Feed Flow 15 gal/min Feed Concentration 800 mg/L	
Temperature 25 °C Coefficient of Water Permeation 1.9 x10 ⁻⁶ gmol /cm ² .s.atm	
Membrane Area for Each250 ft^2 Operating Pressure300psiElement300 psi 111	
Rejection of Contaminants 99 % Recovery Rate Required 80 %	
COUTPUT	Change Operating Pressure to
Stage 1	evaluate change in <i>Water Flux</i>
Osmotic Pressure 9 psi Water Flux 37.62 x10 cm².s	
Membrane Area Required 1506.01 ft ² Membrane Elements 6 Required	
Stage 2	
Osmotic Pressure 18 psi Water Flux 36.46 x10 ⁻⁶ gmol /cm ² s	
Membrane Area Required 753.01 ft ² Membrane Elements 3 Required	
Permeate (Product)	Reactor
Permeate Flow 12 gal/min Permeate Concentration 10.94 mg/L	Volume
Design Flow Conversion Unit Calculate Reset \$ Operating Costs	
	(75) (~~ 17)
stitute of Environmental & Water Resource Management (IPASA)	y Zaini Ujang 🛛 🥪

Validation of Output: Descriptive Statistic Analysis

	Manual Calculation	WASDA
Mean	0.337785	0.337788
Standard Error	0.024246	0.024246
Median	0.341284	0.341287
Standard Deviation	0.059390	0.059390
Sample Variance	0.003527	0.003527
Kurtosis	-1.126304	-1.126312
Skewness	-0.213180	-0.213190
Range	0.158761	0.158762
Minimum	0.254017	0.254019
Maximum	0.412778	0.412781
Sum	2.026710	2.026726
Count	6.000000	6.000000

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

Group design assignment

Problem statement:

Water resources for Seremban, Nilai and Port Dickson to are to be upgraded in terms of resource availability and water quality. The existing dams (3) are no longer sufficient to provide enough volume for 2010. There are 2 options to meet this requirements, and for upgrading for 2015:

- A new dam which cost RM1.2 billion located in a reserved forest in Jelebu district, or

- An advanced water treatment plant, located downstream of Sungai Linggi.

Task:

As a consulting group, you are assigned to evaluate the feasibility of using membrane systems. Your opinion will be evaluated in a group presentation session, based both on technical and financial aspects.

UNIVERSITI TEKNOLOGI MALAYSIA Institute of Environmental & Water Resource Management (IPASA)

