Drinking water 1

Aeration

Room 2.99

Prof. ir. Hans van Dijk

Aeration

Contents

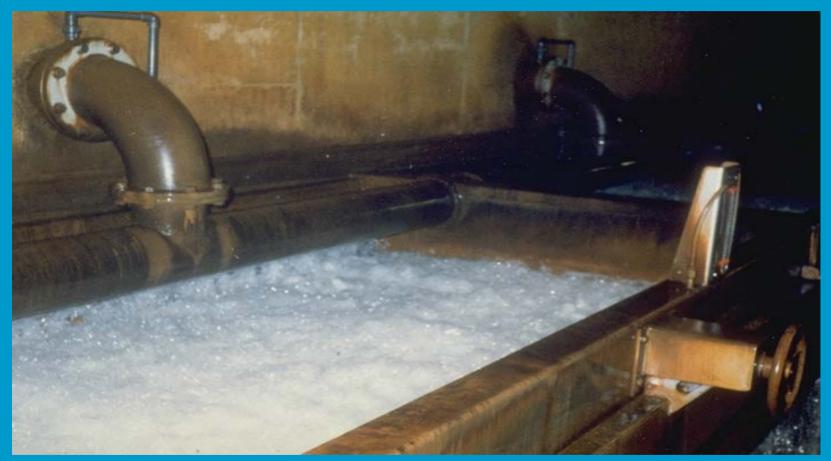
- 1 Introduction
- 2 Theory
- 3 Cascade aeration
- 4 Tower aeration
- 5 Plate aeration
- 6 Spray aeration
- 7 Other aeration systems

goal:

- increase of oxygen O₂ (anaerobic ground water) oxidation Fe²⁺ en Mn²⁺
- decrease of carbon dioxide CO₂ → aggressive water → corrosion of pipes
- removal of dissolved gasses e.g. CH₄, H₂S,
 volatile organic compounds (e.g. 1,2 DCP)

location: ground water and bank filtration treatment (rarely for surface water treatment)

Cascades



Tower aeration

Plate aeration

Spray aeration

 $c_{a} \quad \text{air} \quad \text{interface} \quad \text{water} \\ t = \text{infinite} \\ c_{s} \\ \text{ater} \\ t = 0 \quad t = 1 \quad t = 2 \quad c_{w, a} \\ c_{w, b} \\ \text{otherwise} \\ c_{w, b} \\ c$

Solubility of gas in water

$$c_s = k_D \cdot c_a$$

- kind of gas --> k_D high k_D = high solubility , hard to remove low k_D = low solubility , easy to remove
- concentration in the air --> c_a
- temperature T_w
- contaminations

Henry's law

$$c_s = k_D \cdot c_a$$

 c_s = saturation concentration of the gas in water [g/m3]

 c_a = concentration of gas in air [g/m3]

k_D= distribution coefficient [-]

k_{D}	MW	0°C	10°C	20°C
nitrogen (N ₂)	28	0.023	0.019	0.016
oxygen (O ₂)	32	0.049	0.039	0.033
methane (CH ₄)	16	0.055	0.043	0.034
carbon dioxide (CO ₂)	44	1.710	1.230	0.942
hydrogen sulfide (H ₂ S)	34	4.690	3.650	2.870
tetra (C ₂ Cl ₄)	167	-	3.20	1.21
tri (C ₂ HCl ₃)	131.5	-	3.90	2.43
chloroform (CHCl ₃)	119.5	-	9.0	7.87
ammonia	17	-	0.94	0.76

Universal gas law

$$\frac{n}{V} = \frac{p}{R \cdot T}$$

p = partial pressure of the gas [Pa]

V = total gas volume [m3]

n = number of mol of the gas [-]

R = universal gas constant = 8,3142 J/(K*mol)

T = temperature of the gas [K]

$$c_a = \frac{n}{V} \cdot MW = \frac{p \cdot MW}{R \cdot T}$$

MW = molecular weight [g/mol]

Partial pressure

partial pressure depends on the composition of the air

composition of the air: $78.084\% N_2$; $20.948\% O_2$;

0.934% Ar; 0.032% CO₂;

0.002% other gases

partial pressure of oxygen at a standard pressure of 101325 Pa (1 atmosphere) = 0.21*101325 = 21.226 kPa

The saturation concentration for gases at sea level and a water and air temperature of 10°C is:

$$O_2 = 11.3;$$
 $CO_2 = 0.79$
 $N_2 = 17.9;$ $CH_4 = 0 \text{ mg/l}$

Question 1 (1)

What is the saturation concentration of carbon dioxide in water (pressure = 101325 Pa, T = 10°C)?

Gas Distribution coefficient k_D Volume percentage [%] CO_2 1.23 0.034

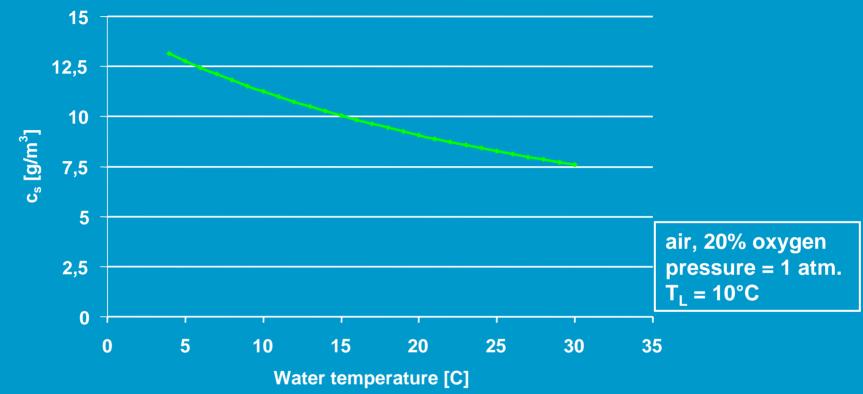
Partial pressure of carbon dioxide is $0.00034 \cdot 101325 = 34.45 \text{ Pa}$. MW = 44 g/mol, T = 283K.

Theory Question 1 (2)

Concentration carbondioxide in air:

$$c_a = \frac{p \cdot MW}{R \cdot T} = \frac{34.45 \cdot 44}{8,3142 \cdot 283} = 0.64 \text{ mg/l}$$

Checking units


$$Pa = N/m^2$$
; $J = N \cdot m$

$$c_{a} = \frac{p \cdot MW}{R \cdot T} = \frac{Pa \cdot \frac{g}{mol}}{\frac{J}{K \cdot mol} \cdot K} = \frac{\frac{N}{m^{2}} \cdot \frac{g}{mol}}{\frac{N \cdot m}{K \cdot mol} \cdot K} = \frac{g}{m^{3}} = \frac{mg}{l}$$

The saturation concentration of carbon dioxide in water is thus: $c_s = 1.23 \cdot 0.64 = 0.79 \text{ mg/l}$

Saturation concentration

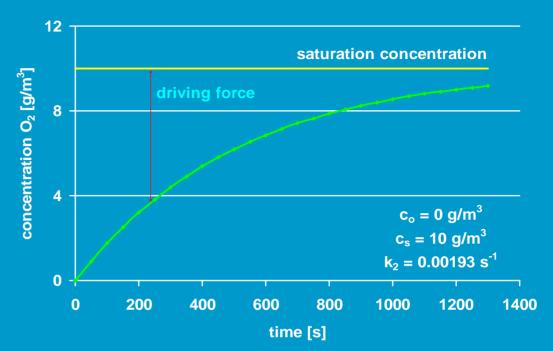
Saturation concentration oxygen: at Mt Everest, pressure = 0.1 bar, $c_s = 1.1 \text{ g/m}^3$ at 100 m under sea water level, pressure = 10 bar, $c_s = 113 \text{ g/m}^3$

Maximum concentration O₂

Air, 1 atm 9.5 mg/l cascades

Air, 10 atm 95 mg/l deep shaft aeration

Pure oxygen 45 mg/l


In water about 10 mg/l $\rm O_2$ conversion of 1 mg/l $\rm Fe^{2+}$ uses 0.14 mg/l $\rm O_2$ conversion of 1 mg/l $\rm Mn^{2+}$ uses 0.29 mg/l $\rm O_2$ conversion of 1 mg/l $\rm NH^{4+}$ uses 3.55 mg/l $\rm O_2$

With wastewater BOD of 100-500 mg/l → surface aeration

Kinetics

$$\frac{\mathrm{d}c}{\mathrm{d}t} = k_2 \cdot (c_{\mathrm{s}} - c_{\mathrm{w}})$$

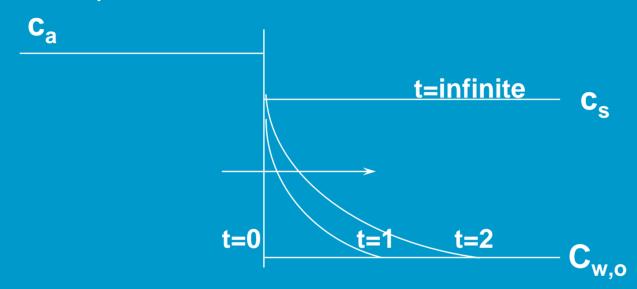
 k_2 = device dependent parameter,

 k_2 = depends on interface renewal

integration $c_w = c_{w,o}$ at t = 0 gives:

$$c_{w} = c_{s} - (c_{s} - c_{w,o}) \cdot \exp(-k_{2} \cdot t)$$

Mass balance


$$Q_a \cdot c_{a,o} + Q_w \cdot c_{w,o} = Q_a \cdot c_{a,e} + Q_w \cdot c_{w,e}$$

$$RQ = \frac{Q_{a}}{Q_{w}} = \frac{c_{w, e} - c_{w, o}}{c_{a, o} - c_{a, e}}$$

Basic equations

Basic equations

Equilibrium
$$c_s = k_D \cdot c_a$$

Kinetics $\frac{dc}{dt} = k_2 \cdot (c_s - c_w)$

Mass balance $\Delta c_w = \Delta c_a \cdot RQ$

$$K = \frac{c_{w,e} - c_{w,o}}{c_{s} - c_{w,o}}$$

$$K = \text{efficiency of aeration}$$

Calculations with constant gas concentrations in the air (RQ = infinite)

1. Plugflow
$$K_1 = 1 - \exp(-k_2 \cdot t)$$

2. Mixing
$$K_2 = \frac{1}{1 + \frac{1}{k_2 \cdot t}}$$

Question 2 (1)

Calculate the contact time if an efficiency of 90% is required with spray aeration and with cascades in an open room and the $k_2=0.02$?

An efficiency of 90% means a K-value of 0.9. The systems are open therefore the mass balance is negligible. For spray aeration:

$$K_1 = 1 - \exp(-k_2 \cdot t)$$

The equation for cascades is:

$$K_2 = \frac{1}{1 + \frac{1}{k_2 \cdot t}}$$

Question 2 (2)

$$K_1 = 1 - \exp(-k_2 \cdot t) \Rightarrow t = -\frac{\ln(1 - K_1)}{k_2} = -\frac{\ln(0.1)}{0.02} = 115 \text{ seconds}$$

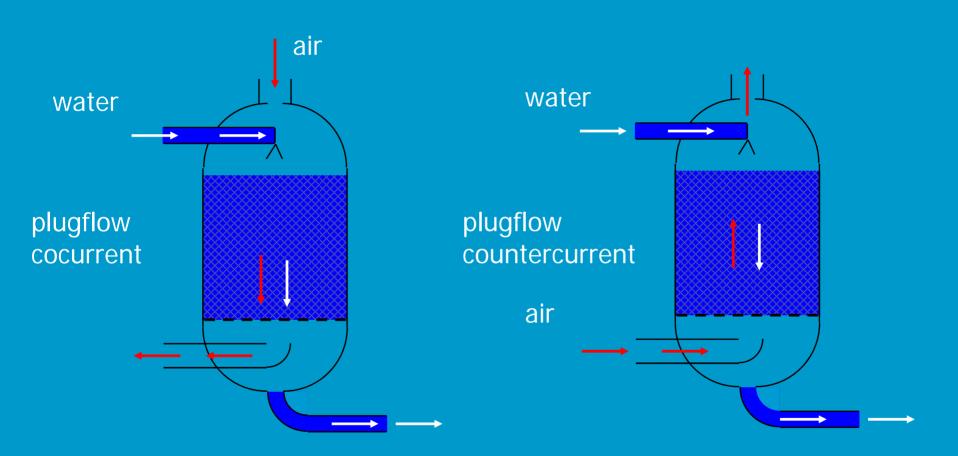
$$K_2 = \frac{1}{1 + \frac{1}{k_2 \cdot t}} \Rightarrow t = \frac{1}{k_2 \cdot \left(\frac{1}{K_2} - 1\right)} = \frac{1}{0.02 \cdot \left(\frac{1}{0.9} - 1\right)} = 450 \text{ seconds}$$

Calculations with changing gas concentrations in the air

Plug flow cocurrent (air and water downwards)

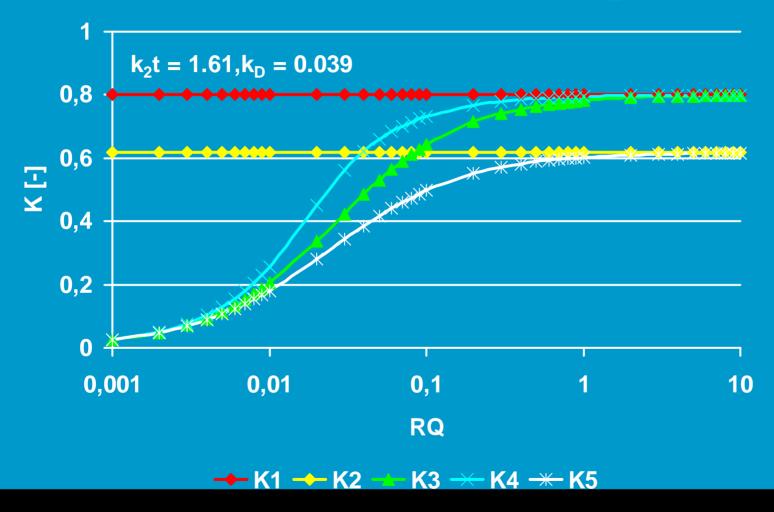
$$K_3 = \frac{1 - \exp\left(-k_2 \cdot t \cdot \left(1 + \frac{k_D}{RQ}\right)\right)}{1 + \frac{k_D}{RQ}}$$

Plug flow countercurrent


 (air upwards, water downwards)

$$K_{4} = \frac{1 - \exp\left(-k_{2} \cdot t \cdot \left(1 - \frac{k_{D}}{RQ}\right)\right)}{1 - \frac{k_{D}}{RQ} \cdot \exp\left(-k_{2} \cdot t \cdot \left(1 - \frac{k_{D}}{RQ}\right)\right)}$$

5. Complete mixing


$$K_5 = \frac{1}{1 + \frac{1}{k_2 \cdot t} + \frac{k_D}{RQ}}$$

Maximum efficiencies as function of RQ

Air/water ratio

Minimum RQ for K = 0.9 (complete mixing, t = infinite)

O_2	RQ = 0.35
CH ₄	RQ = 0.39
CO ₂	RQ = 11.1
CHCl ₃	RQ = 86.6

System	RQ	Drinking water	Waste water
Cascades	0.4	O_2	-
tower aeration	5 – 100	CO ₂ , CHCl ₃	CHCl ₃
plate aeration	20 – 60	CH_4 , CO_2 , O_2	-
spray aeration	0.5	O_2 , (CO_2)	-
shaft aeration	0.1 - 0.4	O_2	O_2
surface aeration >	5	-	O_2

Efficiency

$$K = \frac{1}{1 + \frac{1}{k_2 \cdot t} + \frac{k_D}{RQ}}$$

theoretical

$$K = f(h, n)$$

practical

$$RQ = 0.4$$

$$K > 95 \% \text{ for } CH_4, O_2$$

$$K = 60 - 70\% \text{ for } CO_2$$

Surface loading:50 - 100 m³/(m²*h)

Total height: 2 - 7 m (per step 0.3 - 0.6 m)

Energy consumption: 10 - 30 Wh/m³

Visually attractive, robust, insensitive for calamities

Efficiency per step

$$K = \frac{c_{w,e} - c_{w,o}}{c_s - c_{w,o}} = 1 - (1 - k)^n$$

K = total efficiency

k = efficiency per step, k = f (h, kind of gas)

n = number of steps

h (m)	0.2	0.4	0.6	0.8	1.0	1.2
k _{O2} (%)	14	25	36	46	51	55
k _{CO2} (%)	14	14	15	15	15	15
k _{CH4} (%)	14	27	37	48	56	62

Question 3

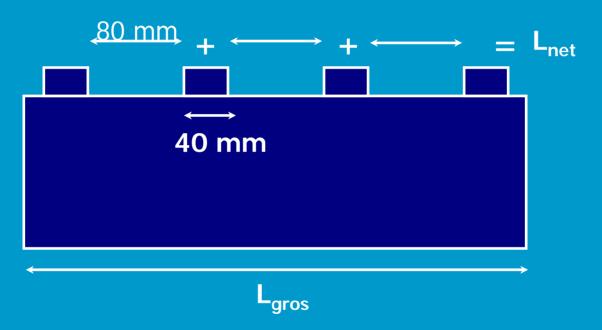
Removal of methane from ground water with cascades. The cascade has 5 steps, total drop height = 2 m. Concentration of methane in the raw water is 0.8 mg/l, after first step 0.58 mg/l, saturation value of methane in water = 0 mg/l.

What is the efficiency for removal of methane after 5 steps?. The efficiency of one step is calculated with:

$$\mathbf{k} = \frac{\mathbf{c}_{w,e} - \mathbf{c}_{w,o}}{\mathbf{c}_{s} - \mathbf{c}_{w,o}}$$

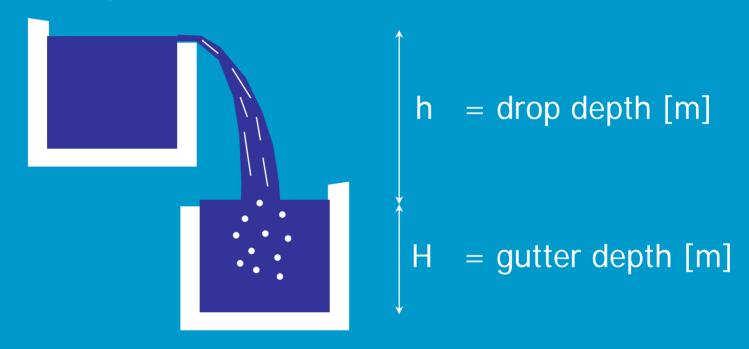
In this case $c_0 = 0.8$ mg/l, $c_e = 0.58$ mg/l en $c_s = 0$ mg/l.

$$k = \frac{c_{w,e} - c_{w,o}}{c_s - c_{w,o}} = \frac{0.58 - 0.8}{0 - 0.8} = 0.27$$

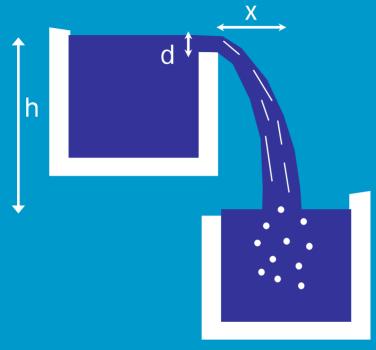

There are 5 steps. Total efficiency of the cascades:

$$K = 1 - (1 - k)^n = 1 - (1 - 0.27)^5 = 0.79$$

Weir load


weir load
$$q = \frac{Q}{L_{net}}$$

weir load for O_2 , CH_4 en CO_2 : 200 m³/(m*h)


Gutter depth

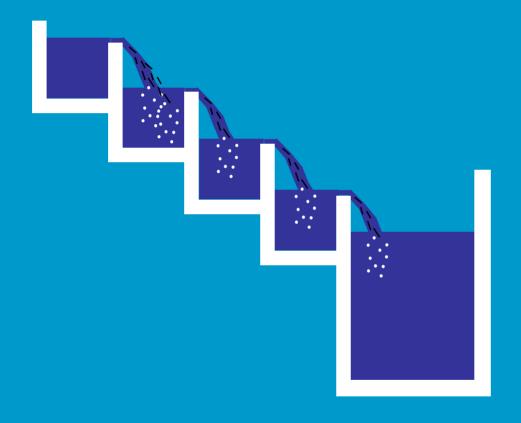
$$H = 2/3*h$$

Gutter width

trajectory

$$h = \frac{1}{2} \cdot g \cdot t^2 \qquad t = \sqrt{\frac{2h}{g}}$$

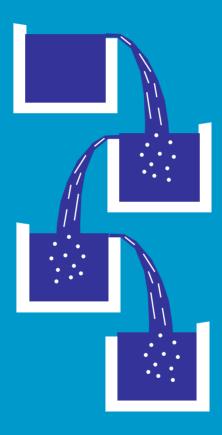
full weir


$$d^3 = \frac{Q^2}{g \cdot L_{net}^2}$$

$$v_o = \frac{Q}{L_{net} \cdot d}$$

 $X = V_o \cdot t$

Cascades next to each other



Cascades next to each other

Cascades on top of each other

Cascades

Cascades on top of each other

Efficiency K = (h, RQ)

 $RO(O_2, CH_4) = 1 - 5$

 $RQ (CO_2) = 20$

RQ = 50-100 for tri and tetra

K > 90-99%

Surface load $40 - 100 \text{ m}^3/(\text{m}^2 \text{*h})$

Packing height 3 - 5 m

Total height tower 5 - 7 m

Sensitive to fouling backwash

Countercurrent has a higher efficiency, however co-current systems are also used:

- CO₂ removal not too high because of calcification
- with countercurrent flooding can occur (RQ > 100)

Question 4 (1)

A co-current tower aerator has a RQ of 5 and a contact time of 20 s. What is the CO_2 concentration after aeration if the influent concentration is 65 mg/l and the saturation concentration for carbondioxide in water is 1,0 mg/l? For the distribution coefficient (k_D) of CO_2 a value of 1.2 can be used and for the device dependent parameter k_2 a value of 0.2 s⁻¹ can be used.

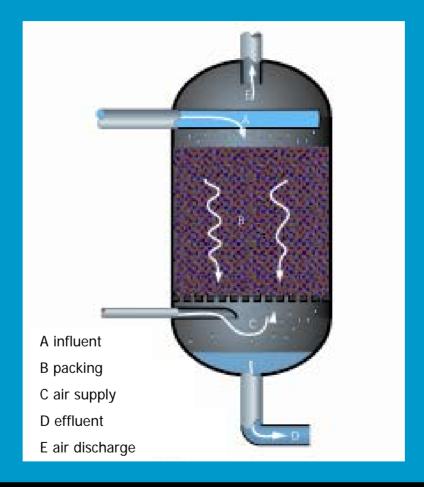
$$c = c_0 + (c_s - c_0) \cdot \frac{1 - e^{\left[-k_z \cdot t \cdot \left(1 + \frac{k_b}{RQ}\right)\right]}}{1 + \frac{k_D}{RQ}} = 65 + (1 - 65) \cdot \frac{1 - e^{\left[-0.2 \cdot 20 \cdot \left(1 + \frac{1.2}{5}\right)\right]}}{1 + \frac{1.2}{5}} = 13.74 \text{ mg/l}$$

Question 4 (2)

The height is increased from 6 to 8 m.

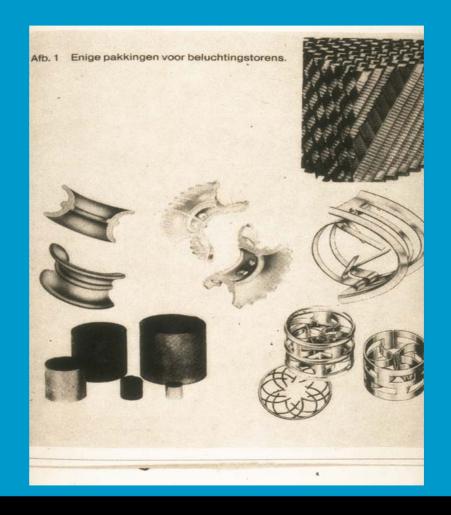
Drop speed = h/t = 6/20 = 0.3 m/s. Tower of 8 m, contact time h/v = 8/0.3 = 26.67 s. The effluent concentration is:

$$c = c_0 + (c_s - c_0) \cdot \frac{1 - e^{\left[-k_x \cdot t \cdot \left(1 + \frac{k_0}{RQ}\right)\right]}}{1 + \frac{k_D}{RQ}} = 65 + (1 - 65) \cdot \frac{1 - e^{\left[-0.2 \cdot 26.67 \cdot \left(1 + \frac{1.2}{5}\right)\right]}}{1 + \frac{1.2}{5}} = 13.45 \text{ mg/l}$$


Question 4 (3)

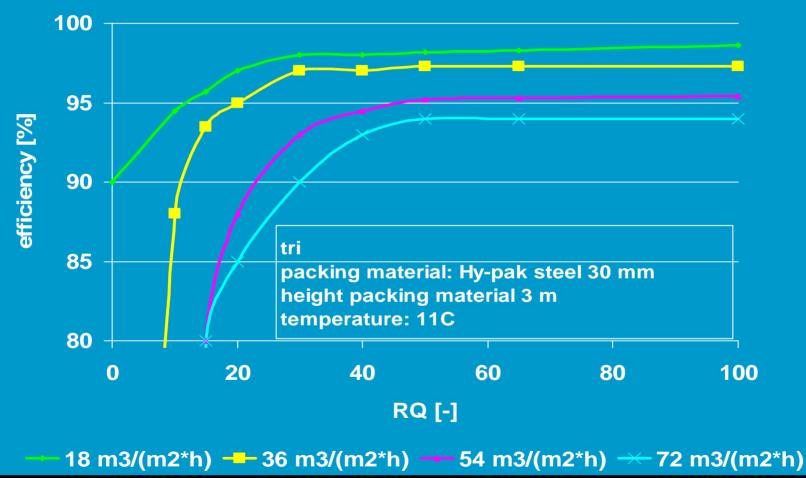
What is the efficiency of counter current tower aeration for a tower with a height of 6 m (drop time 20 s)?

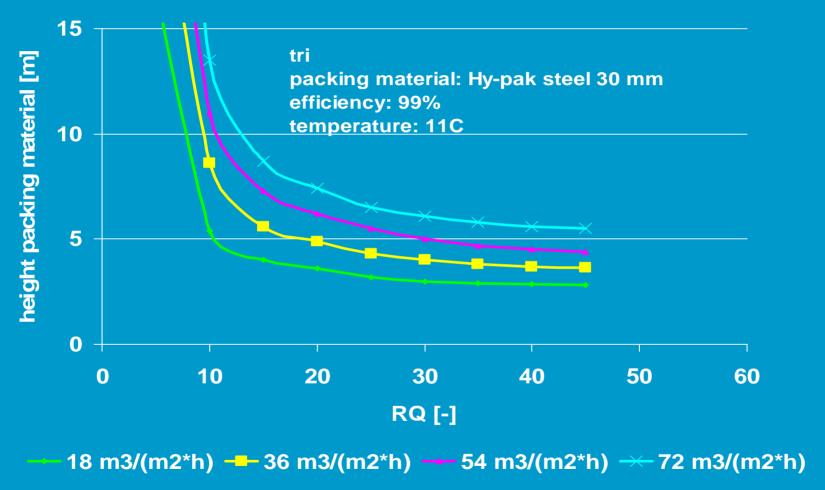
$$K_{4} = \frac{1 - e^{\left[-k_{2} \cdot t \cdot \left(1 - \frac{kD}{RQ}\right)\right]}}{1 - \frac{k_{D}}{RQ} \cdot e^{\left[-k_{2} \cdot t \cdot \left(1 - \frac{k_{o}}{RQ}\right)\right]}} = \frac{1 - e^{\left[-0.2 \cdot 20 \cdot \left(1 - \frac{1.2}{5}\right)\right]}}{1 - \frac{1.2}{5} \cdot e^{\left[-0.2 \cdot 20 \cdot \left(1 - \frac{1.2}{5}\right)\right]}} = 0.963 \text{ mg/l}$$



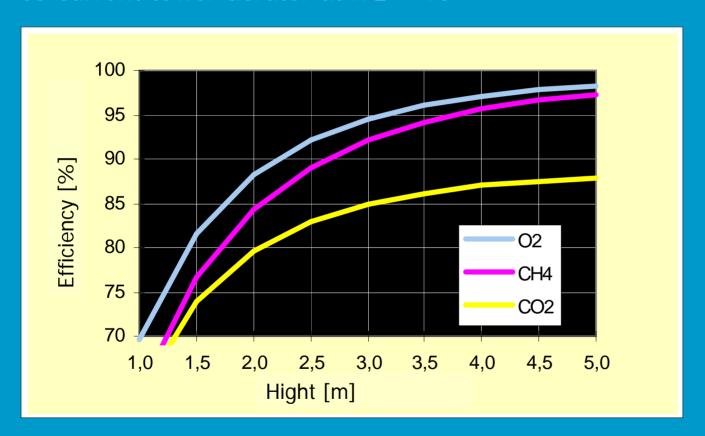
Principle of tower aerators

Packing materials


Construction



Variable RQ



Variable RQ and h

Efficiency calculations for different heights of a co-current tower-aerator at RQ = 10

Plate aeration

Efficiency K = f(RQ, t)

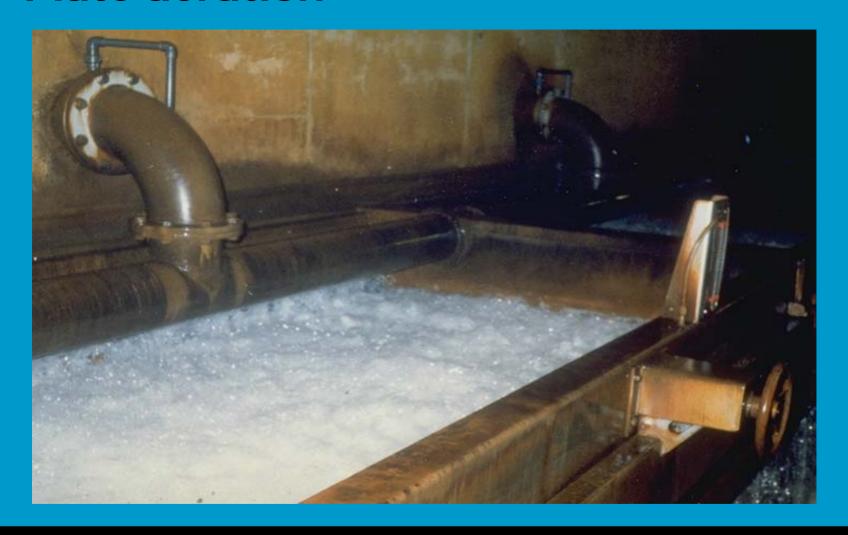
RQ = 20 - 60

 $K = 80\% CO_2$

 $K > 90\% CH_4 en O_2$

Surface load: 30 m³/(m²*h)

Energy use: 30 - 40 Wh/m³


(water 0.5 m; air 0.15 m)

Sensitive to fouling

Construction in existing filters possible, condensation

Plate aeration

Plate aeration

Type of sprayers

- upward or diagonally upward fixed sprayers
- plate sprayers

Amsterdam nozzle

Dresden nozzle

$$K = 1 - \exp(-k_2 \cdot t) = 1 - \exp\left(-k_2 \cdot \sqrt{\frac{2 \cdot h}{g}}\right)$$

 $K = 60 - 80\% CO_2$, $K = 65 - 85\% O_2$

Surface loading: 3-10 m³/(m²*h)

same as surf. load of rapid sand filtration, therefore above each other

Drop height: ca. 2m

Pressure drop: Dresden 0.5 m H₂O, Mist 10.0 m H₂O,

Amsterdam 5.0 m H₂O

Energy use: Dresden 10 Wh/m³, Mist 50 Wh/m³

Amsterdam 30 Wh/m³

Sensitive to fouling, visually attractive

Question 5 (1)

The oxygen concentration of water is 5 mg/l. After spray aeration it is 7.5 mg/l (drop height of the sprayers = 0.5 m). The saturation concentration of oxygen is 10 mg/l. What is the oxygen concentration if the drop height is increased to 1 m?

The sprayer = perfect plugflow. The efficiency is:

$$K_1 = 1 - \exp(-k_2 \cdot t)$$

With a drop height of 0.5 m the efficiency of the system is 50%. The drop time of a water drop is:

$$t = \sqrt{\frac{2 \cdot h}{g}} = \sqrt{\frac{2 \cdot 0.5}{10}} = 0.32 \text{ seconds}$$

The device bound parameter k_2 is now calculated with the equation of plugflow:

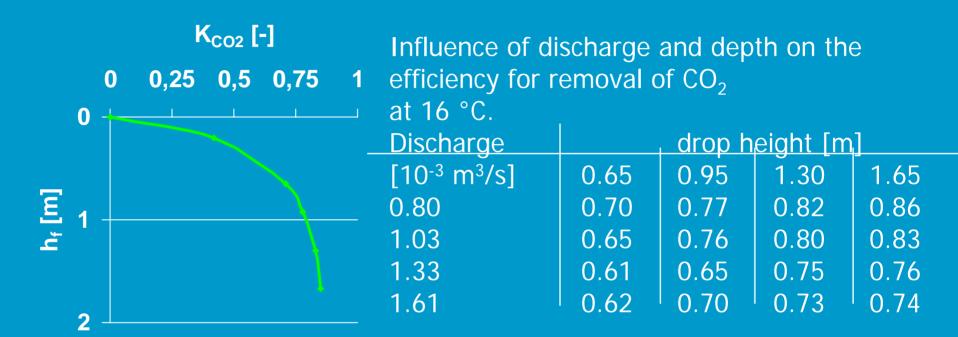
$$K_1 = 1 - \exp(-k_2 \cdot t) \Rightarrow k_2 = -\frac{\ln(1 - K_1)}{t} = 2.19s^{-1}$$

Question 5 (2)

If the drop height is 1 m, the drop time is 0.45 s. The efficiency with a drop height of 1 m is now:

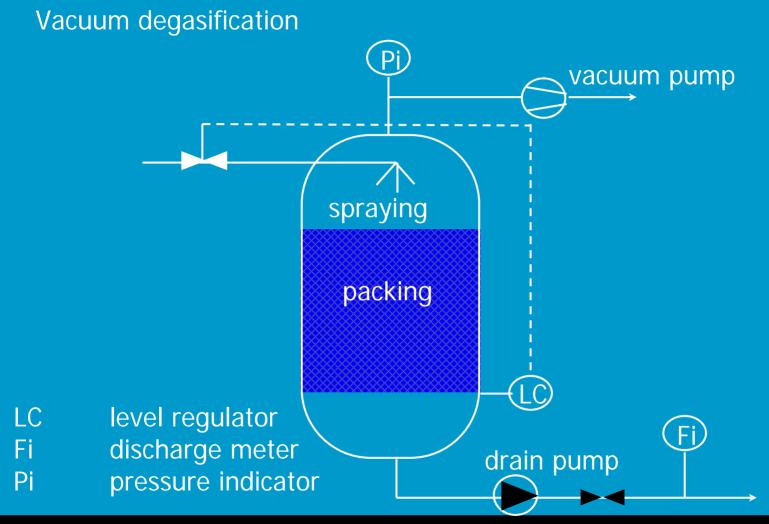
$$K_1 = 1 - \exp(-k_2 \cdot t) = 1 - \exp(-2.19 \cdot 0.45) = 0.63$$

An efficiency of 63% means an effluent concentration of:


$$c_e = K \cdot (c_s - c_o) + c_o = 0.63 \cdot (10 - 5) + 5 = 8.15 \text{ mg/l}$$

What is the oxygen concentration if 2 sprayers with each a dropheight of 0,5 m are placed in series?

The efficiency of the first sprayer is 50%, the efficiency of the second sprayer is 50% too, the total efficiency is therefore 75% or an effluent concentration of 8.75 mg/l O_2 .


Dresden nozzle

Vacuum degasification

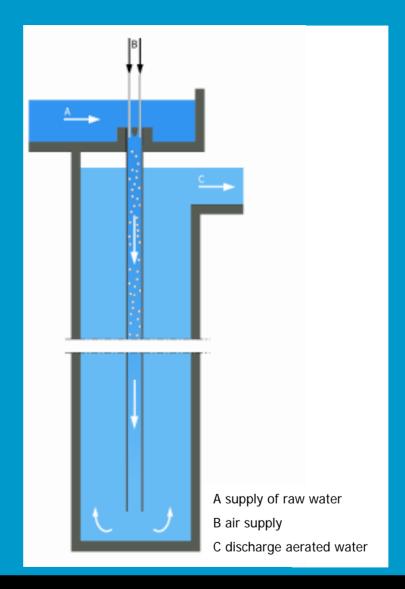
Efficiency K = f(P), P = vacuum pressure

RQ = 0

mostly O₂, N₂ removal

less for CO₂ removal

Surface load $40 - 100 \text{ m}^3/(\text{m}^2*\text{h})$


Little discharge variation possible

Energy use: high energy use

1600 Wh/m³ (expensive)

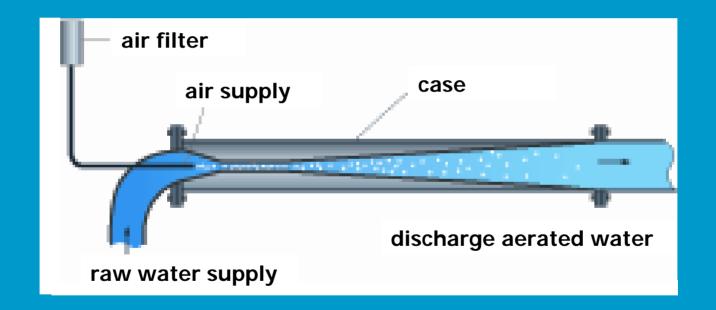
Deep well aeration

Deep well aeration

Efficiency $K = f(RQ, h), RQ = DH \approx 0.3 - 0.4$

h = 20 m

 $DH = 1 \text{ m H}_2O$ $K = > 100\% O_2$


Surface load 1000 m³/(m²*h)

Little discharge variation possible

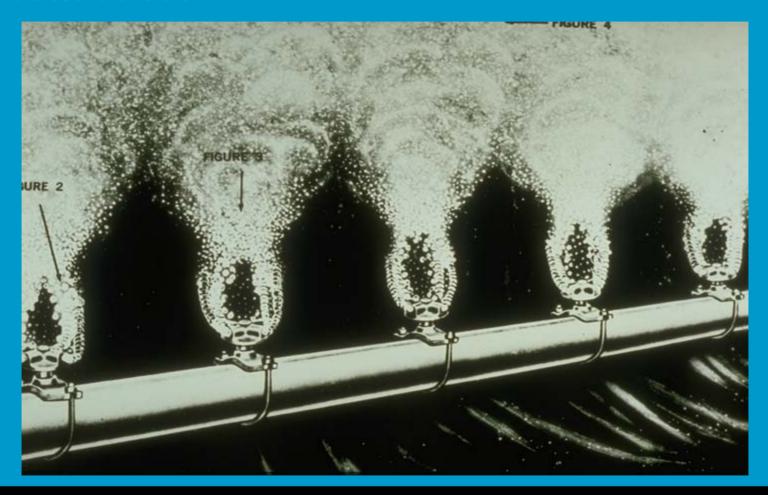
Energy use: 5 Wh/m³

Venturi

Venturi

$$K = f (RQ = DH)$$

 $RQ = 0.2 - 0.4$
 $DH = 5 - 8 m H2O$
 $K = 80 - 95\%O_2$


uses not much space, inexpensive

Regulating effect rapid sand filtration, little discharge variation

Energy use: 20 - 30 Wh/m³

Bubble aeration

Surface aeration

