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Environmentally friendly oxidation processes
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ABSTRACT

Green alga Scenedesmus incrassatulus, strain R 83, was treated by high concentrations
of Cu, Cd and Pb added into the nutrition medium. Cd strongly inhibited growth — it
was 60% decreased, followed by Pb — about 50% decreased, while the action of Cu
appeared to be the less harmful. Cd and Pb impaired cell morphology and develop-
ment, and worsen the algal culture.

It was found a progressive decrease in the amount of chlorophyll a, b and carot-
enoids corresponding to the duration of heavy metals action. Pb had the most pro-
nounced negative effect on the pigment composition of Sc. incrassatulus. Meanwhile,
Cu-treated variants remained less affected by the metal toxicity. These results were
supported by the changes in malondialdehyde (MDA) content showing an enhanced
lipid peroxidation under Pb and Cd pollution. Therefore, it could be suggested that Cu
influenced in a different way metabolic processes in the algal cells, than Cd and Pb.

Sc. incrassatulus possessed a good adsorbing capacity for metal ions, especially
for cadmium, which was absorbed in a much greater extent than lead and copper. For
that reason, we assumed that the strain could be used in the treatment of wastewater,
polluted by Cu, Pb and Cd.

Keywords: Scenedesmus incrassatulus, heavy metals, pigments, malondialdehyde.

AIMS AND BACKGROUND

A number of microalgal species are currently used for biological purification of in-
dustrially polluted environments including heavy metal contaminated areas!=. It is
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considered that these species are a promising, eco-friendly and sustainable option for
wastewater and soil treatment with a possible advantage of improving the economics
of microalgal cultivation®.

Aquatic plants and microorganisms are able to remove metals from water through
processes of biosorption and bioaccumulation’. Microalgae reduce metal contami-
nation by rapid physical absorption of the metal ions over the algal cell surfaces®’,
followed by a slow movement of these ions into the cytoplasm®. Moreover, when
transported inside the cell, some heavy metals are deposited in cellular inclusions.
Several researchers have established that Pb, Mg, Zn, Cd, Sr, Co, Hg, Ni and Cu are
sequestered in polyphosphate bodies in green algae®*. Thus, the polyphosphate bodies
serve as a storage pool for metals and also act as ‘detoxification agents’.

Phototrophic microorganisms (cyanobacteria and algae) have been used in toxicity
tests designed to environmental monitoring of heavy metal pollution. The majority
of the studies, in fact, have analysed the toxic effect of metals on cyanobacterial spe-
cies’ 3. However, unicellular green algae of the genera Chlamydomonas, Chlorella,
Scenedesmus, etc. have also the ability to extract and accumulate heavy metal ions!#!7.

Scenedesmus species are often used as model objects for exploring the accumu-
lation of heavy metals due to their wide spreading in contaminated ponds. Awasthi
and Rai'® reported that Scenedesmus quadricauda could be recommended to remove
toxic quantities of nickel, zinc and cadmium. According to Ajayan et al.*, Scenedes-
mus is able to capture copper extracellularly in the extrapolymeric substances, and
lead extra- and intracellularly in polyphosphate inclusions. Vanerkar et al.2 have also
revealed that Scenedesmus obliquus accumulated Cd and Zn by increasing the amount
of phosphorus in the media. In general, it is believed that the living green algae, like
Scenedesmus, could be used for heavy metal removal from diluted wastewater and
that method could be economical and effective!’. Still, questions remain about how
to detoxify heavy metals accumulated in algal cultures.

Cu, Cd and Pb are among the most abundant environmental pollutants. Cd and
Pb are nonessential but highly toxic metals to living organisms>!¢!° and copper, at
excessive concentrations, is also harmful. The ability of green alga Scenedesmus in-
crassatulus to modulate polluted environments via its metabolic activity determined
the purpose of the present work — investigation of Cu?*, Cd* and Pb*" — influence on
some physiological and biochemical parameters of Scenedesmus incrassatulus cells.

EXPERIMENTAL

The green alga Scenedesmus incrassatulus, strain R 83, isolated from Rupite region,
Southwest Bulgaria, was maintained as a batch culture at the Algal Culture Collec-
tion, section ‘Experimental Algology’, IFRG, BAS. Algal suspension was intensively
cultivated on the Setlik nutrition medium? (modified by Georgiev et al.?!), in 200 ml
vessels, at 28°C under continuous illumination by luminescent lamps, at light intensity
150 pmol phot m2 s™!. Carbon source was provided by bubbling sterile 2% (v/v) CO,
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in air (100 1 h™"). The algal culture was centrifuged at the end of the exponential phase
of growth and the biomass was further re-suspended in a fresh nutrition medium at
an inoculum 0.7 mg ml"! DW (dry weight).

Heavy metals treatment was performed by adding into the nutrition medium
50 and 100 uM of Cu?*, Cd** and Pb** (added as CuSO,, CdCl, and (CH,COO),Pb).
Growth and physiological changes of the algal cultures were determined on the 3rd,
5th and 7th day from the start of the treatment.

Scenedesmus incrassatulus growth rate was measured by the increase of dry
weight. Pigment content was determined spectrophotometrically after methanol ex-
traction and calculated according to McKinney??. Malone dialdehyde (MDA) content
was determined according to Dhindsa et al.?, using the extinction coefficient of 155
mM™ cm™'. The content of Cu, Cd and Pb in dry algal biomass was analysed by an
atomic absorption spectrophotometer Perkin-Elmer.

The experimental data were averaged of triplicate measurements. The significance
of differences between control and each treatment was determined using Student #-
test, p < 0.05.

RESULTS AND DISCUSSION

Responses of algal cells to metal exposure are typically measured in terms of cell
density, biomass, growth rate, and chlorophyll content or chlorophyll absorbance. The
strongest toxic effect of heavy metal ions that occurred was found in the cultures of
Sc. incrassatulus polluted by cadmium (Fig. 1). Pb?*-treatment caused lower levels of
toxicity, followed by Cu?", which appeared to be the least harmful. The highest reduc-
tion of algal dry weight was measured after 100 uM Cd was added to the medium —
growth rate was more than 60% reduced as compared to control. A similar inhibition
of growth was also observed after applying of 100 uM Pb — about 50% below the
control. However, algal cells exposed to Cu (50 and 100 uM), did not significantly
reduce their growth rate until 72nd hour of treatment, when the dry weight of biomass
remained close to the control samples.

Studying the effect of cadmium on the algae several researchers found such a
severe growth inhibition, as we did*!>?4, etc. In addition to the decrease of growth,
high cadmium concentrations disturb photosynthesis and reduce cell size'. The ex-
cess of Pb, in turn, causes stunted growth, chlorosis, inhibits photosynthesis, mineral
nutrition and water balance?>?°, Cadmium and lead are considered to affect growth by
different mechanisms than Cu — they can form stable complexes with some structural
proteins and enzymes, and thus negatively influence cellular metabolism. High Cu
concentration could affect the normal growth and development of the plant cells by
the ability of copper to displace other metal ions from physiologically important cent-
ers. Cu causes a decrease of chlorophyll a, photosynthetic O, evolution, cell division
rates, as well as growing numbers of deformed and broken cells?”2%,
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Fig. 1. Growth rate (dry weight, mg/ml) of Scenedesmus incrassatulus after Cu, Cd and Pb treatment

In proliferating algal cultures, the growth of protozoa is obviously strongly inhib-
ited by algae. However, we observed that the increased levels of heavy metals caused
a rapid development of unicellular eukaryotic organisms, especially in Cd- and Pb-
treated variants. 100 uM Cd forced Sc. incrassatulus to form rounded autospores with
slow development, as well as multiple agglutinates in the medium. Moreover, nearly
30% of the biomass belonged to protozoa. When Pb ions were added to the medium,
about 20% of the cells were rounded in shape, with impaired morphology. There
were very few single cells — mostly agglutinates of 2—4 cells, and almost 10% of the
biomass consisted of protozoan organisms (data not shown). Furthermore, depending
on the type of heavy metal treatment, different morphological changes were observed
in Sc. incrassatulus cells. For example, when treated with divalent ions, such as Cu?*
and Cd?*', the unicellular forms were predominantly observed, while Cr®* determined
the appearance of irregularly shaped prisms and grouped cells®.

Studying the changes in Sc. incrassatulus pigment composition, we found a
strong decrease in the amount of chlorophyll a in all heavy metal polluted variants
(Fig. 2). Both, Cd and Pb severely reduced chlorophyll a content — the lowest level
was measured at 100 Pb uM — 88% decrease as compared to the control. Cu, in fact,
caused a significantly lower reduction in chlorophyll a (nearly 45%). Changes in the
amounts of chlorophyll 4 in the biomass followed an equal trend to that one of chlo-
rophyll a. The decrease of chlorophyll b content was most pronounced in Cd and Pb
treated suspensions — 84% at 100 pM Cd and 87% at 100 uM Pb (Fig. 3).
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Fig. 3. Changes of chlorophyll b content (% of dry weight) in Scenedesmus incrassatulus cells, treated
by Cu, Cd and Pb

When analysed the amount of carotenoids, we observed a similar tendency to
decline in all experimental variants (Fig. 4). Their content progressively decreased
with time of exposure and reached the lowest values on the 7th day of treatment.
Moreover, the decrease of carotenoids was relatively independent of the heavy met-
als concentrations that were used — 50 or 100 uM. The only exception was 50 uM
Cd, wherein carotenoids responded by a relatively lower decrease at the beginning
of the period — they were 32% decreased. Thus, there was no reason to believe that
carotenoids possessed any protective role against heavy metal stress developed in
Sc. incrassatulus.
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Fig. 4. Changes of carotenoid content (% of dry weight) in Scenedesmus incrassatulus cells, treated by
Cu, Cd and Pb

In general, Pb had the strongest negative effect on the pigment composition of
Sc. incrassatulus, followed by Cd. This may be attributed to the damage of algal pho-
tosystems by the excessive amounts of heavy metals, especially Cd and Pb, resulting
in a reduction of photosynthetic pigments, particularly chlorophyll a'>2426. One more
reason was recognised as blocking of photosynthesis by the replacement of Mg?* ion
in the chlorophyll molecule with some metal ions — Cu?*, Zn**, Cd?*", Hg?*, Pb*" or
Ni?* (Ref. 30). A nearly proportional relationship between metal toxicity and the level
of substitution of Mg in the chlorophyll ring has been established.

Copper, cadmium and lead damage cell membranes by binding to the sulthydryl
groups of the membrane proteins, resulting in peroxidation of the lipids®!. Changes
of malondialdehyde amounts are often used as a routine method to determine the
degree of lipid peroxidation in the plant cells, and increased MDA content have
been frequently registered as a result of heavy metal toxicity3>¥. In the course of the
experimental work, we have also found severely elevated levels of MDA in Cd- and
Pb-polluted Scenedesmus cultures (Fig. 5). The highest values were recorded at 50 uM
and 100 uM Pb in the medium (2-2.5 times higher than the control, respectively).
100 uM Cd caused 70% increase of MDA, while Cu-treated variants remained close
to the control. The only exception was at 50 uM Cd, where MDA was even reduced —
it was 30% below the control value.
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Fig. 5. Influence of Cu, Cd and Pb on malondialdehyde levels (mM g fresh weight) in Scenedesmus
incrassatulus cells

The enhanced production of malondialdehyde measured in the Pb- and Cd-treated
variants (Fig. 5), which was accompanied by the chlorophyll degradation (Figs 2 and
3), was a serious evidence of lipid peroxidation and membrane damages in Sc. incras-
satulus cells. It could be therefore suggested, that lead and cadmium largely transform
cell membranes and membrane transport, on the one hand, blocking specifically a
number of transport proteins** and on the other hand, by the enhancement of membrane
lipid peroxidation. Cd, itself, is well-known as a factor damaging phospholipid struc-
tures of chloroplasts and mitochondrial membranes — the main target organelles for
cadmium poisoning®, while Pb changes plant hormonal status and affects membrane
structure and permeability*. The toxicity of Cu, which is often studied as a pro-oxidant,
may include a development of oxidative stress>#3!. Like many other metal ions, Cu?*
accelerates the formation of oxyradicals, which in turn enhances lipid peroxidation
causing membrane disintegration and failure of osmoregulation.

Our results demonstrated the affinity of Scenedesmus incrassatulus for Cu?,
Cd?*" and Pb**-uptake (Table 1). We found that the capacity of Scenedesmus for bi-
osorption of both, Cu and Pb, was almost the same, while Cd was accumulated in a
much higher extent. However, taking into account its impact on growth and pigment
content, Cu appeared to be not as toxic as Pb. Therefore, it could be considered that
Sc. incrassatulus have developed some mechanisms to eliminate copper and/or to
prevent its involvement into the cell metabolism?. In fact, it was established that
algae may exclude a larger part of the added Cu from their cytoplasm by adsorbing
to cell walls®”. Moreover, some algal strains synthesised high levels of phytochelatins
and thiol-containing peptides, in response to the copper stress?®. It was also reported a
higher excretion of extracellular polymeric substances to surround the cells of Scened-
esmus, which could explain the external uptake of both, copper and lead*. Besides,
some microorganisms, including Scenedesmus, have the capacity to accumulate Pb in
polyphosphate granules®. Scenedesmus was also found to capture copper externally
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in the extrapolymeric substances and lead extra- and intracellularly in polyphosphate
inclusions!.

Table 1. Accumulation of Cu, Cd and Pb (mg g' DW) in Scenedesmus incrassatulus

Heavy metals Variants Accumulation of heavy metals
(mg g' DW)
Cu control 0.041+ 0.002
50 uM 0.115+0.005
100 uM 0.188 £0.007
Cd control -
50 uM 0.606 £ 0.028
100 uM 0.799 £ 0.036
Pb control -
50 uM 0.159 £ 0.006
100 uM 0.193 £ 0.009

On the other hand, it should be taken into account that the rate of heavy metals
absorption by plants is highly pH-dependent?®. Some of the appropriate culture media
could affect the removal rate for some bivalent metal ions, and respectively, the ef-
ficiency of microalgal wastewater treatment. For practical microalgal application in
bioremediation of heavy-metal polluted areas, a further study is necessary to ascertain
the influence of higher pH values on the efficiencies in the heavy metals absorption/
adsorption. In the current experiments, the pH value was maintained around 7.0. Sc.
incrassatulus, grown under these conditions, in fact, cannot be considered as a strain
that strongly accumulates heavy metals, unlike some other microalgae. This conclu-
sion follows from the results of our previous studies**, in which we have found that
some cyanobacteria and green algae accumulated heavy metals in their biomass at
much higher concentrations than Sc. incrassatulus did.

CONCLUSIONS

The results showed that Cd and Pb are highly toxic to Sc. incrassatulus — they severely
inhibited growth, reduced pigment content and increased lipid peroxidation. Copper
did not inhibit growth and chlorophyll biosynthesis in the algal strain so strongly and
did not enhance MDA production, although it accumulated in the biomass at con-
centrations commensurate with those of lead. Thus, on the basis of these arguments,
we could suggest that Scenedesmus had the ability to isolate copper from the cellular
metabolism and also, that the strain had different mechanisms of incorporating Cu
from those of Cd and Pb.

The accumulation of large amounts of metal ions, especially Cd, in the algal mass,
that we registered, could be a reason to determine a broad practical application of Sc.
incrassatulus in heavy metals contaminated areas (soils or wastewater). In general,
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like some other microalgae, Sc. incrassatulus could play an important role in biore-
pairing some areas polluted by metals, as a result of the ability to tolerate or resist
high concentrations of metals and to bioaccumulate them, extra- and intracellularly.
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