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Abstract 
 

 
 
 

With huge demands for potable water in regions lacking fresh water sources such as 

surface or ground water, various potential technologies have been explored for 

eliminating water shortage. Seawater emerged as a potential source and a major lifeline 

for such water-deprived areas. The development of seawater reverse osmosis (SWRO) 

technology proved to be a groundbreaking innovation, making it easier to extract pure 

water from seawater. Ever since its inception, SWRO technology has taken many leaps 

towards the development of energy efficient and high yielding systems. The reduction in 

energy consumption of desalination plants that were based on the SWRO technology 

emerged as a major driver of the technology revolution in this field. The improvement of 

membrane life and salt rejection, increase in recovery, and decrease in energy 

consumption has been the primary criteria for sifting through available technologies for 

incorporation in desalination plants. Many developments have, ever since, occurred in 

this direction. The membrane life has multiplied and the Total Dissolved Solids in the 

product are now as low as 100 mg/L. In addition, recoveries of 40-50% have been 

achieved. By recycling energy, many SWRO desalination plants have significantly 

lowered their total energy consumption. With the help of energy recovery devices 

(ERDs), it is now possible to decrease power consumption and increase efficiency of the 

seawater reverse osmosis desalination plant. 

The first large-scale municipal SWRO plant was installed in 1980 in Jeddah, Saudi 

Arabia. This plant consumed 8 kilowatt-hours energy per cubic meter of water produced. 

This consumed energy was less than half of what was usually consumed by other 

vii 
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conventional distillation processes. However, the SWRO desalination technology has 

one disadvantage. The seawater, which is to be desalinated, is pressurized with the help 

of high-pressure pumps. A large amount of energy is consumed during this process. 

Once the desalination is complete, the remaining reject water has to be eliminated as 

waste. Since the brine reject produced in this process has a high pressure, simply 

dumping it back into the sea is a waste of energy. This pressure can be reused and thus, 

the energy could be recycled. This idea led to the innovation of energy recovery devices 

(ERDs) that prevent the wastage of energy in the SWRO process. The hydraulic energy 

in the highly pressurized reject brine can be re-used with the help of ERDs, and energy 

consumption can thus be reduced by significant high amounts. The development of 

ERDs helped in the set-up and operation of large-scale SWRO plants, and facilitated the 

economic viability of the desalination process. The energy requirements of conventional 

SWRO plants are presently as low as 1.6 kWh/m3, making the process more cost 

effective and energy efficient than other technologies. About 80% of the total cost of 

desalinated water is due to energy consumption and capital amortization. The remaining 

costs are associated with other maintenance operations such as replacement of 

membranes and other components, labor associated costs etc. 

Since energy consumption is the main determinant of final costs of the product, 

increasing energy efficiency of the plants is of primary concern. This paper deals with 

various energy recovery devices such as the Francis turbine, Pelton wheel, 

turbocharger, Recuperator, DWEER and Pressure Exchanger, used in SWRO 

desalination plants along with case studies associated with each of these. Special focus 

is given to the energy efficiency and costs associated with these devices. A brief 

discussion of the devices that are currently under investigation is also provided in the 

conclusion. 
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An analysis of isobaric versus centrifugal devices is also conducted in this work. A 

comparison between the energy recovery turbine (ERT) manufactured by Pump 

Engineering Inc. (PEI) and the pressure exchanger (PX) manufactured by Energy 

Recovery Inc. (ERI) energy recovery systems is performed using collected data from 

provided water analyses and respective manufacturers’ device specifications. The 

different configurations used for this comparison were applied to the Jeddah SWRO 

desalination plant for a total productivity of 240,000 m³/day. As a result of this analysis, 

the specific energy consumption of the ERT and PX configurations were 2.66 kWh/m3
 

and 2.50 kWh/m3 respectively. Analysis shows however that although the PX 
 

configuration achieved the best specific energy consumption, the ERT was favored over 

it due to its lower capital and maintenance costs. Therefore, the final conclusion of this 

work, in this special case, is that the ERT configuration is more economical than the PX 

configuration. 

. 
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Chapter 1: Introduction 
 

 
 
 

1.1 ERDs Operational Principles and Types 

 
Areas with abundant seawater and scarcity of freshwater have turned towards 

desalination of seawater to meet their water requirements. The most widely used 

technology for this purpose is the Sea Water Reverse Osmosis (SWRO) process. 

SWRO possesses the capability of producing high quality potable water from a water 

source as unconventional as seawater. It is due to this fact that SWRO is gaining 

significance all over the world as a means of sustainable water supply. The process of 

reverse osmosis (RO) for desalination of seawater was introduced in the 1970s. Since 

then, alternatives have been sought for the reduction of operational costs associated 

with the process. 

Following are some definitions and figures that will help us understand what a 

reverse osmosis process is and how it is. 

   Osmosis: The tendency of water to flow through a semipermeable membrane into a 

more concentrated solution. 

   Reverse Osmosis: The passage of water out of a solution when a pressure greater 

than the osmotic pressure is applied on the solution side of a semipermeable 

membrane. 

   Semipermeable Membrane: A membrane that allows water to pass through but 

rejects most ions and molecules. 

   Osmotic Pressure: The pressure needed to stop the flow of water through a 

semipermeable membrane. 
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   Reverse Osmosis Membrane (RO): RO membranes act as a barrier to all dissolved 

salts, inorganic molecules, and molecules with a molecular weight greater than 

approximately 100. Rejection of dissolved salts is typically 95-99 percent. 

Transmembrane pressures for RO typically range from 200 to 800 psi for seawater. 

RO is a relatively new process compared to distillation and electrodialysis. As 

mentioned in the definitions, RO is semipermeable membrane separation process which 

separates the water from a high pressurized saline solution from the solutes or the 

dissolved salts and inorganic molecules by flowing through that membrane. The solution 

does not undergo any heating or phase change in this separation process. The major 

energy consumption phase in RO desalination technology is for applying enough 

pressure to the feed water to overcome the natural osmotic pressure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1-1: Reverse Osmosis Conceptual Illustration 
 
 
 

The hope that the membrane technology used in this process would ultimately 

improve, later on, was just a part of the battle to "sell" the new technology. Yet, a search 

is on in full swing for the discovery of other ways and technologies that would make the 

new technology more cost effective. 

RO desalination is an energy intensive process in which energy (electricity) 

consumption is one of the largest contributors towards the total costs of water supply. 
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The cost of the final product, i.e. water is increased due to an increase in energy 

consumption during the production process. In seawater RO desalination, a significantly 

large amount of energy is involved in pressurizing the seawater for driving it through the 

RO membrane. This pressurization is achieved with the help of a high-pressure pump, 

which is the most significant energy consumer in a SWRO plant. Desalination of 

brackish water of lower salinity requires lesser energy than that having higher salinity, at 

the same recovery. It is important to note, however, that brackish water desalination 

requires recoveries of 75% or above for optimal, economical and profitable operation. 

Another cause of concern is the difficulty involved in the handling and disposal of brine, 

which is a waste product of this process. Increase in required recovery beyond 75% in 

the desalination process of brackish water leads to a proportional increase in energy 

consumption. Higher recovery requires higher energy [1]. Thus, reduction in energy 

consumption is the most logical and effective way of making the RO desalination 

process of saline water more cost effective, thereby leading to a more sustainable water 

supply. 

In the process of RO desalination, highly pressurized water is driven across the RO 

membrane. It works on the principle that when a net (positive) driving pressure is held at 

the feed side of the membrane, water passes through it, leaving the salts behind. Energy 

consumption occurs when water (raw feed) is driven through the membrane with the  

help of high-pressure pumps that supply the required pressure to attain a favorable flow 

rate. The salinity of feed water, the configuration of the process, the operating conditions 

such as recovery and driving pressure etc, directly affect the amount of energy required 

in the process. Several studies have investigated the amount of energy consumption 

during the cross flow processes. However, a specific assessment and delineation of the 

energy usage during RO desalination has not yet been done [1]. 
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A huge amount of energy is expended to achieve the required pressure levels for the 

process, which is then rendered useless after the process ends. By this, it is implied that 

the energy used to raise the pressure of the seawater feed goes to waste when the 

remaining brine, which is also at high-pressure, has to be eliminated as a waste. A way 

had to be sought that would enable the reuse of the pressurized brine and would thus 

help in reuse of energy. The disposal of highly pressurized brine proved to be a major 

drawback of the system and led to an urgent need for the formulation of an efficient 

"energy recovery" process. This thesis is aimed at assessing the works on design and 

development of energy recovery devices, which aid in minimizing energy loss during 

seawater desalination. The advantages and disadvantages of most popular ERDs are 

discussed, along with case studies to exemplify the same. A thorough analysis of the 

cost and energy efficiency of each ERD is also done. Furthermore, a brief introduction 

on recent developments in ERDs is provided. 

The main function of an energy recovery device would be to improve energy 

efficiency by harnessing spent energy from the reject and delivering it back to the feed. 

Several methods have been explored in this domain of energy recovery devices (ERDs), 

which are classified as follows: 

   hydraulic to mechanical-assisted pumping 

   hydraulically driven pumping in series 

   hydraulically driven pumping in parallel 
 

The hydraulic to mechanical-assisted pumping (see Figure 1-2) uses a turbine, which 

is attached to a shaft that is connected to a pump and a motor. The shaft operates on  

the main feed. The pump, to which the shaft is connected, may be of two types— a 

kinetic centrifugal type or a positive displacement type. Other devices used earlier 

include the Pelton wheel turbines and the Francis turbines, which are also referred to as 

reverse running pumps. The main shortcoming of the hydraulic to mechanical-assisted 
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pumping system is that it involves double energy conversion. The first conversion occurs 

when hydraulic energy of the brine is converted to mechanical energy of a rotating shaft. 

The second conversion occurs when the mechanical energy of the shaft is then 

converted to the hydraulic energy of feed [2]. 

 

 
 

 
 

Figure 1-2: Hydraulic to Mechanical Assisted Pumping 
 
 
 

This system of hydraulic to mechanical-assisted pumping is highly inefficient and 

does not significantly lower the costs associated with the process. Therefore, the search 

was still on for a more efficient ERD. Devices based on newer designs and technologies 

were then introduced. These devices drove a secondary assisting pump, thereby 

reducing the load on the main feed pump. In spite of its utility in reducing load and 

energy consumption, the reduction was not significant enough to make a considerable 

difference in the costs incurred during the process. 

The hydraulically driven pumping in series belongs to the second class of ERDs. It 

has an impeller and a turbine, which are coupled to a shaft within the same casing. The 

main feed pump and the impeller and runner are placed in series. PEI's "hydraulic 
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turbocharger", Grundfos' "Pelton-drive pump" and FEDCO's "hydraulic pressure booster 

HPB" are examples of the second class of ERDs. These gained significant acceptance 

among consumers, especially in small and midsized desalination plants. Their full- 

fledged use in larger systems, like the plants in the Mediterranean and the Middle East 

for instance, was limited because of their size limitations. Moreover, these systems failed 

to address the problem of converting energy from hydraulic to mechanical and then back 

to hydraulic, thereby hindering the efficiency of operation. They were, however, an 

improvement over the first class of ERDs. 

 

 
 

 
 

Figure 1-3: Hydraulically Driven Pumping in Series 
 
 
 

The late 1980s saw the emergence of a new technology that functioned on the 

"theory of work exchange". It involved a direct transfer of hydraulic energy of brine to 

hydraulic energy of feed, lacking the "drag" that would have resulted from the passage of 

the water through the shaft. This brought the technology closer to 90% efficiency [3]. 
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Figure 1-4: Hydraulically Driven Pumping in Parallel 
 
 
 

This "theory of work exchange" led to the development of the third class of energy 

recovery devices, namely, hydraulically driven pumping in parallel. It employs the 

pumping of a 'buffer separating feed' or of freely reciprocating pistons. The main feed 

pump is placed in parallel to the device and operates on a portion of the feed, which is 

equal to the amount of the permeate. The device operates on the other portion of the 

feed whose amount is equal to the spent brine. This is based on the concept of "work 

exchange". In these ERDs, the hydraulic energy of brine is directly converted to  

hydraulic energy of feed, leading to over 90% energy efficiency. A new work exchanger 

device was developed based on a technology in which the number of stationary  

channels is fixed. A piston divides each of these channels into two working volumes, one 

of which is in association with brine and the other (opposing one) is in association with 

the feed. An exchange process ensues in these partitions, which is synchronized using 
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valves. A similar process is employed in other work exchangers wherein multiple 

channels are connected to a spinning rotor. The PX (pressure exchanger) is one such 

work exchanger. This device is also based on the same principle, in which, hydraulic 

energy of brine is directly converted to hydraulic energy of feed via direct contact 

between the two. This design disposes the requirement of valves, as there is no need for 

synchronizing the brine and the feed. The spinning rotor acquires a speed of 1500 rpm 

due to the angular momentum induced by the fluid. Because of the high speed, the fluid 

transit time is only 1/30th of a second, which is much less, to allow the mixing of the feed 

and the brine. This is thus an advantageous process. The intermixing of the feed and 

brine is further eliminated with the help of feed buffer. Along with the rotor's rotation, the 

feed buffer in the channel also reciprocates. The mixing decreases with an increase in 

the size of the buffer. Furthermore, the cyclic amount of feed and brine flowing through 

the device also decreases. By increasing the speed of the rotor, the flow rates of the 

brine and the feed can be increased. This increase is dependent on the conditions of the 

system, apart from the design of the rotor. Thus, the device's performance is limited to a 

small capacity, with very narrow feed and brine conditions. 
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Figure 1-5: Desalination Plant Capital & Operating Costs 
 
 
 
 
 

 

 
 
 

 
Figure 1-6: Operating Expenses—Breakdown 
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This limitation can be overcome by using an ERD, in which the rotor's speed is 

controlled externally, making it independent, to enable manual and calculated 

adjustments for the optimization of the performance. The performance optimization 

would be made possible by allowing an exchange of energy for a greater volumetric 

flow, along with the elimination of mixing between the feed and brine [2]. Two designs of 

work exchange dominated the ERD market. These were developed after many years of 

research and development. One of these designs employs pistons and valves for the 

exchange process and the other design employs a spinning cylindrical rotor. These 

designs have enabled the achievement of high efficiency and have thus reduced the 

total costs incurred during operation of desalination plants [3]. 

 

 
 

 
 

 
 

Figure 1-7: Power Use—Breakdown (Seawater RO) 

Source: Affordable Desalination Collaboration, 2008 
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1.2 Literature Review 

 
Farooque et al [4] have explicitly described the performance and efficiency of various 

ERDs used in several Saline Water Conversion Corporation (SWCC) SWRO 

desalination plants in Saudi Arabia. They compared the efficiencies of these ERD 

systems based on operating conditions for one year and also assessed their effect on 

the high-pressure pump's total energy consumption and savings, along with an 

assessment of the energy loss incurred during the process stream of the desalination 

plants. The mean efficiency of the assessed ERDs varied from 3.2% to 65%, enabling 

1.5% to 27% savings on the high-pressure pump's total energy consumption [4]. The 

mean power consumption of the pump ranged from 5.56 to 7.93 kWh / m3 [4]. A 

significant amount of energy was wasted due to throttling, which consumed about 6.4% - 

21.8% of the total energy supplied to the high-pressure pump [4]. 

A brief description of the energy recovery technology used during the desalination 

process in large plants was provided by Peñate and Rodríguez [5]. They described the 

modifications needed for the replacement of Pelton turbines with isobaric chamber 

devices. An exhaustive examination of the achievable levels of energy efficiency of 

these systems was also done. An emerging technology based on the principle of 

pressure work exchange was put forth by Al-Hawaj [2]. The device employed a rotating 

member with multiple free-sliding double-sided ball pistons that functioned on pressure 

exchange between fluids that were pressurized at varying levels. He also discussed the 

technical aspects of the work exchanger apart from assessing the predicted efficiency 

based on qualitative comparisons with other ERDs [2]. 

Andrews and Laker [6] provided a historical overview of large scale ERDs that work 

on the principle of work exchange, beginning with the application of SWRO in 1975 to 

the present state of technology in desalination. As is evident from their work, technology 
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based on work exchange has evolved tremendously since the time of its inception. They 

also described twelve years of the application of this technology in desalination plants. 

Furthermore, an important and original calculation model was developed by Migliorini 

and Luzzo [7] to account for the different conditions of sea water based on carbonate 

equilibrium. The use of this classical equilibrium system for calculations enabled the 

formulation of a complete mass and chemical balance of the system, along with the  

other characteristics of water. This model of calculation is not dependent on the 

characteristics of the membrane and so, can be used for a quick designing of the plant. 

Farooque, Ali and Al-Reweli [8] have stated that Francis Turbines were popular in 

the early days of SWRO technology owing to their ease of use and simplicity. As briefly 

discussed in the previous section, FT uses kinetic energy derived from brine coupled 

with the pump motor of the main feed to minimize the loss of energy during transfer from 

one fluid to the other. Due to their limited efficiency, which was below 75%, they lost 

their popularity and have been replaced by more efficient devices. 

Baig [9] has investigated the theory of energy double dipping in hydraulic to 

mechanical assisted pumping devices, Pelton wheels and Francis Turbines. He stated 

that the maximum efficiency of Pelton wheels ranges between 80 to 85%. He 

emphasized the fact that the Pelton wheel and the FT share a common feature of 

transferring the energy recovered from brine back to the high pressure pump by coupling 

them to a common shaft. Computing total loss of energy, the energy lost by the high 

pressure pump and the reduction in the wheel's energy efficiency were taken into 

account. This is what was referred to as "double-dipping" in energy efficiency. 

Farooque [8] rendered the ERT turbocharger hydraulically driven pumping in series 

class of ERDs similar to the Pelton turbines only however lacking a motor. Nevertheless, 

unlike Francis turbines and Pelton wheels, the turbocharger has been specifically 

designed for RO systems. Pump Engineering Inc. (PEI) and the Fluid Equipment 
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Development Company (FEDCO) are examples of companies that currently 

manufacture turbochargers. The function of this device is the transmission of hydraulic 

energy from reject brine to the feed. These two fluids may be at a different pressure and 

flow rate. In this system, there is no need of electrical cooling and other such 

requirements. 

Lechugal and de Tauro [10] presented Aqualyng as the only company that has its 

own patented ERD. The Recuperator ERD employs the pressure of the reject to 

pressurize the feed, and this process is maintained by the flow of brine from the 

membranes. Thus, the feed and the reject acquire the same pressure and flow, without 

intermixing with each other. Since this may induce a drop in pressure across the 

membranes and the Recuperator, another pump is required to boost the pressure. The 

HPP’s capacity must be equal to the product flow from the system. In order to fulfill this 

requirement, only an HPP, which is smaller than the typical HPPs, is required. An HPP, 

which is 60% smaller would provide a 40% recovery. This process can save a significant 

amount of energy. 

Andrews [6] described the DWEERTM energy recovery device to have two pressure 
 

vessels arranged in parallel. To avoid interrupting the flow of the reject, while one vessel 

is under operation, the other vessel is stationary, and has fresh feed. The pressure from 

the reject stream is transferred to the feed stream through a piston and the intermixing 

between the feed and reject is kept at a bare minimum. As the piston is designed in such 

a way that it has the least drag, the energy transfer between the two fluids is  

theoretically 100%. Therefore, the direct exchange of energy between the two fluids, i.e. 

the reject and the feed is highly efficient when compared to ERDs that rely on the 

conversion of energy by shaft of the turbines based on the centrifugal principle. In the 

DWEER system, by the time the piston in the operating vessel completes its working 

stroke, the other vessel is completely filled with feed, and the functions are switched. 
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MacHarg [11] demonstrated how the PX device pressurizes the feed water directly. 

This is in contrast with the energy recovery turbine, where the energy of the concentrate 

is converted to mechanical energy by rotating the shaft and thus recovering energy. 

Because of the direct pressurization with PX device, there are no losses due to absence 

of the transformation process in this case. This results in extremely high energy 

efficiency achieved by the PX devices. This will considerably reduce the power 

consumption of the SWRO plant employing these PX devices. 

 

 
1.3 Investigation Objectives 

 
The objective of the present thesis is to evaluate and discuss the history and 

evolution of the different ERDs, apart from assessing the differences in their design and 

operation. The efficiencies of all the discussed devices are also presented. This 

investigation will largely focus on the energy efficiency and economy of use of isobaric 

devices in comparison with centrifugal devices. 

There are eight main chapters in this thesis. Beginning with chapter-two to chapter- 

seven, the concept of ERDs along with their historical aspects is introduced. The devices 

are arranged in the order of their introduction in desalination technology, beginning with 

the Francis turbine, followed by the Pelton wheel, then the turbo charger, followed by the 

Recuperator, and finally, ERI’s Pressure Exchanger, PX. The last chapter, i.e. chapter- 

eight emphasizes on the energy efficiency and cost effectiveness of isobaric devices 

versus centrifugal devices, in addition to an evaluation of other newly designed devices 

that have undergone intensive research and development. 
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Chapter 2: Francis Turbine / Reverse Running Pump 

 

 
 
 

2.1 History and Design 

 
Francis Turbines (FT), also known as reverse running pumps belong to the first class 

of ERDs, i.e. hydraulic to mechanical-assisted pumping, as discussed previously in the 

introduction [2]. These devices were the first to be employed in SWRO municipal scale 

desalination plants. Pelton wheels later replaced these in 1980s because of their higher 

efficiency [12]. 

 

 
 

 
 

Figure 2-1: Francis Turbine with Generator 
 

From the English Wikipedia. Taken By 13:14, 28 Mär 2004 Stahlkocher 
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2.2 Disadvantages of the Francis Turbine 

 
The earliest identified disadvantage of FT was that the flow range and pressure 

required for achieving maximum efficiency of operation was narrow and limited. In 

addition, these ERDs did not generate energy until the design condition reached about 

40% [8]. In SWRO desalination plants, especially those in the Middle East and similar 

regions, variations in temperature of the place and changes in membrane permeability 

occurring due to fouling of the membrane or due to ageing, inversely affect the efficiency 

of these devices [8].They are also difficult to control and pose a significant challenge in 

maintenance. The hydraulic energy that is recovered by these devices is mechanically 

transferred to the driver, similar to the Pelton wheel. The assembly involves a clutch 

between the turbine and the pump. The FTs were inefficient and the amount of energy 

consumed increased with change in the operation conditions. They were also inefficient 

for a low range of flow. Because of the disadvantages of these devices, they were 

replaced with those that were more efficient [13]. 

 

 
 

 
 

Figure 2-2: The Trinidad SWRO Plant Implementing Francis Turbine 
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Other devices that replaced FTs were more efficient as they directly transferred the 

pressure to feed water from the reject pressure. The energy recovery achieved through 

these devices was higher than that of FTs, however, they were not yet used in large 

SWRO plants [14]. 

SWRO plants at the SWCC (Saline Water Conversion Corporation) at Al-Jubail and 

Yanbu in Saudi Arabia use FTs as ERDs [8]. Their performances are evaluated in the 

case studies that follow. 

 

 
2.3 Case Studies 

 
2.3.1 Al-Jubail SWCC SWRO Desalination Plant 

 
The SWCC's SWRO desalination plant at Al Jubail, Saudi Arabia, has fifteen trains, 

four of which operate on "Toray spiral wound membranes". The other eleven operate on 

"DuPont B-10 twin hollow fine fiber membranes" [4]. The trains at this plant obtain a 

recovery of about 28.6–35%, with the feed flow remaining constant at 723 m3/h [4]. The 

HPP's and ERD's specifications at the Al Jubail plant are given in Table 2-1. At this 

desalination plant, the temperature of the feed (seawater) varies from 17 to 35°C and the 

pressure of the feed lies in the 62.4–84.2 bar range [8]. 

 

 
Table 2-1: Specifications of HPP and ERDs Used at Al-Jubail SWRO Plant 

 
 

 
High pressure pump 

details 

Specification Rated for 900 m3/h 0.88 at 81 bar 

Power Factor 0.88 

Voltage (kV) 13.8 

Overall efficiency (%) 79.9 

Energy recovery device 
details 

Specification Rated for 485 m3/h at 71.5 bar 

Overall efficiency (%) 81.85 
 
 

The Francis turbine or the reverse running pump was preferred instead of the Pelton 

wheel at the SWRO desalination plant at Al Jubail. This was because of 
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   The availability of standard pumps made of materials that were resistant to seawater. 
 

   Lack of Pelton wheel turbines of suitable capacity for use in seawater desalination 

processes 

   The operational experience associated with pumps and turbines similar to the FTs in 

the SWCC-SWRO plants. 

   High costs of maintaining the Pelton wheel turbines, especially during replacement of 

the runner blades. 

The use of a direct flange connection for connecting the ERT to the drive motor is 
 

preferred over the use of a clutch connection. Maintenance needs such as the 

replacement of the rollers call for frequent discontinuation of the ERTs in desalination 

plants [9]. The major characteristics of the design employed in these ERDs are 

described as follows: 

   The ERD belongs to the first class and uses a Francis turbine, which is the reverse 

running pump type, manufactured by Ingersoll Dresser from UK 

   The maximum recovery of power is 33%, which amounts to 760 kW and the capacity 

is 485 m3 / h. 

   The Total Dynamic Head is 71.5 bar 
 

Prior to the evaluation of the efficiency and performance of the SWRO desalination 

plant at Al Jubail, the elementary principles and formulae that will be used throughout 

the case studies are recapitulated here: 

a. Specific energy consumption (SEC): 
 

The specific energy consumed (SEC) by HPPs is expressed in kWh/m3. The SEC is 

calculated by dividing the total electricity input to the HPP (in kW) with the total product 

flow (m3/h). The power input is calculated using a standard equation [4]. 
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Pia = 1.73 × V × I × y (1-1) 
 
 
 

where, 
 

Pia = actual power input in kW 

V = voltage in kV 

I = current in A 
 

y = power factor, decimal. 
 

The power and voltage factor used for these calculations are given in Table 2-1 [4]. 
 

b. Percentage energy saving by ERD (ES): 
 

Percentage energy saving by ERD is calculated using the formula: 
 
 

 
ESerd(%) = (ESerd / Pie) x 100 (1-2) 

 
 
 

where, 
 
 

 
ESerd= Pie – Pia (1-3) 

 
 
 

where the actual power input, Pia, is obtained from the Eq. (1-1) and the expected power 

input, Pie, is calculated using the equation given below [14]: 

 
 

Pie = WPon / ηp (1-4) 
 
 
 

where, 
 

ηp = overall efficiency of HPP 

WPon = net hydraulic power output 

The WPon is calculated using the following equation: 
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WPon = WPd – WPs (1-5) 
 
 
 

The hydraulic power (WP) is calculated using the equation given below [8] 
 
 

 
WP = (p x Q) / 36 (1-6) 

 
 

 
where, 

 
WPd = hydraulic power at the discharge of HPP, kW 

WPs = hydraulic power at the suction of HPP, kW 

p = pressure, bar 
 

Q = flow rate, m3/h [8]. 
 

c. Efficiency of ERD (ηerd) 
 

The overall efficiency of ERD includes the ERD's efficiency in addition to the loss in 

efficiency because of the flexible coupling that connects it to the HPP. The overall 

efficiency is thus calculated as follows [8]: 

 

 
ηerd = (WPin / Pon) x 100 (1-7) 

 
 
 

where, net hydraulic power input, WPin to ERD is calculated using the following equation: 
 
 
 

WPin = WPr – WPfr (1-8) 
 

where, WPr represents the hydraulic power of the reject entering the ERD; and WPfr 

represents the hydraulic power of the final reject exiting the ERD, which is calculated 

using the Eqns. (1-6). The net power output, Pon, from the ERD is nothing but the power 

saving achieved by the ERD, ESerd, and is calculated using the Eqns. (1-3). 
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d. Percentage throttle loss (TL) 
 

A percentage of energy is lost while throttling the discharge pressure with a valve. 
 

This throttle loss is calculated using the equation given below: 
 
 

 
TL(%) = [(WPut – WPdt) / WPut] x 100 (1-9) 

 
 
 

where, 
 

WPut = hydraulic power upstream of throttle valve 

WPdt = hydraulic power downstream of throttle valve 

The hydraulic power is calculated using the Eqns. (1-6) [8]. 
 

The minimum, maximum and the average values of all the above four parameters for 

the trains discussed in this case study are given in Table 2-2. As calculated, the average 

SEC of the plant is 7.42 kWh/ m3 and the average SEC of each train varies from 6.64 

kWh/ m3 to 8.74 kWh/ m3 as given in Figure 2-3 [4]. It is important to note here that the 

train, whose available data pertaining only to the winter months (Train B), was found to 

have the lowest SEC, while Train L, whose data was available only for the summer 

months, had the highest SEC. It is therefore inferred that at the Al Jubail plant, the 

performance efficiency of ERD differs with changing seasons, especially because of the 

variation in temperature. Such a temperature dependence was not observed in other 

plants [4]. Therefore, seasonal changes affect ERD performance as is reflected by the 

changes in SEC [8]. The dependence of the SEC and ηerd values on change in the 

temperature and pressure of the reject observed for the Train F, as shown in Figure 2-7 

and Figure 2-8 indicate that ERD efficiency increases with increase in the pressure of 

the reject. Low feed temperatures result in higher pressure of the reject, which in turn 

reduce the SEC and increase ERD efficiency. 
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Table 2-2: Energy Consumption and ERD Efficiency at Al-Jubail Plant 

 
Energy consumption 

by HPP, kWh/m3
 

Energy saving 

by ERD, % 

ERD efficiency, 
 

% 

Throttle 

loss, % 

Minimum 6.38 11.93 33.48 13.37 

Maximum 9.74 32.21 72.51 36.1 

Average 7.42 22.63 54.83 21.77 

Std. dev. 0.54 4.54 9.29 4.01 

 

 

 
 

Figure 2-3: SEC by HPP of Al-Jubail SWRO Plant Trains 
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Figure 2-4: Energy Saving by ERDs of Al-Jubail SWRO Plant Trains 
 
 

 
Another notable observation is that while the average SEC value is expected to be 

almost constant because of the maintenance of a constant feed flow and discharge 

pressure in the HPP, it is found that the average value varies widely. This may be due to 

the variation in ES values, with Train L having the least value of about 14.3% and the 

Train B having the highest value of about 29.3% (Figure 2-4) [4]. Furthermore, this 

variation in the ES value of ERD may be due to the differing ηerd value, with Train L 

having the least value of about 40.3% due to low reject pressure owing to the high 

temperature of the feed, and Train B having the highest value of about 72.3% due to 

high reject pressure owing to low temperature of the feed (Figure 2-5) [4]. The average 

ES value of the whole plant was 22.6%, ranging between a minimum of 11.9% and a 

maximum of 32.2%. The plant's average ηerd value was 54.8%, ranging between a 

minimum of 33.5% and a maximum of 72.5% (Table 2-2) [4]. 
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Figure 2-5: Efficiency of ERDs of Al-Jubail Plant Trains 
 
 

 
As given in Figure 2-7 and Figure 2-8, the performance of ERD varies with the 

conditions of the system. The pressure of the reject, which varies from 56 to 82.1 bar, 

depends on the change in the temperature of the seawater, which varies from 17 to 

35°C [4]. 

The TL value observed for all Trains vary significantly, with 15.6% being the lowest 

and 32.9% being the highest (Figure 2-6). The average TL of the whole plant was 

21.8%, with 13.4% being the lowest and 36.1% being the highest (Table 2-2) [4]. It is 

evident that the performance of FTs is influenced by changes in the pressure and flow of 

the feed. 
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Figure 2-6: Energy Lost by Throttling in Al-Jubail SWRO Plant Trains 
 

 
 
 

 
 

Figure 2-7: ERD Efficiency and SEC VS Feed Temperature at Al-Jubail Plant 
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Figure 2-8: ERD Efficiency and SEC VS Reject Pressure at Al-Jubail Plant 
 
 

 
The optimum performance of the ERD is affected when non-ideal conditions of 

operation are employed. Thus, it is ideal to consider the combined effect of interaction 

between the pump and the ERD that are operating in unusual conditions [8]. Therefore, 

the detailed analysis of the FT and pump system used in the SWRO desalination plant at 

Al Jubail was done. The efficiency of the plant influenced by the operating conditions  

was studied for one year. In addition, total energy consumption and saving by the HPP 

was also observed [4]. 

 

 
2.3.2 Yanbu SWRO Desalination Plant 

 
The SWRO desalination plant at Madinat Yanbu Al-Sinaiyah, the Yanbu Industrial 

City in Saudi Arabia comprises 15 trains [4]. The HPP of each of these trains is coupled, 

via flexible coupling, with a Francis turbine [8]. Of the 15 trains at this plant, some 

operated at a 660 m3/h reject flow while others operated at a 750 m3/h reject flow. The 
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ones at a lower reject flow used new membranes while those at a higher reject flow used 

old membranes [8]. The remaining ones operated at a 750 m3/h reject flow using old 

membranes initially, following which, they reached a lower reject flow of about 660 m3/h 

due to replacement of the old membranes with new ones. Trains with higher reject flow 

had lower recovery rates (32%), while those with lower reject flow had higher recovery of 

about 35% [8]. In spite of this, the product flow for all the trains at the plant remained 

constant at 350 m3 / h. Apart from lowering the reject flow, new membranes were also 

found to increase the pressure of the reject, with old membranes giving a reject of 6 bar 

compared to 13 bar by new membranes [8]. Many developments have taken place in the 

design and technology of the SWRO desalination plants [15]. At the Yanbu SWRO 

desalination plant, the salinity of saltwater ranges from 42,000 to 45,000 mg/L [4]. 

The mean SEC of the plant is 5.56 kWh/m3 [4] and the mean SEC of each train 

ranges from 5.31 to 5.77 kWh/m3. The average SEC for trains using new membranes 

was found to range from 5.66 to 5.77 kWh/m3 [8]. This value of SEC in trains using new 

membranes is higher than that of trains using old membranes, whose average SEC 

ranges from 5.31 to 5.6 kWh/m3 [8]. This may be due to the fact that ERDs of trains 

having old membranes save more energy (27.7 – 30.3%) in comparison with the 20.8- 

22.2% energy saving in trains having new membranes [8]. This difference in energy 

savings depends on the efficiencies of ERDs employed in the trains, apart from the 

reject pressure. The ηerd values of the ERDs in trains having old membranes, wherein 

the actual flow equals the ERD design flow, range from 63.12 to 71.2% [8], and the ηerd 

values of the ERDs in trains having new membranes range from 60.8 to 62.5%, since 

the flow is different from the ERD's design flow. The ηerd values for all trains ranged from 

the lowest value of 48.6% to the highest value of 79% [4]. 

Throttling leads to considerable energy loss. It is an indispensable requirement for 

the high-pressure pump as the seawater is delivered at a higher pressure than needed 
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by the membranes, which is reduced to optimum levels using the throttle valve. At the 

Yanbu desalination plant, the TL values do not depend on old and new membranes. The 

mean TL value for all trains at this plant ranges from the lowest value of 10.9% to the 

highest value of 22.7% [8]. As in the first case, the SEC value of this plant can also be 

decreased from the current 5.56 kWh/m3 to 4.67 kWh/m3 [4]. 

The average ES for the plant is 25.9%, with 17.2% being the lowest and 32.7% being 

the highest [8]. Since the ηerd value is 65%, it is expected that the ES value would be 

higher than the observed value of 25.9% [8]. Thus, the ES value is lower than expected. 

This may be attributed to the fact that the pressure of the reject, which is between 6 to  

13 bar, is used to pump up the reject for "backwashing the pretreatment media filters"  

[8]. It is expected that by decreasing the final pressure of the reject to the lowest value 

that is sufficient enough for pumping, may also decrease the SEC from the current value 

of 5.56 kWh/m3 [4]. 

At this plant, the temperature of the seawater (feed) ranges from 25 to 35°C [4]. This 

also affects the pressure of the feed, which ranges between 56.8 – 66.7 bar [8]. This 

variation in the pressure of the feed is not significantly large, and so, does not seem to 

affect the performance of the ERD. It is observed that the performance of ERDs at the 

Yanbu desalination plant is not affected by seasonal temperature variations [4]. 
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Chapter 3: Pelton Wheel 

 

 
 
 

3.1 History and Design 

 
Pelton wheel was invented during the 1850s. Originating in San Francisco, it is a 

kind of water wheel. The Pelton wheel used in SWRO desalination plants is easy to 

operate. It has an input nozzle through which high-pressure feed is directed onto the 

buckets of the wheel. The nozzle is designed such that the entire kinetic energy of the 

pressurized feed is converted to mechanical energy manifested as rotation [16]. The 

buckets, also referred to as vanes, of the wheel are arranged in series around the shaft, 

which intercepts the feed stream [17]. As in the hydraulic turbocharger, the pump in the 

Pelton wheel is driven by a turbine. This pump enhances the pressure of the feed before 

it enters the HPP, thereby decreasing the energy consumption [18]. 

 

 
 

 
 

Figure 3-1: Pelton Wheel Drawing from Original Patent (October 1880) 
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The Pelton Wheel is popular worldwide and is more efficient than the FT [19]. The 

efficiency of the Pelton wheel remains constantly high even during variations in the 

pressure and flow of feed [8]. One significant challenge, however, is the design and 

maintenance of metal parts, as they are easily corroded when exposed to seawater [17]. 

 

 
 

 
 

Figure 3-2: Sectional Arrangement of a Pelton Wheel 
 
 

 
3.2 Efficiency Double Dip 

 
The achievable efficiency of SWRO desalination plants using Pelton wheels is 80 to 

85% [9]. A common characteristic of the Pelton wheel and the FT is that these transfer 

the energy recovered from brine back to the HPP via the shaft. While computing total 

loss of energy, the energy lost by the HPP and the reduction in the wheel's energy 

efficiency must also be taken into account [9]. This can also be referred to as "double- 

dipping" in energy efficiency [9]. Along with a reduction in the recovery, there is an 

increase in the amount of high-pressure feed entering the ERD, which decreases the 
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efficiency of energy recovery. Evidence suggests that the energy efficiency of a 

desalination plant using a centrifugal HPP, coupled with a Pelton wheel, increases with 

an increase in the percentage of recovery. Therefore, most SWRO desalination plants 

are designed to work at a higher recovery. In plain terms, it can be said that the ERD 

operating at a recovery of 45% has twice more efficiency than that operating at a 

recovery of 25%, and it is due to this fact that desalination plants are being designed to 

achieve a higher recovery [17]. 

 

 
3.3 Case Studies 

 
3.3.1 Maspalomas II SWRO Plant 

 
The Maspalomas II SWRO plant has a 20,400 m3/day production capacity. It also 

employs a 20,000 m3/day EDR (electrodialysis reversal) plant for desalination of 

brackish water and is located in Spain, Gran Canaria [14]. 

A typical SWRO Plant carries out its process as given: firstly, the raw seawater is 

acquired and filtered using anthracite and sand filters. This filtrate is then again filtered 

through cartridge filters. The Maspalomas II SWRO has five trains with a daily feed 

intake capacity of 41,000 m3 [14]. About 40% of the seawater is recovered and 60% of 

the reject is transferred back to the sea. The feed comprises of 35,000 mg/l TDS. 

Francis Turbines are the ERDs employed at this plant [14]. 

After its installation in 1987, the plant was expanded again in the 1990s [14]. The 

Brine Conversion System (BCS) was tested at this site. In this system, a 2nd stage 

SWRO plant was added for the recovery of brine from the reject [14]. A novel quality of 

this plant is that once seawater has been desalinated in the first stage, the reject water is 

desalinated again in the second stage. This use of second stage SWRO increased the 
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product recovery from 40% to 60% and therefore, led to reduction in energy 

consumption [14]. A Pelton wheel was used in the second stage SWRO at this plant. 

A yet another system, the Full-scale Brine Conversion System, was then built after 

the initial BCS was pilot tested. The advantage of using such a system was that there 

was no need of expanding the facilities for intake of seawater and for its pretreatment. 

This plant is credited as the first one to use BCS. The system involves pressurization of 

brine to 90 bar [14]. The brine is then driven into concentrator membranes, where about 

33% water is recovered from the reject. Furthermore, during this process, a Pelton wheel 

is used to recover the remaining energy from the reject. The process flow of a train at  

the plant is given in Figure 3-3 [14]. The total electricity consumed by the train is 3.77 

kWh/m3 and the total power consumption by the HPP is 445 kW [14]. 

 

 

 
 

Figure 3-3: Process Flow Diagram for One BCS Unit at Maspalomas II 
 
 

 
The product flow in trains with BCS is 118 m3/h with a product flow of 41 m3/h, 

making a total flow of 159 m3/h [14]. The Pelton wheel's total power consumption is 533 

kW, and so, the total electricity consumption is 3.35 kWh/m3 [14]. The energy 

consumption for the production of water by SWRO with BCS unit is lower than the 



33  

energy consumed by conventional SWROs [14]. This is because instead of wasting the 

brine produced in first stage, it is reused for further desalination in the second stage. 

This saves a lot of energy that would have been spent for acquiring the water, pre- 

treating it and then pressurizing it. It is found that in typical SWRO desalination plants 

that are of a single stage, the energy consumption reduces as the water recovery 

increases because lesser water has to be pressurized for achieving a required quantity 

of product [8]. Because of the BCS system in two-stage plants, lesser amount of water 

has to be pressurized for achieving the same amount of product. This is the reason for 

the increasing popularity of the BCS, which increases recovery and decreases power 

consumption [8]. It should however be noted that at the second stage, the salinity of the 

feed is higher and so, the level of pressurization required for BCS is also higher when 

compared to the first stage. Therefore, with an increase in recovery, there is a decrease 

in energy savings. 

In addition, the efficiency of HPPs and ERDs also affects the energy consumption 

and amount of recoverable energy [14]. When the power consumption by a single stage 

SWRO unit with a considerably low recovery is compared with that of a two stage 

SWRO with a high recovery, other factors such as the salinity of salt water, the kind of 

pumps used and the ERDs employed should also be taken into account. It is surprising 

to know that in a few cases, single stage SWROs are found to consume lesser energy 

than two-stage ones [14]. As for the two stage SWRO plant at Maspalomas II, the two 

stage units are more energy efficient than single stage units. 

Different designs have been explored for the coupling of ERDs with BCS units for 

minimization of energy consumption [18]. The choice of design would depend on many 

characteristic plant features and operation parameters such as size, energy costs, 

capital required, maintenance and the kind of ERDs available. In the two stage plant at 

Maspalomas, a booster pump increases the pressure of the reject obtained at the end of 
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the first stage to be used as feed for the second stage [14]. Another proposed design for 

minimizing the consumption of energy is the use of BCS along with a turbocharger. In 

this design, an HPP will be used to pressurize the feed in the first stage. The 

turbocharger will then be used to pressurize the reject of the first stage to be used as 

feed by BCS in the second stage. The energy from the reject of the second stage is 

used by the turbocharger for energy recovery [14]. 

 

 
3.3.2 Ummlujj SWRO Desalination Plant 

 
This plant, owned by the SWCC, has two trains named 100 and 200. Each of these 

trains has two HPPs that are coupled with a Pelton wheel. One set of HPP and its 

coupled ERD is kept on standby while the other one is running. Hardness of water is 

removed during pretreatment. The salinity of the seawater at this plant is between 

41,000–43,000 mg/L. Table 3-1 shows the specifications of this plant [4]. 

It is apparent by now that the efficiency of an ERD unit affects the energy savings. 

SEC amounts to more than 80% of the total energy required [18] for the production of 

one unit of the permeate. The design of a plant is such that it is optimized for least SEC, 

which is the energy consumed by the HPP. However, the throttle valve challenges this 

objective. The throttle valve is used for the regulation of the pressure of the feed. The 

energy in the feed stream is reduced by the throttle valves before reaching the 

membrane, which makes it difficult to reduce SEC [8]. Therefore, attempts have been 

made for the evaluation of the efficiency of ERD and amount of energy lost due to 

throttle, so that the SEC can be reduced by designing appropriate technology. SWCC's 

SWRO plants employ both the FT and the Pelton wheels. The Ummlujj plant is the only 

SWCC plant that uses only the Pelton wheel, and so, it is our focus in this section while 
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some of the rest of the plants such as Yanbu, Jubail, Duba and Haql, which utilize 

reverse running pumps or Francis Turbines, were evaluated in the previous chapter [4]. 

 

 
Table 3-1: Ummlujj Plant Specifications 

 
 

 
High pressure pump 

details 

Specification Rated for 400 m3/h 0.86 at 65.8 bar 

Power Factor 0.86 

Voltage (kV) 4.16 

Overall efficiency (%) 70 

Energy recovery device 
details 

Specification Rated for 251 m3/h at 53 bar 

Overall efficiency (%) 85 
 

 
 

 
 

Figure 3-4: SEC by Different HPPs/ERDs at the Ummlujj Plant. 
 
 

 
The SEC is affected by the difference in the transmembrane pressure, which is 

necessary for the achievement of the required flow rate under various conditions of 

operation. This is further influenced by the energy efficiency of the pump coupled with 

the ERD for the recovery of hydraulic energy from brine [8]. In addition, the performance 

of Pelton wheels is affected by differences in the pressure and flow. The performance of 
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the pump / Pelton Wheel system used in the Ummlujj SWRO plant are analyzed here [4]. 

The product recovery of this plant is 25% at a feed pressure of about 60-65 bar, which is 

influenced by seasonal changes in temperature that ranges from 23.1 to 34.6°C [4]. 

The fundamental equations for evaluating the system performance have been used 

as mentioned in the previous chapter, to display some values of operation for the 

Ummlujj SWRO plant. 

 

 
Table 3-2: Energy Consumption and ERD Efficiency at Ummlujj Plant 

 
Energy 

consumption by 

HPP, kWh/m3 

 
Energy saving by 

ERD, % 

 
Overall ERD 

efficiency, % 

 
 

Throttle loss, % 

Minimum 7.09 23.61 53.89 6.16 

Maximum 8.41 31.85 82.28 12.54 

Average 7.93 27.38 64.36 10.39 

Std. dev. 0.04 0.27 1.76 0.8 

 
 

Table 3-2 shows the minimum, maximum and average value of all the four calculated 

parameters for both the HPP/ERDs of the plant. The mean SEC for Train 200 was 7.93 

kWh/m3 [8] and the mean SEC for each HPP coupled with ERDs was 7.96 kWh/m3 for 

200A and 7.9 kWh/m3 for 200B (Figure 3-4) [4]. The SEC values ranged from the lowest 

7.09 kWh/m3 to the highest 8.41 kWh/m3 (Table 3-2) [4]. 
 

The average ES was 27.4% with 23.6% being the minimum and 31.9% being the 

maximum (Table 3-2). The ES value was almost the same for both 200A and 200B as 

shown in (Figure 3-5). The high efficiency of the energy recovery devices leads to a high 

ES. The efficiency of one ERD was 63.1% and that of the other one was 65.6% (Figure 

3-6). The average value of ηerd for the two ERDs was 64.4% with 53.9% being the lowest 
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and 82.3% being the highest [8](Table 3-2). It is important to note here that there was no 

relative difference in ηerd and SEC values in response to temperature of the feed and 

pressure of the reject. Only a minute variation of about 57.9–62.8 bar was observed. The 

TL of one unit was 9.8% and that of the other unit was 11% (Figure 3-7). The mean TL 

value for the Train named 200 was 10.4%, with 6.2% being the lowest and 12.5% being 

the highest (Table 3-2). As in the other case studies, it is expected that if a VFD is 

installed, the SEC value of the desalination plant can be decreased from the present 

7.11 kWh/m3 to 7.93 kWh/m3 [4]. 
 

 
 
 

 
 

Figure 3-5: Energy Saving by Different ERDs at the Ummlujj Plant 
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Figure 3-6: Efficiency of Different ERDs at the Ummlujj SWRO Plant 
 
 
 
 
 

 

 
 

Figure 3-7: Energy Lost by Throttling in HPP Systems at the Ummlujj Plant 
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Chapter 4: Turbo Charger / Hydraulic Pressure Booster (HPB) 

 

 
 
 

4.1 History and Design 

 
The hydraulic turbocharger is of the centrifugal type and has been in use since 

1990s [5]. It is a second generation ERD and employs alloys that are resistant to 

corrosion. Some of the alloys used include 2205 and other steels of Duplex grades [20]. 

A nozzle drives the reject onto a turbine, which is connected to a centrifugal spinning 

impeller [21]. The use of the turbocharger is to boost the pressure of the feed that has 

been pressurized by the HPP for reaching the required feed pressure [22]. 

 

 
 

 
 

Figure 4-1: SWRO Process with FEDCO Turbocharger / HPB 
 
 

 
A turbocharger unit consists of a hydraulic turbine and an HPP. The turbine is similar 

to a reverse running pump [8]. The HPP and turbocharger are not connected directly to 

overcome the disadvantages that are observed in FTs and Pelton wheels, thereby 



40  

allowing operation flexibility [21]. In addition, turbochargers are easy to install and are 

significantly energy efficient. An SWRO process employing a turbocharger is shown in 

the Figure 4-1. 

The impeller of the HPP is made of the same material as the impeller of 

turbocharger. Both the impeller and the turbine of the turbocharger are centrifugal 

"close-coupled mixed-type" with both axial and radial flows [21]. The transfer of energy 

by the turbocharger increases the pressure of the feed, and the rotating element of the 

device is balanced. It has a by-pass that allows manual control of the flow [8]. This is 

required when the flow rate of brine at second stage is higher than needed [22]. This is 

required even more when the feed experiences large variations in temperature or when 

the membrane used is old. The energy recovery by the turbocharger is achieved when 

the discharge pressure required by the HPP is decreased. 

 

 
 

 
 

Figure 4-2: A Turbo Charger Unit 
 
 

 
The maximum efficiency achieved by these devices is 89%-90% [5], which is slightly 

higher than the efficiency of the Pelton wheel as the HPP in the Pelton wheel runs at a 
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higher head, decreasing the efficiency. The highest transfer efficiency that can be 

achieved by hydraulic turbocharger is calculated by multiplying the efficiency of 

impellers, nozzles and turbine, as 90% x 90% x 99% = 80% [21]. Each of these three 

factors influences the efficiency of this device. As shown in the Figure 4-1, control valves 

and nozzles can help in adjusting the performance. 

As discussed in the previous case study on the Maspalomas II SWRO plant, 

turbochargers are also used along with Pelton wheels. In this case, the turbocharger is 

used in Brine Conversion System (BCS) during the second stage recovery of water from 

reject obtained in the first stage. It thus increases the water recovery by 60% [5]. Plants 

with turbochargers are reported to have an efficiency of about 70%. Several smaller 

plants installed in the 1990s to 2000 with a capacity of 210 to 5,700 m3/d have also 

employed turbochargers along with BCS [5]. Apart from these, large plants employing 

the BCS system have also been reported. For instance, the Caribbean Island and Mas 

Palomas have large plants employing the BCS system [23]. 

These devices, i.e. turbochargers, are more reliable compared to earlier ERDs. They 

also require low maintenance. However, one limitation of these devices is that they can 

recover only 50-80% energy [17]. 

 

 
4.2 Case Studies 

 
4.2.1 Greek Islands Oia SWRO Desalination Plant 

 
As already discussed, the performance of a turbocharger depends on flow and 

pressure of the feed. The performance of the turbocharger system in conjunction with 

the pump in the Oia SWRO desalination plant is analyzed further. This analysis is based 

on documented energy efficiency reports of one year of plant operation [4]. 
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Hundreds of Greek islands in the Aegean Sea suffer from water shortage [16]. 

Increased tourism in the area has further aggravated the crisis. Thus, installation of 

desalination plants at each island seemed to be a good solution. However, the set-up of 

desalination plants was made difficult by widely varying water demands, higher costs 

associated with the product, and the dearth of qualified operators. Therefore, small scale 

SWRO plants were set-up [16]. One of the small plants is the SWRO desalination plant 

at Oia. This plant is further studied here. Table 4-1 details the specifications and 

characteristics of this plant. The data for evaluation was obtained from the Oia plant, 

which has two units using different ERDs. One used the turbocharger while the other 

used the Pelton wheel[16]. The present case study evaluates the unit employing the 

turbocharger. 

 

 
Table 4-1: Characteristics of the Oia SWRO Plant 

 
 
Location 

Number of 

units 

Number of inhabitants 

Total production, m3/d 

Total production, 

m3/d 

Island of 
 
Santorini, 600 permanent inhabitants 

2 550 
Community of 8,000 in tourist season 

Oia 

 
 

Since the area experiences heavy tourism, there is a huge demand for water. The 

desalination of water is not sufficient to meet the needs of the locals as well as the 

tourists. Therefore, private wells are also used in addition to the desalinated water. 

However, the water from the wells is of low quality. The local municipal water companies 

own the desalination plants and the price policy for the desalinated water is revised each 
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year. However, it is reported that this price policy is largely based on social policy rather 

than economy and investments [16]. 

The SWRO plant at Oia employs the HTC (Hydraulic TurboChargerTM) manufactured 
 

by PEI. This turbocharger is designed in such a way that the pressure of the feed stream 

is boosted by utilizing the hydraulic energy of reject. As shown in Figure 4-3, the HTC 

boosts the pressure of the feed. The HPP provides a boost of about 660 psi to the 

pressure of the feed [23]. This is then further enhanced by the HTC, making the final 

pressure 880 psi, which is the optimum pressure for operation. The HTC recovers the 

energy from pressure of the reject brine which is at high pressure [16]. 

 

 
 

 
 

Figure 4-3: HTC as a Feed Pressure Booster in an RO System 
 
 

 
Data for this case study was obtained from reports on energy consumption for three 

months, during which, all parameters were measured and recorded. The total energy 

consumption includes the energy consumed by pumps, lights etc. Table 4-2 enlists the 

recorded data [16]. 

As is evident from the data in Table 4-2, the SEC is not influenced by the size of the 

plant in spite of the expectation that SEC would be inversely proportional to the size of 

the plant [5]. An analysis of this data reveals that the efficiency of a turbocharger is 
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higher than the efficiency of Pelton wheels. Owing to their small size and low costs, 

turbochargers are more popular than the Pelton wheel in SWRO desalination plants [16]. 

 

 
Table 4-2: Data for the Energy Recovery System 

 
Operating and consumption data for the Hydraulic TurboChargerTM. Capacity 160 

m3/d 

Working 

time, h 

Energy 

consu- 

mption, 

kWh 

Prod- 

uction, 

m3 

Tempe- 

rature, 

°C 

Permeate 

condu-ctivity, 

µS/cm 

Operating 

pressure, 

psi 

Specific 

consu- 

mption, 

kWh/m3
 

 
 

48.5 1,515 308 19 740 880 4.91 
 
 

 
110.2 3,451 739 21 740 880 4.66 

 
 

 
524.5 16,516 3,572 24 820 880 4.62 

 
 

 
497.7 15,516 3,389 25 850 880 4.66 

 
 
 
 
 
 

4.2.2 Atlantic Ocean Plant 

 
The Atlantic Ocean SWRO plant has four trains, each of which is of 2,500 m3/d 

capacity. The seawater has total dissolved solids of about 36,000 mg/l  [5]. The recovery 

rate of the plant is 40%. The total consumption of energy is lowered to 4.18 kWh/m3 

using an ERD [5]. The ERD uses a turbine attached to the HPP. The feed flow in each 
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train is 3,785 m3/d and the feed pressure is 67 bar  [5]. As the seasonal temperature 

varies, the quality of seawater also changes, with total dissolved solids changing from 

56,600-68,000 mg/l from summer to winter. The final product will have to have just 400 

mg/l TDS [5]. This plant uses a turbocharger as an ERD. The make and model of the 

turbocharger is TURBOTM, HTC-900HR. This turbocharger boosts the pressure of the 

feed to 82.76 bar [20]. Its flexible auxiliary turbine allows variations in the flow and 

pressure of the feed as per the seasonal change in temperature and the subsequent 

change in the conditions of the feed. This plant uses fifty trains in summer months. A 

total recovery of about 26.4% is achieved during this period, and the product flow 

increases by 37%, and amounts to 925 m3/d. During the winter months, a total of 38 

trains are used. As compared to the summer months, the recovery rate is higher (31%) 

during winter. The total product flow is also higher, at 1,150 m3/d, with a 47% increase in 

capacity, which is also higher than that during summer months [20]. The flow of the feed 

through the 38 trains in winter is in excess. It is more than what is needed to charge the 

turbocharger, and the excess high-pressure feed stream is thus split into two. One 

stream drives the turbocharger and the second is used for energy recovery by driving 

the other energy recovery turbines, which are actually made of modified impellers [20]. 

The total energy consumption by the HPP is 3.83 kWh/m3 [5], and saves 8% energy. 

The currently used reverse running pump energy recovery turbine at this facility is 

used under low-volume and high-pressure feed conditions with minor alterations in the 

impeller. The production at this plant has increased from 37 to 47% due to the 

application of BCS [20]. This increase, however, varies with the season. The application 

of BCS has also reduced the total energy consumption by 5% to 10%. This reduction in 

energy consumption is also dependant on the seasonal temperature. As is apparent 

from this case study, the use of BCS along with energy recovery turbines helps in 

achieving a good operating efficiency [20]. 
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. 
 

Figure 4-4: Turbocharger / Hydraulic Pressure Booster Construction 
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Chapter 5: Recuperator 

 

 
 
 

5.1 History and Design 

 
The Recuperator ERD by AqualyngTM belongs to the third class of ERDs – namely, 

the hydraulically driven pumping in parallel, discussed in the introduction chapter. The 

Recuperator works on the principle of work exchange. It transfers the hydraulic energy of 

the brine directly to the hydraulic energy of the feed, with minimal "drag" associated with 

the shaft [3]. It is also an Isobaric Energy Recovery Device, especially belonging to the 

"piston-type" of work exchangers [24]. This device, which belongs to the class of 

hydraulically driven pumping- in parallel, utilizes buffer separating feed or reciprocating 

pistons. 

 

 
 

 
 

Figure 5-1: AqualyngTM Pressure Recuperator 
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The construction of the Recuperator is such that it has vertical stainless steel 

chambers operating alternatively. They function in a compression-transfer and 

decompression-discharge sequence. The feed is pre-treated and is pressurized up to a 

constantly maintained pressure. The flow rate of the feed is also maintained at a 

constant value. The energy from the pressurized brine is recycled [24]. The device has 

three-way valves that are specially used to control the flow [10]. All these valves are 

necessary for the maintenance of the flow to the booster pump [25]. 

 

 
 

 
 

Figure 5-2: The Aqualyng System 
 
 

 
The RecuperatorTM has reduced the energy consumption up to 2-2.5 kWh/m3 in this 

desalination plant [25]. 

 

 
5.2 Case Studies 

 
5.2.1 The Tauro Plant 

 
The capacity of this plant is 2000m3/d. The membranes used for desalination at this 

plant are made of 180 polyamide membrane units. These units have a very high salt 

rejection capacity. The HPP is a quintoplex plunger pump, with a 2000 m3/d capacity and 

320 rev/min speed [10]. The HPP has 83-85% efficiency (Figure 5-3). As is apparent 

from the figure, the recovery is 1.93 kWh/m3 with a 37% recovery rate. 
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Figure 5-3: Tauro SWRO Plant Energy Efficiency 
 
 

 
As the average salt content of the feed water decreases, the pressure on the 

membrane reduces, and the flow of the water across the membranes rises. At such a 

stage, the SEC is very less as the energy consumed by the HPP decreases. As the flow 

increases, the pressure across the RecuperatorTM and the membranes decreases, by 

which the recovery is lowered. In such a case, the energy utilized by HPP is lower and 

that utilized by the booster pump is higher. This increase in the energy consumption by 

the booster pump is more than that utilized by the HPP. Each plant has a minimum point 

according to the number of membranes and the efficiencies of other components. The 

Figure 5-4 illustrates the flow and pressure at minimum point. 
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Figure 5-4: Some Operational Results of the Tauro SWRO Plant 
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Chapter 6: DWEER 

 

 
 
 

6.1 History and Design 

 
ERDs such as turbochargers, FTs and Pelton wheels convert the hydraulic energy of 

brine to mechanical energy and then back to hydraulic energy. This principle of energy 

recovery has drawbacks as it is less efficient than the energy recovery that can be 

achieved by direct transfer of energy from hydraulic to hydraulic, i.e. from reject to feed 

[26]. As the Recuperator (previous chapter), the DWEERTM also belongs to the third 

class of ERDs which are hydraulically driven pumps in parallel. These are designed to 

separate the reject and the feed by a piston for diminished intermixing between the two 

(Figure 6-1) [6]. By separating the feed and the reject, it can be ensured that that the 

increase in salinity and pressure of the feed is always the least [27]. 

 

 
 

 
 

Figure 6-1: Piston to Ensure Minimum Mixing of Brine and Seawater Feed 
 
 

 
The DWEERTM has three main subassemblies: LinXTM valve [6], the pressure vessels 

and the check valve nest (Figure 6-2) [27]. A booster pump is also required to boost the 

feed pressure to make it equal to the pressure of the feed pump [8]. 
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Figure 6-2: The DWEERTM Work Exchange 
 
 
 

Figure 6-3 illustrates the integration of a work exchanger into the plant. In contrast 

to the conventional integration with a Pelton wheel, the feed stream is split into two, one 

of which is driven into the HPP and the other to the ERD. Since the HPP can handle a 

flow, which is equal to or just a little higher than the product flow, its size has to be 

reduced. Therefore, a recovery of 40% is achieved with an HPP, which is reduced to 

40% [6]. A booster is added to compensate for the dip in pressure, however, this pump 

consumes lesser energy [27]. 

In an RO, there is a sharp decrease in pressure between the feed and the reject, 

which is entering the DWEERTM. Since the piston and the membrane are at a similar 

pressure, it is placed in a pressure vessel. Owing to the limited volume of this vessel, a 

valve is used to enable the vessels in exchanging their functions. A booster pump 

enables the flow pressure in the effluent exiting from the DWEERTM to equal the 

discharge pressure of the high pressure pump, thereby making the system to function in 
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a loop [26]. The rate of flow from booster pump is equal to the flow rate from membrane, 

unless a leakage is present in the membrane. 

 

 
 

 
 

Figure 6-3: Integration of the Work Exchanger into an RO Desalination System 
 
 

 
The largest capacity attained currently is 500 m³/h. These can be placed in parallel 

for increasing the capacity. For instance, a plant in Grand Cayman, Spain with a Total 

Dissolved Salts value  of 37,000 mg/L [28], and a capacity of 1,071 m3/d with SEC of 

3.00 kWh/m3 was upgraded by installing the DWEERTM system that increased its 

capacity to 1,699 m3/d with an SEC of 2.22 kWh/m3 [8]. 
 
 
 

6.2 Losses of a Work Exchanger (Efficiency) 

 
In case of a work exchanger, losses are more worth considering than efficiency [29]. 

In contrast to ERDs such as Pelton wheels or FTs, it is not possible to assess the shaft 

power in the DWEERTM, while the evaluation of only hydraulic power is also not enough. 

For this reason, other possible causes of losses are to be considered, which include 

"Mixing, leakage, overflush, high pressure differential, low pressure differential, noise" 

[27]. 
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Figure 6-4: Schematic Diagram of Dual Work Exchanger DWEER System 
 
 

 
Mixing: This increases the total dissolved solids in feed water, and thereby, result in an 

increase in the required pressure of the feed. Because of the increase in pressure 

requirement, the HPP has to work more to achieve the desired pressure. Therefore, it 

consumes more energy, leading to a lower efficiency and higher power consumption. 

Therefore, it is important to keep the mixing value in check to avoid unnecessary and 

excess consumption of energy. Any increase in the required pressure of the feed 

entering the membrane will have to be compensated by the HPP, which then consumes 

higher energy. For prevention of mixing, the DWEERTM employs a piston that prevents 

intermixing of the feed and the brine. In other such devices, the flow as well salinity is 

also kept in check [27]. 

Leakage: This is also called "lubrication flow" and occurs when reject that is at high- 

pressure leaks to the feed that is at low pressure. To compensate for this, the HPP will 

have to work harder to provide more flow and so, will consume larger amounts of 

energy, resulting in decreased efficiency of the plant [27]. 
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   Overflush: The water from feed that is directly drained is called overflush. This is 

needed to remove the remaining brine from the vessel before the vessel is filled with 

feed. Because of this, the HPP will have to supply more feed. This again leads to 

increase in power consumption, which subsequently decreases efficiency. Because 

of this overflush, a lot of feed water that has been pre-treated is wasted. This further 

adds to the costs of pre-treatment of feed water. Another important aspect to be 

considered is that both overflush and mixing are interrelated. Lack of proper flushing 

of brine would increase the total dissolved solids of the feed. Again, an increase in 

TDS leads to a higher working of the HPP to achieve the desired pressure, resulting 

in an increase in the energy consumed by the pump [27]. 

   High-pressure differential: High-pressure differential results from the pressure drop 

between the reject from HPP and the feed outlet. Because of the difference in 

pressure, the booster pump will have to supply higher pressure for which it 

consumes more energy [27]. 

   Low-pressure differential: This pressure differential occurs when there is a high 

difference in pressure between the feed inlet and the brine outlet, because of which, 

the feed pump consumes more energy to supply higher pressure [27]. 

 
 

6.3 Case Studies 
 

6.3.1 Tuas SWRO Plant in Singapore 

 
This plant is a private BOO (Build, Own, Operate) contract. The contract was 

awarded to Hyflux Ltd. The plant has a production capacity of 136,000 m3/day  [27]. The 

plant is directly connected to the water distribution network of the country. The objective 

of the plant was constant supply of water along with increasing in plant capacity from the 

initial 20% to about 100%, rising in small magnitudes  [27]. The train design of the plant 
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was chosen after serious consideration. It has a two-pass design with a recovery of 

about 45% in the first pass, with a capacity of 150,000 m3/day [27]. The plant employs 

DWEERTM 1100. Each device attains an optimum flow of 250 m3/h. Therefore, about 30 

DWEERTM 1100 units are required to achieve the required flow at the plant  [27]. 

 

 
 

 
 

Figure 6-5: Train Process Flow, Tuas, Singapore, 10 Trains 
 
 

 
It was initially intended that the plant should operate with great flexibility. Therefore, 

Hyflux used 10 trains in the plant with each train's capacity amounting to 15,000 m3/day 

with three DWEERTM 1100 units per train. The train layout at this plant at Singapore is 

shown in Figure 6-5 [27]. 

As the plant is built using a main central design, it appears to have a central train. As 

shown in the Figure 6-6, the use of DWEERTM 2200 increased the flow to 500 m3/h. This 

value is double of what is achieved by the DWEERTM 1100. The use of three HPPs 

would enable the plant to run at a capacity of 33, 66 and 100 percent  [27]. It is also 

proposed that 16 DWEERTM units can be used in one rack and can be split into four 

DWEERTM units. This way, during operation at 66% capacity, one set of four DWEERTM
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units can be switched off and during operation at 33%, two sets of four DWEERTM units 

can be switched off [27]. 

 

 
 

 
 

Figure 6-6: Train Process Flow Tuas, Singapore Centre Design 
 
 

 
Using these two settings, the energy consumption by the plant decreased from 2.1 to 

 
2.01 kWh/m3  [27]. This may be because of the following: 

   Increase in the efficiency of both HPP and motor. 

   Increase in efficiency of the motor and recirculation pump. 

   Decrease in loss by the DWEERTM units. 

In addition to these, the capital costs involved in the operation of the plant can be 

reduced by the following measures: 

   By reducing the HPPs and booster pumps from 10 to 3. The capital costs can be 

reduced by selecting the best suited pumps. 

   Using lesser implements and instruments 

Reducing the number of DWEERTM units used. 
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The three control loops of a work exchanger are shown in Figure 6-7.  A Variable 

Frequency Drive (VFD) can be used in conjunction with the booster pump for controlling 

the brine flow. 

The VFD of the HPP can also be used to control flow rate and pressure of the feed 

across the membrane. As an alternative to this, a flow meter may also be used for 

adjusting the valve that controls the discharge from HPP. 

   The VFD can also be controlled to adjust the flow rate to the work exchanger. 
 

 
 
 

 
 

Figure 6-7: Three Main Control Loops for the Work Exchanger 
 
 

 
The DWEERTM units are supplied with Programmable Logic Controllers in which a 

timer signals when the valve has to start its cycle. At normal conditions of operation, 

there is no variation in the cycling time. Each DWEERTM unit is designed such that there 

is utilization of 90% of the vessel so that about 10% addition in brine flow will not cause 

much difference in the functioning [27]. 

The DWEERTM units are also supplied with special sensors that detect overflush as 

well as underflush. If any of these is detected, the information is sent to the 

Programmable Logic Controllers (PLC) of the plant, which directs it on how the flush can 
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be controlled and minimized. As is understood, it is not possible to control overflush 

without a PLC at the plant. The PLC is also important at large plants for the diagnosis 

and control of other equipment [27]. 

 

 
 

 
 

Figure 6-8: Wearing Parts Which are to be Changed 
 
 

 
In addition to the listed functions, the PLC of DWEERTM carries out tests that are 

helpful during maintenance. 

   Maintenance: The DWEERTM device is designed such that it works for a lifetime. The 

materials used are standard, Super Duplex or non-metallic. For this reason, the 

important parts of the device do not have to be replaced throughout the lifetime. The 

other parts that are prone to wear or corrosion can be easily acquired and replaced. 

Some of the components, which are prone to corrosion are given in Figure 6-8 [27]. 
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DWEERTM is known for its basic high energy efficiency of operation. Another 

important advantage is that the energy consumption remains almost constant over a 

wide range of operating conditions. 

   In case of Constant Flow: DWEERTM will not be affected considerably by a varying 

system pressure, if the flow is constant. However, there will be an increased leakage 

through the LinXTM valve as the operating pressure increases. The Singapore 

example depicted in the Figure 6-5 shows that the leakage increase will be from 

1.5% to 1.9% for the increase in the operating pressure  [27]. 

The HP pump is required to deliver more flow at higher operating pressure but at the 

same time booster pump will deliver lesser flow. When the results of the Singapore 

example are extrapolated, the leakage rates are expected to increase from 13.1 m3/hr at 

design value to 14.6 m3/hr at 69 barg. This amounts to an additional leakage flow up to 

1.5 m3/hr [27]. The increased power consumption of HP pump accommodating the 
 

leakage values can be calculated as follows; 
 

Phppumpdelta= 1.5m3 / h * (6.9 – 2:6) barg /36 /0.846 =3.2kW 
 

Corresponding decrease in the power consumption at Booster Pump is given by 

Pbooster pump delta= 1.5m3/h * 3.2barg /36 /0.816 = 0.16kW 

The increase in overall power consumption is 
 

P = Php pump_delta– Pbooster pump_delta= 3.04 kW 
 

Considering this additional power consumption in the value for the total power 

absorbed by both high pressure and booster pump totaling 1264 KW, this additional 

power consumption amounts to a negligible value of 0.2%  [27]. It can be inferred from 

these calculations that the DWEER TM efficiency is not affected by the changing pressure 

as long as a constant flow is maintained. The Figure 6-9 shows that the overall power 

consumption increases mainly due to an increase in membrane feed pressure, which will 

exert a higher differential pressure on the HP pump. 
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Figure 6-9: Overall Power Consumption 
 

 
 
 

 
 

Figure 6-10: Constant Differential Pressure 
 

In case of constant membrane feed pressure: Figure 6-10 depicts the calculated 

differential pressures across the LinXTM valve, check valve nest and pressure vessel at 
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constant brine solution pressure but with variable brine flow rates. In this case, 

DWEERTM leakage will not change at all. Now, the booster pump has to overcome the 

increased high-pressure differential head and the feed pumps need to supply low- 

pressure differential heads which are having decreased value. The Singapore example 

(Figure 6-5) shows an increase of high pressure differential pressure from 1.2 barg of 

design value to 1.4 barg of higher production value that amounts to an increase of 10%. 

This results in increased power demanded by booster pump and is given by: 

Pbooster delta = 763.9m3 = h*1:1*(1:4 – 1:2)/36/0:816 = 5.76kW 
 

In addition, the low-pressure differential pressure will be increased from 2.1 to 2.3 barg. 

This results in the additional power absorbed b the feed pump as given by: 

Pfeed delta = 750.8m3/h*1:1*(2.3 – 2.1)/36/0.8 = 5.74kW 
 

Thus, the total additional power absorbed by booster pump and the feed pump is 
 

11.5 kW. Now, putting this value in the value of total absorbed power of the HP pump 

and the booster pump having 1264 kW, it is found that the increase is just in the range of 

1% for an increase of the production of 10%. 
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Chapter 7: Pressure Exchanger (PX) 

 

 
 
 

7.1 History and Design 

 
The ERI PX® - Energy Recovery Inc., Pressure Exchanger system comes under the 

classification of third class of ERDs, these are hydraulic driven pumping operating in 

parallel. 

 

 
 

 
 

Figure 7-1: ERI Pressure Exchanger Exploded View 
 
 

 
Rotor Pressure Exchange is built by Energy Recovery Inc.’s, a firm that has put an 

effort of over 100 years in its technology and development. The Work exchanger devices 

that are built for seawater RO plants are treated as the most noteworthy technological 

breakthrough in desalination techniques achieved in the last 15 years. The PX® is the 
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device that transfers the pressure of the high pressure fluid stream to a low pressure  

fluid stream working on the principle of positive displacement [30]. These devices are not 

as similar devices used in lesser demanding environments; PX is able to meet the tough 

requirement as it is specially built for SWRO systems. This was introduced as a 

commercial product in the year 1997 [31]. Subsequently, PX design has seen many 

improvements, which have resulted in higher capacity of the single rotor to a very high 

value of 50 m3/ hr. But, its fundamental technological frame on which it is built has not 

changed at all [11]. The technology employed involves SWRO scale energy recovery by 

undergoing many small pressure increments in a ceramic rotary device [32]. 

 

 
 

 
 

Figure 7-2: The PX Device 
 
 

 
More than 400 seawater reverse osmosis (SWRO) units all over the world have 

employed ERI’s PX Pressure Exchanger® ERDs. Just in the year 2006, more than 2500 

units were supplied which are having a combined capacity of 1.8 million m3/ day of the 
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permeate fluid [33]. Many of these plants have a capacity of 100,000 m3/ day and there 

many bigger plants too. For example Perth, Australia has a unit of 160,000 m3/ day [34], 

Hamma in Algeria has installed a unit of 200,000 m3/ day, Hadera in Israel has installed 

a plant of 274000 m3/ day [35]. Other units of high throughput are installed at Benisaf at 

Algeria with 200000 m3/ day unit and Skikda at Algeria with 100000 m3/ day unit.  Many 

of these projects have incorporated 20 years maintenance and operating contract. So  

the suppliers must consider the reliability and service life, an important part of the design 

of these equipments [36]. 65 Series PX Pressure exchangers are most preferred devices 

for these equipments, and especially the models PX 180 and PX 220, are commonly 

used [34]. These models are available in the market since 2003 and more than 1400 

units are in use until date. In 2006, ERI arranged with their clients to temporarily retrieve 

several long running PX units and, in the factory’s test facility, they were evaluated for 

their performance [11]. 

PX device works on positive displacement and is an isobaric energy recovery device. 

It contains a ceramic cartridge which is the heart of the device [30]. The cartridge has a 

feed water end cover, rotor, sleeve and concentrate end cover as shown in (Figure 7-1 & 

Figure 7-2). The design of the rotor consists of axial ducts, which are arranged circularly 

around a centre tension rod. It rotates in the sleeve and both the end covers enclose the 

rotor. Sealing and bearing surfaces are also made of ceramic and the lubrication of the 

brushing surface is accomplished by the high pressure feed water. The end cover at the 

concentrate end consists of High Pressure HP Concentrate port for allowing in the HP IN 

(HP concentrate) and also a low pressure concentrate port for out flowing concentrate 

(LP OUT). At the feed water end cover side, there are two feed water ports termed LP IN 

and HP OUT. For the design of this element, ceramic is the natural choice because of its 

toughness, corrosion resisting property and its dimensional stability [33]. 
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The high-pressure concentrate is used to direct pressurization of the feed water in 

the PX device. In order to lubricate the rotor, flow rate of concentrate is set at somewhat 

higher flow than the feed water so that small amount of feed water helps the lubrication 

of the rotor [30]. So, the PX device supplies the membranes a portion of feed flow 

(portion of concentrate) and the high pressure pump supplies permeate portion of feed 

water flow and also accommodates a small flow for the lubrication [11]. 

Figure 7-3 shows the operating cycle of the device. As explained above, a rotor duct 

is exposed on to LP IN and LP out end cover ports. As shown in the Step 1, the LP feed 

water the rotor duct. The positioning and the placement of the rotor ports is such that it 

provides tangential flow which exerts turning force on the rotor. The rotor ducts terminate 

in a Seal Zone where the flow is stopped and duct is sealed from HP and LP flow circuit 

as seen in step No 2. The duct rotates further to expose the incoming HP concentrate 

that pressurizes the feed water and further pushes it toward the membranes as shown in 

Step 3. The rotor continues to advance till the duct is sealed as seen in step 4 and the 

whole cycle begins again [36]. 
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Figure 7-3: The PX Device at Work 
 

 
 
 

 
 

Figure 7-4: PX Device Operation Cycle 
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Though the feed water and the concentrate come in direct contact in the rotor, due to 

the water barrier that exists in the duct, there will be limited mixing between the feed 

water and the concentrate [36]. 

 

 
 

 
 

Figure 7-5: View from Inside Pressure Vessel 
 
 

 
The design of the ceramic components is such that the interfacing feed water and 

concentrate does not reach the end of the duct before it is sealed and thus retaining the 

separation. If there is any water remaining from the previous cycles, it acts as a barrier 

against the mixing of these flows. Further, the ducts are designed with aspect ratio to be 

long and narrow so that the flow is stabilized and there is no breakup of the barrier due 

to turbulence [33]. 

 

 
7.2 Efficiency and Mixing 

 
PX device performance can be quantified by its energy transfer efficiency and also 

the degree of mixing. Efficiency of the PX device is the ratio of total energy output by the 
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PX device to the total energy input to the unit expressed as percentage. In this case the 

total energy is obtained as the product of flow and pressure which is given in Eq 7-1[7]. 

PX efficiency = [Σ (Pressure x Flow Pressure)out   / Σ (Pressure x Flow Pressure)IN] x 

100% (7-1) 

 

 
 

 
 

Figure 7-6: PX Efficiency 
 
 

 
The relation shown here considers the flow and pressure losses in the PX unit. As 

Flow is lost in lubrication, the HP IN flow rate is greater than HP OUT flow rate and LP 

OUT flow rate is greater than LP IN flow rate. However, it is to be remembered that the 

loss due to lubrication is very small. It is just 1% of the concentrate feed flow. The losses 

due to pressure drops occur as the flow encounters friction from the internal passages in 

the PX assembly [33]. 

In SWRO operations using PX device, there is an increased salinity in the high 

pressure due to mixing in the PX causes increase in the osmotic pressure. If a balanced 

flow is maintained, i.e. high and low pressure flow rates are equal, then the PX 220 

mixing is calculated by using the following equation and is approximately put at 6% [7]: 
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Volumetric mixing = (HPOUT salinity – LPIN salinity) / (HPIN salinity – LPIN salinity) x 

100% (7-2) 

 

 
The high-pressure flow that comes from booster or the PX pump mixes with the feed 

water from high-pressure pump before sending to membranes. Normally, salinity 

increases at the membrane regions, for the plant operating at 40% recovery is 

approximately 2.5% and is given by the equation: 

 

 
Salinity increase = [(Membrane feed salinity – Seawater salinity) / Seawater salinity] 

x 100% (7-3) 

 

 
This 2.5 % increase in the salinity at the membrane region results in increase of 

operating pressure by 1.3 bar, approximately [33]. If the PX performance is used to 

express the efficiency, decrease caused by mixing PX 220 with balanced flow is 

calculated to be 1%.   Most plant operators and the engineers prefer to increase the 

membrane pressure without any changes in the other process settings or equipments. In 

fact, there is an increase of the salinity due to increase of temperature of just 2ºC that is 

equivalent of the same effect as seen by mixing in the PX. However, if the engineer or 

the plant operator chooses to compensate for PX, salinity increases to get the same 

permeate flow but without making any changes in the membrane pressure, then it can  

be accomplished by one of these three options [33]: 

   By decreasing the recovery by 2%, which results in increase of 5 % of seawater feed 

flow by 5%. 

   Increasing the membrane surface area by 6% 

Increasing the low pressure supply to PX by 5% 
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The data presented in Figure 7-7 shows the advantage of choosing the first option. 
 

The data relates to a plant that is supplied with 36000 TDS water at 250 C. If the 

recovery is decreased by 2 %, (from 40% to 38%), it results in net decrease in plant’s 

operating cost by 0.02 KWH / m3. This is acceptable for the reduction of recovery at just 

2% [36]. 

 

 
 

 
 

Figure 7-7: Plant Energy Consumption as a Function of Recovery 
 
 

 
7.3 Case Studies 

 
7.3.1 Perth SWRO Desalination Plant (PSDP) 

 
Perth Sea Water Desalination PSDP plant is located at Kwinana beach, which is 25 

miles south of Perth in Western Australia. Since November 2006, it has been supplying 

municipal drinking water to Perth city. It has a capacity of 143,000 m3/day (or 38 MGD) 

and it is able to cater to 2% of the drinking water requirement of Perth [37]. This plant is 

the third largest SWRO in the world (as recorded in 2008 March), and is the largest 

SWRO desalination plant in the Southern Hemisphere. This was jointly built and 

commissioned by Suez Degremont and Multiplex Engineering Pvt Ltd. The unit is 

operated by Australian Water services which is a subsidiary of Degremont in Australia 

[38]. 
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While designing this plant, it was planned to achieve maximum operating energy 

efficiency and also minimum green house gas emissions. There are 12 SWRO trains 

present in the first pass and each has production capacity of 13,350 m3/d or 3.5 MGD 

[39]. The production of water from the plant varies depending on seawater salinity, 

temperature and the membrane aging. It achieves the production values of 150 to 300 

mg/L, which works out to be 45% recovery efficiency. Six Weir split case centrifugal 

pumps (HP) feed the RO trains. Each of these pumps has the capacity of 1,144 m3/hr at 

620 meters of differential head. These are driven by Siemens made induction motors of 

2600 kW each [40]. 

 

 
 

 
 

Figure 7-8: Conceptual Diagram of Pressure Center Configuration 
 
 

 
The maximum efficiency of these pumps is 86%. The reject stream from Reverse 

Osmosis modules is made to pass through the 12 arrays of sixteen ERI models PX 220 

energy recovery devices [38]. Each of these modules has a capacity of 800 m3/ hr and 
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the pressure is transferred to the equal volume of incoming seawater. This pressure is 

boosted by RO modules with the help of 12 Union vertical booster pumps. These pumps 

have a capacity of 611 m3/hr at 39 meters of differential pressure head and these are 

driven by 112 KW motors that are controlled and run on Variable Frequency 

Drives(VFD) [39]. The plant is built with six numbers of SWRO trains on each side of 

central pump aisle. As shown in Figure 7-8, the three numbers of HP pumps feed the 

high-pressure manifold as shown in the schematic that shows the arrangement for one 

train, which feeds the group of six racks. There is a high-pressure control valve that 

goes from the manifold to each train that allows the fine adjustment of feed pressure 

from the membrane. In addition, each of the rack has its own dedicated PX device array 

with the booster pump. These PX device arrays are located between the membrane 

vessel racks. ERI PX 220 energy recovery devices help to supply remainder of high 

pressure seawater [39]. 

 

 
 

 
 

Figure 7-9: SWRO Trains 4A, 5A and 6A 
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The hydraulic design of the plant provides a great flexibility of operating over wide 

range of flow and pressure conditions and yet achieves cost effective operation [37]. The 

plant is operated entirely from the electricity generated from wind-powered generator  

and thus meets its requirement of zero emission of green house gases. Figure 7-9  

shows a photograph of a portion of the SWRO process [40]. 

Operating for a year, it was found that the plant exceeded the expectations of the 

designers. The first pass of SWRO train consumes 2.2 kW hours of energy per cubic 

meter of water (KWH/m3) approximately [38]. The total energy requirement of the plant is 

around 3.2 to 3.5 kWh/m3 that includes the energy required for intake, pre treatment, RO 

passes, post treatment and pumping the potable water to the reservoir which is 12 

kilometers away from the plant [39]. 

 

 
 

 
 

Figure 7-10: Perth Seawater Desalination Plant Process Diagram 
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Figure 7-10 shows the process diagram of PSDP. The feed water is drawn from and 

open intake at Cockburn Sound, which is quite nearby. There are six numbers of supply 

pumps that draw screens and output this to 24 dual media filter vessels and these in turn 

discharge to the cartridge filters, which let the fluid to RO process. The Variable 

frequency drive VFD motor pumps supply the seawater to the HP pumps and this 

arrangement saves energy and supplies to HP pump and energy recovery device at 

constant pressure [38]. 

With the help of a single pile, the treated water is conveyed to HP pumps and energy 

recovery devices. The sizing of the high pressure pumps is selected to achieve  

maximum efficiency and is also operated to achieve the same [37]. ERDs are used in 

arrays dedicated for each membrane train. The high pressure feed water from ERDs and 

HP pumps to the state of art first pass membranes that are built for low energy 

consumption [40]. When the permeate goes to the next pass it will achieve further 

reduction in the total dissolved solids (TDS) and also reduction in bromide concentration. 

The purified potable water is collected at the 4-hour buffer tank and then it is pumped to 

fresh water reservoir that is located at 13 kilometers away [40]. From there it is supplied 

to city of Perth as drinking water [40]. The rejected brine is used for backwashing dual 

media filters and then pumped to diffuse fields locate half a kilometer away to Cockburn 

Sound [38]. 

The PDSP is the largest facility of its kind in the world and it is built to realize the 

commitment of Western Australia to promote energy efficiency and decrease the green 

house gas emissions [40]. It is a carbon neutral plant and for its energy needs, it utilizes 

the renewable energy source of wind power that causes zero pollution. The electrical 

energy required for the plant is bought from the Emu Downs Wind Farm which is located 

200 km north of Perth city [38]. The wind farm has plant capacity of 83 mega watts 

consisting of 48 wind turbines and the annual production is over 272 Giga Watt hours 
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pumped to the grid. This quantum of energy is sufficient for running the SWRO plant at 

Perth, which needs only 180 Giga Watt Hours a year [39]. 

Global Water Intelligence has recognized PDSP plant as the Desalination plant of 

the year in 2007 due to the innovative design backed by the successful performance 

[40]. This plant has been acclaimed as the landmark development in Australian water 

management industry. It is also regarded as the model plant for the whole world for 

development of sustainable seawater desalination plants all over the world [37]. 

Figure 7-11 shows the photograph of one of the twelve PX device arrays of the Perth 

plant [37] . The picture shows that the upper low-pressure manifold is supplying the 

seawater to the PX device from the left side. On the lower right, the low pressure outlet 

can be seen. This type of flow pattern is termed as Z Flow as the flow is from manifolds 

and PX devices. Similarly, the high pressure flow also has the Z Flow form with the inlet 

at lower side on the left [38]. If the bulk flow is made to enter and exit the array from the 

same end, it can be termed as C Flow and this would result in more even flow 

distribution. However, in the Perth design, manifolds are used with liberal dimension for 

diameters, which limits the flow variation through PX devices along with array. The 

variation is limited to 10% approximately [39]. 

 

 
 

 
 

Figure 7-11: PX Device Array Serving SWRO Train 6A 



77  

Table 7-1 gives the performance data for SWRO train 1A. Refer to Figure 7-8 as the 

process locations are indexed as shown in the figure. The measured data is seen in bold 

letters and calculated data in plain fonts [40]. 

 

 
Table 7-1: Train 1A Performance Data 

 

 
 
 

 
Table 7-1 also shows that the lubrication flow through the PX devices is 

approximately 1% of the brine solution flow in to the array. The data is calculated for the 

train carrying 1.2% more seawater fed to PX device array at the process location “C” 

[40]. Under these conditions, the increase in the salinity at the membranes was at 2.4 %. 

If the flow rates were adjusted to be equal by setting the VFDs, the mixing increases 

slightly to 2.5% approximately [40]. 

The pressures at the both high-pressure and low-pressure streams to PX device 

array (the locations B and G) were measured at the upstream end of the array. Based on 

these pressure measurements, the efficiency of the PX device calculated was 95.7%. 

But by measuring the pressures at the inlets and outlets of the PX device manifolds, the 

calculated transfer efficiency was 96.7 % [37]. 
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Figure 7-12: Perth SWRO Desalination Plant 
 
 

 
While the data for the Table 7-1 was collected, the Trains 1A and 2A were being 

supplied with one HP pump. The specific energy consumed for each HP pump and the 
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booster pumps was 2.47 KWH/m3 [40]. The high-pressure control valve was used to 

control the high-pressure flow rate. No data pertaining to supply pump performance was 

collected, and however, the design energy consumption of these pumps used for the 

conditions shown in the table gave a value of 0.3 KWH/m3 [40]. Similarly, the energy 

consumption data for the second RO pass, post treatment pumping requirements, 

product water pumping are not collected but it is given that the design energy 

consumption was 1.4 kWh/m3 for all these processes [38]. The total energy consumption 

of the plant, including these design figures is 4.2 KWh/m3 [37]. 

The data shown in the Table 7-1 illustrates data from one train for one day. 
 

Additional data acquired on the same day and five other days are shown. As is apparent, 

their performances are similar [40]. Moreover, the trends of main parameters were also 

consistent, shown in Table 7-1. 

The SWRO plant at Perth is a good example of how desalination can be done on a 

large scale without incurring high costs and damaging the environment. The plant was 

able to achieve low consumption of energy because of the use of isobaric ERDs, along 

with the use of renewable energy, thus minimizing damage to the environment [37]. This 

plant is thus a suitable model for the entire world for the sustainable desalination of 

water. This plant is a significant milestone in the area of large-scale SWRO technology 

as it operates on renewable energy, thereby reducing energy consumption to a very 

significant level [39]. 
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Chapter 8: Conclusion and Recommendations for Future Research 

 

 
 
 

8.1 Overview and Comparison 

 
ERDs vary widely and as some were displayed in the previous chapters, each of 

these has its own advantages. This chapter explains how the optimization of an Energy 

Recovery Device can be done along with the criteria that are needed to be followed for 

the selection of the most suitable, efficient and cost effective device in Sea Water 

Reverse Osmosis desalination plants. 

 

 
 

 
 

Figure 8-1: ERD Development History 
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As far as an assessment of ERDs is concerned, there is always a debate on whether 

work exchangers are more efficient than the turbochargers or the energy recovery 

turbines. As each has its own merits, it is often difficult to ascertain which one is better 

than the other. For instance, the Pelton wheel has a high efficiency and low cost motors 

can be used along with it. This would not only reduce energy consumption but would  

also save costs of the equipment and motors required. Therefore, Pelton wheels are 

extremely useful for reducing energy consumption as well as costs incurred for operating 

the HP feed pump [41]. According to Calder, far from being obsolete, these energy 

recovery turbines are great competitors against Isobaric chamber devices [42]. Apart 

from supplying Pelton wheels to smaller plants in 2005 and 2006, Calder has also 

provided energy recovery turbines for three large plants– the Cartagena II, whose 

capacity is 65,000m³/day; the Palmachim, whose capacity is 85,000m³/day; and the 

Rabigh, whose capacity is 200,000m³/day [43]. 

 

 
 

 
 

Figure 8-2: ERDs History 
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According to Energy Recovery Inc, the ERD with the highest energy recovery is the 

PX (as illustrated in Figure 8-2). The ERI demonstrated its effectiveness in July 2006 in 

trials held in Port Hueneme, California. These trials were conducted at the Seawater 

Desalination Test Facility of the US Navy [42]. As per the data available from these 

trials, the actual energy consumption was 40% lower than what was expected. 

According to the reports from ERI, these trials tested PX coupled with low-energy 

membranes and HPP, resulting in the least energy consumption achieved by RO 

desalination plant until that time. The energy consumption was less than 1.58 kWh/m3 in 

these trials [43]. 

Eli Oklejas, president of FEDCO, argues that efficiency can be a "very misleading 

parameter" and that instead of considering which ERD is more efficient, it is more 

important to consider which ERD gives the least cost per unit permeate throughout its 

lifetime [43] . As he puts it, “Lifecycle cost is the key figure of merit in selecting pumps 

and ERDs and at the end of each day, it is the cost of the permeate that matters most 

[43].” 

 

 
 

 
 

Figure 8-3: Improvements of SEC in SWRO Plants with Variable ERDs 
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8.2 Data Analysis 
 

8.2.1 350 m3/d ERT VS PX 

 
For this research, a comparative analysis ERTs and PX is performed. The 

comparative analysis of the costs of both these systems is shown in the Table 8–1. This 

analysis is based on a production unit of 350 m3/d capacity that uses both positive 

displacement as well as centrifugal pump designs [44]. As is apparent from the table, the 

PX requires larger investment and capital costs for its installation and implementation. 

This cost is 17% higher for pumps with centrifugal design when compared to those with 

the positive displacement designs [44]. The high capital costs are compensated within 2 

months because of the low consumption of energy and low costs of operation and 

maintenance of the system, especially those employing the positive displacement pump 

design [3]. The device efficiency of both the types of ERDs is also dissimilar. While the 

efficiency of the energy recovery turbines varies vastly, with a maximum efficiency of 

about 80% [44]. The PX, on the other hand, has a constant energy efficiency of 90%, 

with a maximum value of 98% [3]. 

Figure 8-4 shows the energy consumption by devices with different designs, such as 

the ERT and the PX. The data also reflects the wide-ranging differences in the recovery 

rates. As is observed, all the designs except the PX have similar variations in the energy 

recovery and production rate values. There is a rise in energy consumption at lower 

recovery rates, which is different from the PX. This enables the operation of the system 

at low recoveries, thereby leading to an increase in the membrane life and hence lower 

the total costs [3]. 

Finally, when the construction and long-term maintenance of the system is 

considered, it is observed that the PX is constructed from ceramic and has a single 

rotating element without the conventional bearings. Therefore, the PX has low 
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maintenance costs because of its simple design. It also withstands corrosion due to high 

salinity and other marine related dissolved solids. On the other hand, almost all other 

ERDs are constructed from alloys and have bearings, seals, pistons etc that raise both 

the cost of maintenance and operation [3]. 

 
 

Table 8-1: Cost Data for a 350 m3/d SWRO Desalination Plant 
 

Feed Pressure – 60 bar  

Recovery – 40% 

Availability – 90% 

 Centrifugal PD 

Capital Cost: ERT PE ERT PE 

Pumping System $31,000 $28,000 $40,000 $30,000 

Energy Recovery System $18,500 $30,000 $18,500 $30,000 

Total Capital Cost $49,500 $58,000 $58,500 $60,000 

Capital cost per m3/d $141 $166 $167 $171 

Energy used, kWh/m3
 4.4 3.2 3.8 2.5 

Annual operational cost:     

Depreciation of capital  8% – 10yr $7,377 $8,644 $8,644 $8,942 

Maintenance     

Positive displacement – 10%   $4,000 $1,600 

Energy recovery systems – 10% $1,850 $3,000 $1,850 $3,000 

Energy – $0.10/kWh $50,589 $36,792 $43,691 $28,744 

Total Operational Cost $59,816 $48,436 $58,185 $42,286 

Payback – months  9  2 

Water cost reduction – $/m3
 

 $0.10  $0.14 
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Figure 8-4: Energy Consumption vs. Recovery 
 
 

 
8.2.2 Energy Optimization of Existing SWRO 

 
This section deals with the comparison of SEC of various retrofits in an SWRO 

desalination plant. The methods of optimizing the design are also discussed. 

For plants using the Pelton turbines, the biggest challenge is reducing the costs 

associated with energy consumption [41]. Isobaric ERDs with the highest efficiencies are 

used for attaining the highest savings in energy costs in SWRO desalination plants. 

Thus, deciding whether or not to retrofit ERTs in such plants is a difficult decision to 

make [5]. 

Different designs for the optimization of desalination plants using ERTs have been 

analyzed. Because of their high energy efficiency, they can be employed in various 

retrofit designs for either decreasing energy consumption or increasing the production 

capacity [41]. Five retrofits are discussed as follows: 

   Retrofit No.1: In this design, the same high-pressure pump is used and an isobaric 

ERD is supplied in each train. 
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   Retrofit No.2: This is similar to the retrofit no. 1. It however requires a pump to 

increase the pressure of the feed. 

   Retrofit No.3: It requires an isobaric ERD in each train. 
 

   Retrofit No.4: This is built on a new train that is run at the second stage of the pre- 

existing train, which is running on the same HPP. An isobaric ERD is also installed. 

   Retrofit No.5: This is identical to the previous retrofit. The only difference is that the 

brine from second stage passes through a pre-existing Pelton turbine [5]. 

For the optimum reduction in energy consumption, the retrofit No. 1 and 2 are 
 

suggested, while on the other hand, retrofit No. 3, 4 and 5 can be used to increase the 

plant's capacity. A comparison of the outcomes of these retrofits is summarized in Table 

8–2. The data used belongs to an SWRO plant of 10,000 m3/d capacity. The findings of 

these comparisons are summarized below. 

 

 
Table 8-2: Comparison of ERDs with Different Configurations 

 

 
Criteria 

SWRO w/ Rtr. No.1 Rtr. No.2 Rtr. No.3 Rtr. No.4 

ERT 
(Pelton) 

HPP + 
isobaric ERD 

BOP + HPP + 
isobaric ERD 

RO train + 
isobaric ERD 

ERD used 
as a BOP 

Total capacity 
(m3/h) 

2 x 5,000 10,000 10,000 2 x 7,200 
2 x 5,000 + 
2 x 2,693 

No. vessels / 
No. Elements 

104 / 728 104 / 728 104 / 728 150 / 1050 
104 / 728 - 

62 / 434 

Total feed flow 
(m3/h) 

926 926 926 1334 1436 

No. of HPPs 
required 

2 1 1 2 2 

No. of BOPs 
required 

0 1 2 1 0 

Energy (kW) 1363.6 1014.2 1029.2 1424.08 1933.2 

SEC (kWh/m3) 3.27 2.43 2.47 2.39 3.02 

Capacity 
increase 

n/a 0% 0% 44.20% 53.80% 

Energy savings 
range 

n/a 25.60% 24.50% 0% 0% 
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The performance and efficiency of the plant can be increased by installing an 

isobaric ERD. The costs associated with energy consumption are also reduced. 

   The 2nd and 3rd retrofits are more advantageous than the 1st and 4th retrofit. 

The product costs of the fourth retrofit are 17% higher than the third one. The third 
 

retrofit is more preferable as it has lower costs of running and maintenance. 
 

There is no much difference between the costs associated with energy consumption for 

the third and second retrofits. Owing to their larger size, the third retrofit requires a larger 

space. It should be preferred over the second one if there are no space limitations [5]. 

 

 
8.2.3 Energy Consumption for Several SWRO Desalination Plants 

 
The ERDs employed at different SWRO plants at the Greek islands are compared in 

the Table 8–3. The data pertaining to the energy consumption and efficiency is collected 

and summarized [45]. It should be noted that at the time of collection of data, the 

recovery, temperature and other parameters were constant. Their efficiency is compared 

based on their SEC [45]. 

 

 
Table 8-3: Specific Energy Consumption for SWRO Plants 

 
Location Oia Oia Oia los Ithaki Syros Mykonos 

Production (m3) 12,000 5,400 9,000 14,880 9,275 17,856 15,000 

HPP Power (kW) 110 75 75 75 200 110 160 

ERD 
Pelton 
wheel 

Turbo 
charger 

Pelton wheel, 
Grundfos 

PX-60 
Pelton 
wheel 

Pelton 
wheel 

Pelton 
wheel 

Energy consumption 
(kWh) 

55,200 25,110 47,563 45,073 87,000 109,992 125,350 

SEC (kWh/m3) 4.6 4.65 5.28 3.02 9.38 6.16 8.36 

Recovered energy 
(kWh/m3) 

13.93 11.62 18.85 7.55 37.12 16.21 36.33 
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As is evident from the data, it can be seen that the PX is the most effective ERD [46]. 

When the SEC is divided by production capacity, the amount of energy consumption per 

unit volume is lower for PX and the turbocharger ERDs. In case of the Ithaki plant,  

higher SEC was observed on using Pelton wheels [45]. 

 

 
8.3 ERDs in Future Research 

 
8.3.1 Fluid Switcher (FS) 

 
The Fluid Switcher (FS)-ERD is an ERD of the positive displacement type. It is still 

under research. Designs that explore its stand-alone as well as parallel operations have 

also been under examination. 

As the Reverse Osmosis technology is developing larger and larger plants are being 

set up all over the world with each train ranging between 10,000–15,000 m3/d capacities 

[47]. As the need for increasing capacities of these plants grows, many designs have 

been tested to achieve the objective. Tests have been done to evaluate if increase in 

size of ERDs would increase performance efficiency [47]. Trials have also been done to 

assess whether parallel set-up of ERDs can prove beneficial in decreasing energy 

consumption. As proven by trials and pilot tests, parallel operation of ERDs is 

advantageous and the most effective way to reduce power consumption and increase 

efficiency. Parallel set-up increases the capacity of the device and also diminishes 

fluctuations in the working streams [47]. 

The FS-ERD has three components, namely, the rotary fluid switcher, check valve 

nest along with two pressure cylinders. The rotary fluid switcher is the main component. 

The working principle of this device is shown in Figure 8-5. In the working phase 1, the 

cylinder 1 receives high-pressure brine and at the same time, pre-filled LP feed is 

pressurized and then pumped out. This is the pressurizing stroke. At the same time, the 
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high-pressure brine in the second cylinder is depressurized and drained out by the 

incoming low-pressure feed. This is the depressurizing stroke [47]. Once the FS-ERD 

completes both the strokes, the switcher rotates and the second working phase begins 

wherein a motor drives it at 7.5 rpm. Thus, alternative stroke modes are achieved in the 

cylinders. The feed and brine are isolated from each other using a piston. Therefore, no 

intermixing occurs between the two fluids [47]. 

 

 
 

 
 

Figure 8-5: Working Principle of FS-ERD at Phase I 
 
 

 
8.3.2 Isobarix 

 
The Isobarix® device has been launched in competition with ERI's PX. This device is 

similar to the PX except for some alterations that allow lesser energy consumption and 

higher flow [48]. This device was developed by Leif Hauge. Its novelty lies in the fact 

that it lacks the mechanical complexity associated with other ERDs. This device 

functions in the following way- It has a rotor with six columns arranged as in a bullet 

chamber. High-pressure reject enters these columns and collides with low pressure 

water that is entering the columns at the other end at the same time  [48]. The 

momentum of the high pressure reject is transferred to the low pressure water, which 
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then gets pressurized and turns back. The entry and exit of water spins the rotor very 

quickly, as the process repeats at a rate of thousand times per second. There is a very 

minute amount of intermixing between the brine and the feed [48]. 

As in Pressure Exchangers, the Isobarix® is also constructed using ceramics. To be 

specific, the Isobarix® is made of corundum. Since this is only second to diamond in 

hardness, it is resistant to wear and corrosion. Although these devices do not achieve a 

higher efficiency than pressure exchanger, they are however 20% cheaper and run more 

quietly [48]. 

Isobarix® devices can't possibly get more efficient than PXs, but it is claimed it could 

be 20% cheaper to build and much quieter. 

 

 
 

 
 

Figure 8-6: Model XPR-512S 
 
 

 
This device has been named the "Axle Positioned Rotor XPR" and the XPR-512S is 

the biggest Isobarix® device having a capacity of 114 m3/h. This device has an 8" rotor 

that fits inside a pressure vessel. In comparison, the PX has a double row duct rotor. 

Only a 6.5" rotor can fit inside the pressure vessel. The flow of the XPR-512S is 500gpm 

while that of PX is 300 gpm [48]. 
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Figure 8-7: Efficiency at 800-1000 PSI 
 
 

 
8.3.3 Desalitech’s Closed Circuit Desalination (CCD™) 

 
Desalitech’s Closed Circuit Desalination (CCD™) technology provides an energy 

saving solution by reducing the cost of desalination by 20% and consuming minimal 

energy, only about 1.7 kWh/m3. The device achieves a maximum recovery of 65%. This 

technology is used for a variety of applications as listed below: 

   It is used for desalination of seawater 
 

   It is used for desalination of brackish water 
 

   It is used for the treatment of surface and ground water 

   Treatment of municipal and industrial water 

   Cooling towers, boilers & turbines makeup water 
 

The present focus of Desalitech is on standalone plants. The technology is also 

applicable for large desalination plants of very high capacities. A pilot plant of capacity of 

240 m3/d capacity is currently under use and it utilizes the CCD™ technology. This 

technology is a good alternative to ERDs as relies only on the circulation of high- 
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pressure reject. The basic operation of the Desalitech’s CCDTM technology is 

summarized as follows: 

 

 
 

 
 

Figure 8-8: Desalitech CCDTM Unit 
 

 
 
 

   System is filled at atmospheric pressure. 
 

   Circulation pump started to enable cross flow. 
 

   Desalination at constant flow with increasing pressure 

   Desired recovery is achieved. 

   The pump is stopped. 
 

   The system is decompressed with a few drops (water is incompressible). 

   The brine is flushed out with fresh feed water at low pressure. 

99.7% of all high-pressure water becomes permeate. 
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Figure 8-9: Hydrostatic Membrane Process 
 
 

 
8.4 Conclusion and Merits of ERT versus PX in Jeddah SWRO Plant 

 
In this section of the thesis a comparison is emphasized between ERTs and PXs for 

the Jeddah SWRO plant located on the Red Sea of the western coast of Saudi Arabia. 

The plant is designed to efficiently and economically provide 10,000 m³/h (240,000 

m³/day) of high quality potable water using seawater as the feedwater source with  

quality shown in Table 8-4 and utilizing an existing open intake. The pretreatment 

available for the SWRO is coagulation and flocculation (when needed) followed by 

gravity filtration and cartridge filtration. The plant product water quality is to meet the 

requirement per Jeddah RO Phase-3 specifications of 40% overall recovery and the 

chloride limits of 40 – 60 mg/l. The plant consists of a two pass SWRO system described 

as follows: 

   24 1st Pass RO trains of average production 453 m³/h (10,872 m³/day) per train 

   24 2nd Pass RO trains of average production 417 m³/h (10,000 m³/day) per train 

Each 1st pass SWRO train consists of 108 pressure vessels holding 8 seawater 

membranes each for a total of 864 membranes at a conservative flux rate of 14.1 LMH 

(liter/m²/hr). The membrane used for this analysis is Toray TM820-400 rated at 25 
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Table 8-4: Jeddah SWRO Feed Water Analysis 
 

Parameter mg/L as ion mg/L as CaCO3 

Calcium 450 1,125 

Magnesium 1,550 6,107 

Hardness  7,232 

Copper 0.005  

Iron 0.03  

Boron 5.2  

Sodium 13,866  

Barium 0.37  

Strontium 9.5  

Potassium N/A  

Bicarbonate 146.4 120 

Chlorides 24,290  

Sulfates 2,992  

Nitrate N/A  

Fluoride N/A  

Silica 0.06  

pH 8.1  

TDS 43,300  
 
 

m³/day when tested under conditions of 80% recovery using 32,000 ppm NaCl water at 
 

5.52 MPa and 25 °C. The use of ERT turbocharger as the ERD is evaluated against 

ERIs pressure exchangers PXs taking into account economical and efficiency aspects. 

The following is to be noted for below data in Table 8-5: 

   “Eff. “is abbreviation for efficiency 
 

   Booster pump is only used with ERI’s PX design 
 

   Power required is calculated at the maximum pressure where temperature is 21°C 

and membranes are 5 years old as per Toray’s membrane projections. 
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Table 8-5: Jeddah SWRO Feed Water Analysis 
 

 
ERD 

RO HP 
Pump Eff. 

Booster 
Pump Eff. 

Power 
Required 

(kW) 

 
kWh/m³ 

RO HP 
Motor 
kW[5] 

PX 
Booster 
kW[5] 

Turbine 86% [1] NR 
1193- 
1463 

2.66-3.29 1390 
 

Pelton 
Wheel 

86% [2] NR 
1278- 
1304 

2.82-2.88 1650 
 

ERI 81-82% [3] 82% 
1065- 
1175 

2.35-2.59 1400 
75 

Calder [4]  NR     
 
 

Notes: 
 

a. Based on Torishima axially split case pump 
 

b. Based on split ring pump 
 

c. Based on API Split Case pump 
 

d. The Calder/Dweer was not a competitive option since the brine flowrate is slightly 

higher than the maximum recommended flow required for (2) parallel units which put 

Calder to use three units/train. 

e. Motor kW is based on 15% safety where the motor is sized to accommodate 

additional 15% of flow at the same TDH. 

It is observed from above data that the use of ERI will only slightly decrease the 

operating cost in comparison with the turbocharger. The table also shows that the Pelton 

wheel is less efficient than the turbocharger at moderately high and temperatures. 

The pump / ERD design pressure is based on the 21°C, 5-years projections (worst 

case) and the flowrate requirement mentioned earlier. Figure 8-10 below shows a basic 

design of this unit using the turbocharger. 
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Figure 8-10: Jeddah Train Design with ERT 
 
 
 

The turbocharger proposed is manufactured by Pump Engineering Inc. (PEI), model 

HTC AT-4800. This turbine was used in Jebel Ali desalination plant for DEWA – a 4,700 

m3/h (113,500 m3/day) plant and has been in operation since April of 2007. The ERT 

option advantages over the PX will be mainly the low capital cost, simplicity in operation, 

and low cost of maintenance. The maximum boost pressure of the turbocharger is rated 

at 30.8 barg at 78.9% maximum efficiency. 

Table 8-6, Table 8-7, and associated figures below present specific energy 

consumption and general operating data for a single train using turbocharger throughout 

5 years at an operating temperature of 21°C and 36°C. The pump selected shall be 

designed based on required feed pressure at 21°C at year 5 less the boost pressure 

from the turbine plus the additional pressure required for the pressure drop across the 

throttling valve, plus the headloss due to friction in pipelines and the pressure required 

for the permeate stream. The available pressure for the throttling valve is the difference 

between NPSHa (Net Positive Suction Head available) and NPSHr (Net Positive Suction 
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Head required) across the pump plus any additional pressure above the minimum 

pressure required for reverse osmosis. 

 

 
Table 8-6: Jeddah SWRO ERT Analysis 21°C 

 
 

Year 
 

0 
 

1 
 

2 
 

3 
 

4 
 

5 

 
Temp.(°C) 

 
21.0 

 
21.0 

 
21.0 

 
21.0 

 
21.0 

 
21.0 

Permeate Flowrate (m3/hr) 
 

445.4 
 

442.5 
 

443.6 
 

444.3 
 

449.4 
 

445.7 

Brine Flowrate (m3/hr) 
 

635.0 
 

631.0 
 

632.5 
 

633.5 
 

640.6 
 

635.5 

Feed Flowrate (m3/hr) 
 

1,080 
 

1,074 
 

1,076 
 

1,078 
 

1,090 
 

1,081 

Required Feed Pressure 
(bar.g) 

 
64.0 

 
65.6 

 
66.5 

 
67.1 

 
69.3 

 
68.4 

 
Brine Pressure (bar.g) 

 
62.5 

 
64.1 

 
65.0 

 
65.7 

 
67.8 

 
66.9 

 
Required Pump (kW) 

 
1,262 

 
1,287 

 
1,308 

 
1,390 

 
1,382 

 
1,352 

Power required (motor 95% 
eff.) (kW) 

 
1328.4 

 
1354.7 

 
1376.8 

 
1462.9 

 
1454.3 

 
1423.7 

SEC (kWh/m3) 
 

2.98 
 

3.06 
 

3.10 
 

3.29 
 

3.24 
 

3.19 

 
ERT Efficiency (%) 

 
78.9% 

 
78.8% 

 
78.5% 

 
78.5% 

 
78.9% 

 
78.5% 

 
ERT Boost Pressure (bar.g) 

 
28.4 

 
29.1 

 
29.5 

 
29.8 

 
30.8 

 
30.4 

Actual RO HP Pump Pressure 
(bar.g) 

 
35.6 

 
36.5 

 
37.0 

 
37.3 

 
38.5 

 
38.0 
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Table 8-7: Jeddah SWRO ERT Analysis 36°C 
 

 
Year 

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
Temp.(°C) 

 
36.0 

 
36.0 

 
36.0 

 
36.0 

 
36.0 

 
36.0 

Permeate Flowrate (m3/hr) 
 

448.3 
 

449.0 
 

450.1 
 

450.1 
 

450.8 
 

451.5 

Brine Flowrate (m3/hr) 
 

639.0 
 

640.1 
 

641.6 
 

641.6 
 

642.6 
 

643.6 

Feed Flowrate (m3/hr) 
 

1,087 
 

1,089 
 

1,092 
 

1,092 
 

1,093 
 

1,095 

Required Feed Pressure 
(bar.g) 

 
59.7 

 
61.2 

 
61.8 

 
62.1 

 
62.5 

 
62.7 

 
Brine Pressure (bar.g) 

 
58.3 

 
59.8 

 
60.3 

 
60.7 

 
61.0 

 
61.3 

 
Required Pump (kW) 

 
1,133 

 
1,213 

 
1,224 

 
1,234 

 
1,246 

 
1,250 

Power required (motor 95% 
eff.) (kW) 

 
1192.6 

 
1276.4 

 
1362.3 

 
1298.8 

 
1311.2 

 
1315.8 

SEC (kWh/m3) 
 

2.66 
 

2.84 
 

3.03 
 

2.89 
 

2.91 
 

2.91 

 
ERT Efficiency (%) 

 
78.9% 

 
78.9% 

 
78.9% 

 
78.9% 

 
78.9% 

 
78.9% 

 
ERT Boost Pressure (bar.g) 

 
26.4 

 
27.1 

 
27.4 

 
27.6 

 
27.6 

 
27.8 

Actual RO HP Pump Pressure 
(bar.g) 

 
33.3 

 
34.1 

 
34.4 

 
34.5 

 
34.8 

 
34.9 
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Figure 8-11: SEC versus No. of Years for ERT Design 
 
 
 

 
 

Figure 8-12: Energy Required versus No. of Years for ERT Design 
 
 
 

As displayed above we can observe the lowest SEC and lowest total power required 

for the ERT option was at year 0 and 36°C at a value of 2.66 kWh/m3 and 1192 kW 
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respectively, and the highest SEC and highest total power required was at year 3 and 

21°C at a value of 3.29 kWh/m3 and 1462.9 kW respectively. 

Figure 8-13 below shows a basic design of this unit using the ERI PX. 
 

 
 
 

RO High Pressure Pump 

463 m3/hr @ 700 meters 

1200 KW Motor @ 13.8KVA 

Pump/Motor Efficiencies: 83%/95% 

Combined Efficiency: 78.9% 

 

 
SWRO Train with ERI 

42% Recovery 

(108) 1200-psi 8M Pressure Vessels 

(864) Seawater Membranes 

 

 
1,078 m3/hr 

 
Permeate: 453 m3/hr - 10,872 m3/day 

 
Filtered Water 

1,078 m3/hr 

 
 

LP Feed In 

615 m3/hr 
 
 
 
 
 
 
 

ERI 

(15) PX-220 

 
HP Brine In 

625 m3/hr 

Reject: 625 m3/hr - 15,000 m3/day 

 
PX Booster Pump  

615 m3/hr @ 40 meters 

110KW Motor @ 480VAC 

Combined Efficiency: 79.8% 

 
 

Figure 8-13: Jeddah Train Design with PX 
 
 
 

Each SWRO train uses a dedicated rack of 16 ERI PX-220s (15 on duty & one 

standby). The design flowrate for the RO HP pump is 463 m³/hr at 69.5 bars (688 

meters) TDH. At 15% additional load the motor selected should be based on 533 m³/hr. 

The available options for this pump are detailed in the table below. 

 

 
Table 8-8: Available HP Pump Options for PX Design 

 
Manufacturer Type Efficiency Model Motor KW 

Sulzer [1] API 610 Split Case 82% 6x8x12 ½B 
MSD – 4 Stages 

1300 

Torishima Non-API Split Case  MHH200/3  
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Notes: 
 

1. The rated impeller diameter of the Sulzer pump is 254 mm and the maximum 

impeller diameter is 318 mm, which implies that pump capacity can increase by at 

least 20% over the design point. To account for the 15% additional flow, the motor 

selected for the RO HP pump shall be rated at 1300 kW and designed to operate at 

13.8 kVAC/3ph/60Hz power supply. 
 

The design flowrate for the PX booster pump is 615 m³/hr at a maximum of 40 

meters TDH (Total Dynamic Head). At 15% additional load, the motor will be selected to 

handle 707 m³/hr at 40 meters. The available options for this pump are detailed below. 

 

 
Table 8-9: Available Booster Pump Options for PX Design 

 
Manufacturer Type Model Pump 

Eff. 
Motor 

HP/KW 

KSB API, Horizontal 
radially split volute 
casing, RPH 
Series 

RPH-RO 250-401   

Flowserve API, Horizontal 
axially split casing 
pump 

8HHPX15C  
85.5% 

 

David 
Brown/Union 

API, In-line vertical 
pumps, VHK 
Series 

10x10x15A1 VHK   

 
 

The pressure exchangers ERI’s PX-220s are designed to be assembled on site with 

all the required high pressure and low pressure manifolds. The rack will have a space for 

16 units. 

Table 8-10, Table 8-11 and associated figures below present specific energy 

consumption and general operating data for a single train using PX units throughout 5 

years at an operating temperature of 21°C and 36°C. 
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Table 8-10: Jeddah SWRO PX Analysis 21°C 
 

 
Year 

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
Temp.(°C) 

 
21.0 

 
21.0 

 
21.0 

 
21.0 

 
21.0 

 
21.0 

 
Permeate Flowrate (m3/hr) 

 
445.4 

 
442.5 

 
443.6 

 
446.3 

 
449.4 

 
445.7 

 
Brine Flowrate (m3/hr) 

 
635.0 

 
631.0 

 
632.5 

 
633.5 

 
640.6 

 
635.5 

 
Feed Flowrate (m3/hr) 

 
1080 

 
1074 

 
1076 

 
1078 

 
1090 

 
1081 

Required Feed Pressure 
(bar.g) 

 
64.0 

 
65.6 

 
66.5 

 
67.1 

 
69.3 

 
68.4 

Brine Pressure 
(bar.g) 

 
62.5 

 
64.1 

 
65.0 

 
65.7 

 
67.8 

 
66.9 

 
Diff. Press. (bar.g) 

 
1.50 

 
1.50 

 
1.50 

 
1.40 

 
1.50 

 
1.50 

RO HP Pump Flowrate 
(m³/hr) 

 
455.0 

 
452.0 

 
453.0 

 
454.0 

 
460.0 

 
456.0 

PX Booster Pump Flowrate 
(m³/hr) 

 
631.0 

 
627.0 

 
628.0 

 
629.0 

 
636.0 

 
631.0 

 
Required Pumps (kW) 

 
1,115 

 
1,134 

 
1,153 

 
1,165 

 
1,218 

 
1,192 

Power required (motor 95% 
eff.) (kW) 

 
1,174 

 
1,194 

 
1,214 

 
1,226 

 
1,282 

 
1,255 

SEC (kWh/m3) 
 

2.50 
 

2.56 
 

2.60 
 

2.62 
 

2.71 
 

2.67 

PX Net Transfer Efficiency 
(%) 

 
95.8 

 
95.8 

 
95.8 

 
95.8 

 
95.8 

 
95.8 
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Table 8-11: Jeddah SWRO PX Analysis 36°C 
 

 
Year 

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
Temp.(°C) 

 
36.0 

 
36.0 

 
36.0 

 
36.0 

 
36.0 

 
36.0 

 
Permeate Flowrate (m3/hr) 

 
448.3 

 
449.0 

 
450.1 

 
450.1 

 
450.8 

 
451.5 

 
Brine Flowrate (m3/hr) 

 
639.0 

 
640.1 

 
641.6 

 
641.6 

 
642.6 

 
643.6 

 
Feed Flowrate (m3/hr) 

 
1087 

 
1089 

 
1092 

 
1092 

 
1093 

 
1095 

Required Feed Pressure 
(bar.g) 

 
59.7 

 
61.2 

 
61.8 

 
62.1 

 
62.5 

 
62.7 

Brine Pressure 
(bar.g) 

 
58.3 

 
59.8 

 
60.3 

 
60.7 

 
61.0 

 
61.3 

 
Diff. Press. (bar.g) 

 
1.40 

 
1.40 

 
1.50 

 
1.40 

 
1.50 

 
1.40 

RO HP Pump Flowrate 
(m³/hr) 

 
457.0 

 
458.0 

 
459.0 

 
459.0 

 
454.0 

 
455.0 

PX Booster Pump Flowrate 
(m³/hr) 

 
636.0 

 
637.0 

 
638.0 

 
638.0 

 
625.0 

 
626.0 

 
Required Pumps (kW) 

 
1,047 

 
1,075 

 
1,088 

 
1,069 

 
1,096 

 
1,093 

Power required (motor 95% 
eff.) (kW) 

 
1,102 

 
1,132 

 
1,145 

 
1,125 

 
1,154 

 
1,151 

SEC (kWh/m3) 
 

2.34 
 

2.39 
 

2.42 
 

2.38 
 

2.43 
 

2.42 

PX Net Transfer Efficiency 
(%) 

 
95.8 

 
95.8 

 
95.8 

 
95.8 

 
95.8 

 
95.8 
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Figure 8-14: SEC versus No. of Years for PX Design 
 
 
 

 
 

Figure 8-15: Energy Required versus No. of Years for PX Design 
 
 
 

As displayed above we can observe the lowest SEC and lowest total power required 

for the PX option was at year 0 and 36°C at a value of 2.34 kWh/m3 and 1102 kW 

respectively, and the highest SEC and highest total power required was at year 3 and 
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21°C at a value of 2.71 kWh/m3 and 1226 kW respectively. These values although lower 

than the ERT’s for the Jeddah plant were not sufficient enough to compensate for 

difference in capital cost, maintenance cost and difficulty of operation. This takes into 

account of considering the relatively low cost of energy in the Middle East region as well. 

As inferred from the case studies on SWRO plants across the world, it is concluded 

that compared to centrifugal devices, isobaric devices are more energy efficient. 

However it is concluded as follows that many variables play different roles as 

contributing factors to selecting the most adequate ERD system in SWRO plants: 

a. Total specific energy consumption of SWRO train (HPP, BP, ERD) 
 

b. Total capital cost (HPP, BP, ERD) 
 

c. Cost of energy (classified by region) 
 

d. Maintenance cost 
 

e. Operational cost 
 

f. Total plant production and recovery required 
 

g. Pumping system selected (centrifugal / PD) 
 

h. Variable efficiencies of selected pumps and ERDs and their optimum duty points 
 

i. Depreciation of capital costs and periods considered 
 

j. Payback months cycle 
 

k. Worst case scenario conditions (membrane life and lowest operating temperatures) 
 

l. Cost of pretreatment system specific energy consumption 
 

m. Footprint and noise requirements limitations 
 

n. Environmental aspects considered and greenhouse gas emissions limitations 
 

This thesis covers the most prominent and widely used energy recovery devices in 

seawater desalination plants. The advantages and disadvantages of each one are 

discussed and a comparative analysis has thus been made. As is evident, in the course 

of time, one ERD was followed by another that had better efficiency and energy 
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recovery. Pelton wheels, turbochargers and pressure exchangers followed the initial 

Francis Turbines. Below is a comparison table which summarizes the merits of the 

different ERDs that were investigated in this study. 

 

 
Table 8-12: Different ERDs Conclusive Comparison 

 

Type Class 
Maxiumum 
Efficiency 

Advantages Disadvantages 

 
 
 
 
 
 
 
 
 
 
Francis Turbine 

 
 
 
 
 
 
 
 

Hydraulic to 
mechanical 

assisted 
pumping 

 
 
 
 
 
 
 
 
 
 

75% - 80% 

Low capital cost 
Direct flange 
connection to be 
preferred over 
clutch 

Efficiency "Double 
Dip" 

Narrow operating 
pressure and flow 
range 

Lower efficiencies 
in regions with 
variable 
temperature 
ranges 

Difficult to 
maintain and 
control due to 
clutch assembly 
Not suitable for 
low flow ranges 
due to poor 
efficiency 

 
 
 
 
 
 
 
 

Pelton Wheel 

 
 
 
 
 

 
Hydraulic to 
mechanical 

assisted 
pumping 

 
 
 
 
 
 
 
 

80% - 85% 

Low capital cost 
Easy in 
operation 
Optimization of 
Pelton wheel 
and nozzle 
design for 
efficient kinetic 
to mechanical 
energy 
transformation 
High efficiency 
maintained over 
the full operation 
range 

Efficiency "Double 
Dip" 

Distributor 
geometry induces 
dissymmetry and 
secondary flows at 
the inlet of the 
nozzle 
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Table 8-12 (Continued) 
 

Type Class 
Maxiumum 
Efficiency 

Advantages Disadvantages 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

ERT 

 
 
 
 
 
 
 
 
 
 
 
 
 
Hydraulically 

driven 
pumping in 

series 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

90% 

Relatively low 
capital cost 
Specifically 
designed for RO 
Relatively small 
footprint and 
easy to install, 
operate and 
maintain 

Used duplex 
grades of 
stainless steel 
corrosion 
resistant alloy 
parts 

No electrical 
cooling or 
pneumatic 
requirements 
Turbocharger 
and HPP are not 
directly 
connected 
providing a 
degree of 
flexibility 

 

 
 
 
 
 
 

Limitation of only 
being able to 
recover 50-80% 
energy 

Efficiency decline 
in accordance with 
the efficiencies of 
impeller, nozzle 
and turbine 
Efficiency decline 
as the flow rate or 
pressure of the 
reject stream 
strays from 
optimal 

 

 
 
 
 
 
 
 
 
 
 

Recuperator 

 
 
 
 
 
 
 
 
 
Hydraulically 

driven 
pumping in 

parallel 

 

 
 
 
 
 
 
 
 
 
 

92% - 97% 

 
Directly transfer 
of brine 
hydraulic energy 
to feed hydraulic 
energy without 
going through 
shaft work 
Seawater of the 
same flow and 
pressure as the 
saline reject with 
no mixing 

HPP required is 
about 60% 
smaller than that 
of the traditional 
technology 

High capital cost 
To compensate 
for the pressure 
drop across the 
membranes (0.5- 
1.5bar) and in the 
Recuperator 
system (0.2- 0.6 
bar) a booster 
pump that can 
take high suction 
pressure is 
needed 

Mixing, lubrication, 
overflush, high 
pressure 
differential, low 
pressure 
differential 
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Table 8-12 (Continued) 
 

Type Class 
Maxiumum 
Efficiency 

Advantages Disadvantages 

 
 
 
 
 
 

DWEER 

 
 
 
 
Hydraulically 

driven 
pumping in 

parallel 

 
 
 
 
 
 

98% 

Brine and feed 
are separated by 
a piston to 
ensure minimum 
mixing 

For a piston 
designed for 
minimum drag 
the transfer of 
energy is 
essentially 100% 

 
High capital cost 

Booster pump is 

needed 

Mixing, lubrication, 
overflush, high 
pressure 
differential, low 
pressure 
differential 

 
 
 
 
 
 
 
 
 
 
 
 
 

PX 

 
 
 
 
 
 
 
 
 
 
 
Hydraulically 

driven 
pumping in 

parallel 

 
 
 
 
 
 
 
 
 
 
 
 
 

98% 

Core built of 
ceramic selected 
to be the ideal 
material for its 
toughness, 
corrosion 
resistance and 
dimensional 
stability 
withstanding the 
harshest saline 
environments 
Unlike turbines 
no 
transformational 
losses occur in a 
PX device 
Stable efficiency 
over wide range 
of recoveries 
Lack of 
traditional seals 
and bearings 

 
 
 
 
 

 
High capital cost 
Booster pump is 
needed 
Complexity of 
design, operation 
and maintenance 
Mixing, lubrication, 
overflush, high 
pressure 
differential, low 
pressure 
differential 
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